
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 90, 040302(R) (2014)

Phase separation of fluids in porous media: A molecular dynamics study
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We present comprehensive molecular dynamics results for phase-separation kinetics of fluids in a porous
medium. This system is modeled by a symmetric Lennard-Jones fluid mixture with a quenched random field.
The presence of disorder slows down domain growth from power-law to a logarithmic form. It also modifies the
correlation functions and structure factors which characterize the morphology. In particular, the structure-factor
tail shows a non-Porod behavior, which is the consequence of scattering from rough interfaces.
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When one quenches a homogeneous binary (A + B)
mixture inside the miscibility gap, the system becomes
thermodynamically unstable and undergoes phase separation.
Its evolution towards the segregated state is characterized by
the emergence and growth of domains of like particles [1–4].
The domain growth law [behavior of the characteristic length
scale �(t) with time t] depends upon various system properties,
e.g., conservation laws, hydrodynamic effects, presence of
disorder, etc.

The growth laws for pure and isotropic systems are
well understood: �(t) increases in a power-law fashion, viz.,
�(t) ∼ tα [1–4]. In the case of conserved order parameter
with diffusive kinetics, α = 1/3, which is referred to as the
Lifshitz-Slyozov (LS) growth law [5]. The LS law applies
for phase-separating solid mixtures. For fluids and polymers,
the growth is much faster at later times due to the influence
of hydrodynamics, and there are two additional regimes with
α = 1 [6] and 2/3 [7]. These are referred to as the viscous hy-
drodynamic and inertial hydrodynamic regimes, respectively.
In recent works [8], we have convincingly demonstrated via
molecular dynamics (MD) simulations that there is a crossover
from the diffusive to the viscous hydrodynamic regime for
fluid-fluid phase separation.

Of course, real experimental systems are never pure and
contain different kinds of immobile or mobile impurities. In
this context, there have been a number of studies investigating
diffusion-driven coarsening in Ising systems with quenched
disorder, e.g., bond, site, random-field [9–21]. A general
observation in these studies is that trapping of domain
boundaries by disorder sites [9,10] results in a slower growth
of domains. It is now well established that the growth law
in disordered Ising systems crosses over from a power-law
behavior to a logarithmic one [20,21].

To the best of our knowledge, there are no studies of
phase-separation kinetics in fluids with quenched disorder.
This system offers interesting possibilities because of its
experimental importance. Further, there are important the-
oretical issues concerning the crossover from pure fluidic
systems with their multiplicity of growth exponents to the
disordered case. In this Rapid Communication, we undertake
a MD study of segregation kinetics in fluids with disorder. Our
MD simulations have the advantage of naturally incorporating
hydrodynamic effects. We use a random-field disorder, which
puts our equilibrium system in the universality class of the
random-field Ising model (RFIM), which is analogous to fluid

mixtures in porous media [22–26]. The latter system is of
great scientific and technological interest, especially in the
oil-extraction industry. Apart from porous media, the RFIM
has many applications in the context of structural transitions,
metal-insulator transitions, etc.

For our MD simulations, we employ a symmetric A + B

mixture with a high particle density: n = N/V = 1, N and V

being the number of particles and volume of the system, with
particle diameter σ = 1. Particles of equal mass (m), located
at �ri and �rj , interact via the potential

V (r) = U (r) − U (rc) − (r − rc)
dU (r)

dr
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r=rc

, r < rc,

(1)
= 0, r > rc,
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)12

−
(

σ
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is the Lennard-Jones (LJ) potential. Here, r = |�ri − �rj | and
rc = 2.5σ ; α,β = A,B and εAA = εBB = 2εAB = ε. (We set
m,ε and kB to unity in further discussions.) This particular
choice of the interaction strengths energetically favors phase
separation, which sets in at the critical temperature Tc �
1.42 [27–29]. Due to the high density, this is far away from the
gas-liquid transition. We have also checked that the solid-liquid
transition does not occur in the temperature range of interest
to us. We work with a 50:50 mixture of A and B particles
(NA = NB = N/2), corresponding to the critical composition
of the system.

