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We compute the full order statistics of a one-dimensional gas of spinless fermions (or, equivalently, hard
bosons) in a harmonic trap at zero temperature, including its large deviation tails. The problem amounts to
computing the probability distribution of the kth smallest eigenvalue A, of a large dimensional Gaussian random
matrix. We find that this probability behaves for large N as P[Ay), = x] ~ exp[—ﬁNzt//(k/N,x)], where S is the
Dyson index of the ensemble. The rate function v (c,x), computed explicitly as a function of x in terms of the
intensive label ¢ = k/N, has a quadratic behavior modulated by a weak logarithmic singularity at its minimum.
This is shown to be related to phase transitions in the associated Coulomb gas problem. The connection with
statistics of extreme eigenvalues and order stastistics of random matrices is also discussed. We find that, as a
function of ¢ and keeping the value of x fixed, the rate function v (c,x) describes the statistics of the shifted
index number, generalizing known results on its typical fluctuations; as a function of x and keeping the fraction
¢ = k/N fixed, the rate function v¥(c,x) also describes the statistics of the kth eigenvalue in the bulk, generalizing
as well the results on its typical fluctuations. Moreover, for k = 1 (respectively, for k = N), the rate function

captures both the fluctuations to the left and to the right of the typical value of A, (respectively, of A(y)).
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Introduction. Recent spectacular progress in the fabrication
of devices for the manipulation of cold atoms [1-4] has created
an increased interest towards the theoretical understanding of
the behavior of quantum many-body systems using tools and
techniques borrowed from classical statistical physics.

Perhaps the simplest conceivable setting is a system of
fermions confined by optical laser traps into a limited region
of space [4—10]. In this experimentally rather common setup,
there is a well-known connection between the ground-state
(T =0) many-body wave function and the statistics of
eigenvalues of a certain class of random matrices.

More precisely, in the presence of a harmonic potential
U(x) = $mw*x?, the unnormalized single-particle eigenfunc-
tions are given by @,(x) = H,(&)e5/2, where H,(£) =
(=118’ Bgfle_éz forn = 1,2, ... are Hermite polynomials
and & = (mw/h)"/*x. For a noninteracting gas of N spin-
less fermions in a one-dimensional (1D) harmonic trap (or,
equivalently, hard bosons) the spatial ground-state many-body
unnormalized wave function is the Slater determinant Wy(x)
deti<; j<n[@i(x;)] of the first N single-particle eigenstates.
The explicit evaluation of this determinant yields

N
[Wo@)|* = Cxe™™/ME= Ty = (1)
j<k

where x = (x1,...,xy) are the positions of the particles
on the line and Cp is the normalization constant such
that fdxllllg(x)|2 = 1. As first noticed in [11], (1) can be
interpreted as the joint probability density (jpd) of the real
eigenvalues of an N x N matrix belonging to the Gaussian
unitary ensemble (GUE) [12]. The general jpd for Gaussian
matrices is indeed written as
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with 8 > 0 the Dyson index of the ensemble (8 = 2 for GUE)
and Zy g a normalization constant. The jpd of real eigenvalues
(2) can be written as
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Written in this form, (3) can be interpreted as the canonical
Boltzmann-Gibbs weight of an associated thermodynamical
system: a gas of N charged particles confined to a line,
and in equilibrium at inverse temperature 8 under competing
interactions, the quadratic confining potential and a logarith-
mic [two-dimensional (2D)-Coulomb] repulsive interaction.
Then, through random matrix theory (RMT), observables of
a (quantum) noninteracting 1D Fermi gas at zero temperature
are mapped to thermodynamical properties of a (classical)
2D-Coulomb gas confined on the line at temperature S~
In the Fermi gas picture, the logarithmic repulsion of the
Coulomb gas is essentially a manifestation of the exchange
interaction between fermions.

In this Rapid Communication, we employ this mapping
to study the order statistics of trapped fermions, i.e., the
distribution of the kth leftmost particle of a Fermi gas on
the line. In the RMT language, this amounts to computing
the full statistics of the kth smallest eigenvalue, including
its large deviation (LD) tails, of large Gaussian matrices
(for all B > 0). Results on the order statistics abound for
independent and identically distributed random variables [13],
but are much scarcer for correlated variables (see [14—18] for
most interesting recent developments). Our approach provides
a unified and transparent framework to probe interesting
features of these distributions, such as non-Gaussian tails and a
nonanalytic behavior at the peak, which is a direct consequence
of phase transitions of the underlying Coulomb gas system.
We find that the spectral order statistics are governed by
a rate function that is a function of rwo variables, ¥ (c,x),
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which we are able to compute explicitly, with ¢ = k/N the
“intensive” label of the kth eigenvalue. Very remarkably,
the rate function v (c,x) captures at once many aspects of the
extreme value statistics and order statistics for the eigenvalues
of Gaussian random matrices: As a function of ¢ and keeping
the value of x fixed, the rate function ¥ (c,x) (i) describes the
statistics of the number of eigenvalues N7 lying to the left
of a barrier at x [Z = (—00,x)], generalizing the results of
[19,20] for the standard index number and (ii) generalizes the
results of Gustavsson and O’Rourke [21,22] beyond the typical
fluctuations of Nz. Similarly, as a function of x and keeping the
fraction ¢ = k/N fixed, the rate function W(c,x) (iii) describes
the statistics of the kth eigenvalue in the bulk; (iv) generalizes
the results of [21,22] beyond its typical fluctuations; and (v)
for k = 1 (respectively, for k = N), the rate function describes
both the left and right LD of A(;) (respectively, of A(y)) [23-26].