To incorporate disorder in this system, consider a cubic
periodic array of lattice constant unity. In addition to expe-
riencing force from the interparticle potential, each particle
feels a random force fi from the nearest lattice site. This
is schematically shown in Fig. 1. In this figure, the disorder
sites are marked in black, and are fixed at lattice sites of the
imaginary mesh. The fluid particles are marked in red. The
lattice sites push or pull A/B particles in opposite directions.
The random field on each site is independent of time, and is
chosen from a uniform distribution in the range [−f,f ]. We
have carried out simulations for various amplitudes (f ) of the
disorder.

The MD runs were performed using the standard velocity
Verlet algorithm [30] with an integration time step �t =
0.01τ , where τ is the LJ time unit with τ = (mσ 2/ε)1/2 = 1.
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FIG. 1. (Color online) Schematic picture of the interactions in
our system. The black circles indicate the disorder sites placed on
a cubic lattice. The red (gray) circles indicate the fluid particles. A
particle i interacts with the other fluid particles via the truncated LJ
potential, and with the nearest disorder site (K , in this case) via a
random field.

The temperature (T ) was controlled by a Nosé-Hoover
thermostat (NHT) [30], which is known to preserve hydro-
dynamics well. The force experienced by a particle includes
a contribution from the discontinuous random field. This
does not affect the integration of the equations of motion,
as the NHT suppresses large fluctuations. Homogeneous
initial configurations were prepared by equilibrating a system
(without disorder) at T = 10 � Tc. At t = 0, the system is
quenched to T < Tc, and is allowed to evolve towards the new
equilibrium state.

For the characterization of the domain morphology, we
obtain the correlation function

C(�r,t) = 〈ψ(0,t)ψ(�r,t)〉/〈ψ(0,t)2〉. (3)

The order parameter ψ(�r,t) is defined on boxes of size (2σ )3

as

ψ(�r,t) = nA(�r,t) − nB(�r,t)
nA(�r,t) + nB(�r,t) , (4)

where nA and nB are the local densities of A and B, respec-
tively. The angular brackets in Eq. (3) represent statistical
averaging. We also calculated the structure factor S(�k,t) (�k
being the wave vector), which is the Fourier transform of
C(�r,t). As the system is isotropic, we consider the spherically
averaged versions of C(�r,t) and S(�k,t), which are denoted as
C(r,t) and S(k,t), respectively. Notice that we calculate the
structure factor of the “density difference field” rather than the
conventional structure factor of the “total density field.” The
average domain size, �(t), was calculated from the first zero
crossing of the correlation function. All statistical quantities
were calculated from smoothed morphologies obtained by
eliminating thermal fluctuations in raw configurations via a
majority-rule procedure [31].

Our results for the disordered case were obtained from
systems of 32 768(=323) particles, after averaging over 40
independent runs at a quench temperature T = 0.77Tc. As
stated earlier, this is far from the gas-liquid and solid-liquid
transitions. Further, the temperature is sufficiently high that the

FIG. 2. (Color online) (a) Three-dimensional (size 323) snap-
shots of the fluid mixture at t = 2000 (LJ units), with different
disorder amplitudes. The A and B particles are marked green (gray)
and blue (black), respectively. (b) Two-dimensional (size 322) cross
sections of the snapshots in (a). Here, only B particles are shown, for
clarity.

system does not get trapped in metastable states. For each run,
we used a distinct initial condition and disorder configuration.
For reference, we also obtained results for pure systems (i.e.,
with f = 0) of 262 144(=643) particles with averages over
five independent runs, at the same quench temperature.

In Fig. 2, we show the snapshots obtained at time t = 2000
during the phase separation of fluidic systems with f = 0 (pure
case), 1, and 5. The d = 3 pictures, shown in Fig. 2(a), exhibit
bicontinuous domain morphologies for all cases. However, it
is evident that the growth gets appreciably slower with the
increase of f . We will shortly quantify the slowing down
of the domain growth law. Another noticeable feature in
these pictures is that the domain boundaries roughen as the
disorder amplitude increases. This can be better appreciated
from Fig. 2(b), where we present the d = 2 cross sections of
the snapshots in Fig. 2(a).

Next, let us quantify the properties of the morphologies
depicted in Fig. 2. In Fig. 3(a), we present scaling plots
of C(r,t) vs r/� from different times for the fluid system
with f = 2. The neat collapse of data from different times
demonstrates the self-similar nature of pattern formation
during the kinetics of phase separation, even in the presence of
disorder [3]. In Fig. 3(b), we present scaling plots of C(r,t) vs
r/� at t = 2000 for different disorder amplitudes. Notice that
the scaling function is strongly dependent on f , and becomes
less oscillatory for larger f . Further, the f = 0 function decays
linearly with r for small distances: C(r,t) � 1 − ar + · · · .
This is the result of scattering from sharp interfaces, and
is well known as the Porod law. On the other hand, the

040302-2



RAPID COMMUNICATIONS

PHASE SEPARATION OF FLUIDS IN POROUS MEDIA: A . . . PHYSICAL REVIEW E 90, 040302(R) (2014)

FIG. 3. (Color online) Scaling plots of the correlation function,
C(r,t) vs r/�, for the fluid mixture. (a) Data sets for f = 2, at different
times. (b) Data sets for t = 2000, at different disorder amplitudes. All
times are measured in LJ units.

scaling functions for f �= 0 display a distinct cusp behavior
for r → 0, which results from scattering off rough or fractal
interfaces [32].

An important issue in disordered domain growth is that of
superuniversality (SU), i.e., whether or not the dependence
on disorder is only via the domain growth law. The SU
property was demonstrated for the spatial correlation function
and structure factor in early studies of nonconserved domain
growth problems [12–15,17]. However, more recent stud-
ies [20,21] have shown the absence of SU in autocorrelation
functions for these problems. The present communication
clearly demonstrates that, for conserved growth problems with
quenched random fields, SU does not apply even for the spatial
correlation function.

In Fig. 4, we show the scaled structure factor plots
corresponding to the correlation functions in Fig. 3(b). This
figure confirms the breakdown of SU as the scaling functions
depend strongly on disorder. The pure case obeys Porod’s
law: S(k,t) ∼ k−(d+1) in momentum space [3]. On the other
hand, the disordered cases show a marked non-Porod behav-
ior, S(k,t) ∼ k−(d+θ) with θ � 0.2. This non-Porod behavior
occurs due to scattering from rough interfaces with fractal

FIG. 4. (Color online) Scaling plots of the structure factor,
S(k,t)�−3 vs k�. The data sets correspond to three different values of
f , as indicated, at t = 2000. The dashed line denotes the Porod law
[S(k,t) ∼ k−(d+1)] for scattering from sharp interfaces. The solid line
corresponds to a non-Porod behavior [S(k,t) ∼ k−(d+θ) with θ = 0.2],
which is characteristic of scattering from rough interfaces.

FIG. 5. (Color online) (a) Time dependence of domain size for
different disorder amplitudes, plotted on a log-log scale. (b) Instanta-
neous dynamical exponent (zeff ) vs � for data sets in (a). The horizontal
dashed lines mark the disorder-dependent intermediate-time exponent
z̄. (c) Plot of z̄ vs f . The solid line denotes the best linear fit. (d) Plot
of zeff − z̄ vs �/λ at late times (zeff > z̄) for f = 1,2,5. The choice
of λ is explained in the text. The dashed line denotes the best fit to
Eq. (5).

dimension df = d − θ � 2.8 [33,34]. This is consistent with
the value obtained in recent studies of ground-state morpholo-
gies in the d = 3 RFIM [32]. In general, we expect noninteger
tails in the structure factor for domain growth problems with
fractal interfaces resulting from quenched disorder.

Next, we analyze results for the time dependence of
the domain size. In Fig. 5(a), we plot �(t) vs t on a
log-log scale for various disorder amplitudes. For the pure
case (f = 0), our MD simulations are able to access the
linear growth regime [8]. A slowing down in growth with
increasing disorder amplitude is seen in Fig. 5(a)—this was
already evident from the snapshots in Fig. 2. To quantify
the growth, in Fig. 5(b) we plot the instantaneous dynamical
exponent zeff = 1/αeff vs �, where αeff = d(ln �)/d(ln t). For
a power-law behavior, � ∼ tα and zeff = 1/α. The result for
the pure system saturates to the power law (α � 1) expected
for the viscous hydrodynamic regime [8]. (The asymptotic
inertial regime with α = 2/3 has proven inaccessible to
MD simulations as yet due to computational limitations.)
However, for systems with disorder, zeff does not show a
similar behavior. In these cases, the growth obeys a power-law
behavior at intermediate times (flat region of zeff vs �), while
the long-time behavior is not power law. The exponent for this
intermediate power-law behavior (z̄) has an approximately
linear dependence on the disorder amplitude (f ), as shown
in Fig. 5(c). In disordered systems, the interfaces tend to
become locally trapped at energetically favorable sites. This
gives rise to energy barriers, which are overcome by thermally
activated hopping. The barrier dependence on � determines
the asymptotic domain growth law [9]. Our observation that
z̄ depends linearly on f is consistent with energy barriers
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which have a logarithmic dependence on � in this regime
[17].

Finally, let us examine the asymptotic behavior of the length
scale. Figure 5(b) shows a crossover to a regime where zeff is �

dependent for the nonzero disorder cases. We use the method
of Corberi et al. [21] to analyze the length scale in this regime.
In Fig. 5(d), we plot zeff − z̄ vs �/λ, where λ is a disorder-
dependent fitting parameter, which is chosen to obtain a neat
data collapse. Our results (not shown here) are consistent with
λ ∼ f −0.54, suggesting the scaling law λ ∼ f −1/2. However,
this needs to be confirmed analytically. We look for a power-
law behavior in the scaling function of Fig. 5(d):

zeff = d(ln t)

d(ln �)
= z̄ + b

(
� − �0

λ

)ϕ

, (5)

which fits well with the numerical data. The best-fit values for
these parameters are b � 1.83 ± 0.07, �0 � 3.88 ± 0.02, and
ϕ � 1.54 ± 0.03. The corresponding growth law at long times
is logarithmic with

�(t) ∼ λ

(
ϕ

b
ln t

)1/ϕ

. (6)

The behavior of the growth law, i.e., a crossover from a
disorder-dependent power law to a logarithmic behavior is con-
sistent with previous studies for Ising systems with quenched
disorder [20,21]. It is also in agreement with the analytical
arguments of Ngamsaad et al. (NYT) [35], who studied phase-
separation kinetics of fluids in a porous medium. Their model
consisted of coupled partial differential equations for the order
parameter field (advective Cahn-Hilliard equation) and the
fluid velocity field (Brinkman-Darcy equation). NYT used a

clever combination of physical arguments and dimensional
analysis to obtain a logarithmic domain growth law due to
hydrodynamic screening.

In summary, we have presented comprehensive MD results
for the kinetics of phase separation in porous media, modeled
by a LJ fluid in a random field. Here we studied domain growth
in fluid mixtures with disorder and obtained three important
results. First, the correlation functions and structure factors do
not obey SU, i.e., the scaling functions explicitly depend on
disorder. This is at variance with the corresponding result for
nonconserved kinetics. Second, the structure factor shows a
non-Porod tail in the disordered cases. This is characteristic
of scattering from fractal interfaces with df � 2.8. Third, the
growth law shows a crossover from a preasymptotic regime
with power-law growth (� ∼ t1/z̄ where z̄ increases linearly
with disorder) to an asymptotic regime with logarithmic
growth [� ∼ (ln t)1/ϕ with ϕ � 1.54]. We do not see viscous
hydrodynamic growth (� ∼ t) in the disordered cases. How-
ever, an appropriate reduction of disorder amplitude (and a
corresponding increase in system size) should recover viscous
and inertial hydrodynamic regimes prior to the disordered
logarithmic behavior. We hope that the results presented
here will encourage further systematic experiments on this
physically important system.
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