Setting and summary of results. We consider B-Gaussian
ensembles (B8 > 0 being the Dyson index) of N x N random
matrices (see [12,27]) whose eigenvalues have law (2). Using
the 2D-Coulomb gas picture, it is well known [12] that, for
large N, the average density py(L) = N~ (Zf\]:l S — X))
of eigenvalues (normalized to unity) of (2) approaches the
celebrated Wigner’s semicircle law on the single support
[—ﬁ,ﬁ], on () = pe(A) = w7 14/2 — A2. We now arrange
the eigenvalues A, in increasing order and we denote them by
Ay € A < -+ < Ay Itis easy to notice that the cumulative
distribution of the kth smallest eigenvalue P[Ay) < x] is
related in a simple way to the tail-cumulative distribution
of N, = Z,N: , ©(x — A;) (the number of eigenvalues smaller
than x),

P[)L(k) < x] = P[Nx > k] (4)

Indeed, the kth eigenvalue is smaller than x if and only if
there are at least k eigenvalues to the left of x. Using (2), the
probability density of N, is

N
PIN, =cN] = / dAPg(L)8 (cN - ZG)(X - Ki)) :
RN

i=1
(&)

The full statistics of N,—¢ was computed for large N in [19,20],
while for a symmetric interval around the origin [—L, L], the
full distribution of Nj_j, 1 (including large deviation tails) and
its variance in all regimes of L have been computed in [28]
(see [29-36] for related results). These results are in agreement
for B = 2 with numerical and analytical estimates provided in
recent literature on 1D Fermi systems [37].

Computing the large N behavior of (5) and using (4), we
establish the following LD estimates:

PIN, = eN]~ e PNV Pl = x] v e AVVEND,
(©)

where & stands for logarithmic equivalence. The central
result of our Rapid Communication is the calculation of the
large deviation (or rate) function ¥(c,x) (with0 < ¢ < 1 and
x € R), given explicitly in Eq. (15) and plotted in Fig. 1.
Interestingly, the same function ¥ (c,x) (viewed in turn as a
function of ¢ or of x, the other variable acting as a parameter)
governs both the LD behavior of the cumulative distribution
of N, and of the kth eigenvalue A ). We will show below that,
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FIG. 1. (Color online) Plot of the rate function ¥ (c,x) as a
function of ¢ € [0,1] (orange) and x € R (blue), yielding the large
deviation decay of N, and A, respectively. The rate function is
zero along the red line in the plane [Eq. (7)], corresponding to the
unperturbed (semicircle) phase III in Fig. 2. The two curves have
been rescaled so that they are both visible in the same figure.

as an additional bonus, it also recovers in certain limits the
right and left LD laws for the extreme eigenvalues of Gaussian
matrices [23-25].

The rate function v (c,x) is convex; it satisfies ¥ (c,x) =
¥ (1 — ¢, — x) and has a minimum (zero) on the red line in
Fig. 1, identified by the equation
6, — sin 6,

c(x) = f dzp(z) =1 —

oo 2w

. N

with 6, = 2 arccos(x/ V2)for |x| < +/2, while 6, = 0 (respec-
tively, 6, =2m) if x > V2 (respectively, x < —\/5). Thus,
e.g., the distribution of N, is peaked around c*(x)N, which
is precisely its mean value (N,) = ¢*(x)N for large N, while
the distribution of A, is peaked around (A«)) = x*(c = k/N),
where ¢*(x) and its inverse x*(c) are given by (7).

Asymptotics. Expanding the rate function (15) around its
minima in the two directions, we get access to the law of
typical fluctuations of N, /N and Ay. We find

7% (8¢ + pudx) (8¢ + pubx/2)
2 In(Cp3) — In|8c + p.dx/2|’
(®)
where we have denoted p, = ps.[x*(c)] and C is a constant
independent of x and c. The fact that v is not simply harmonic
in §x and §c close to its minima but contains also a logarithmic
contribution has important consequences on the variance of the
two random variables, as is customary in this type of problem
[19,20,28]. Indeed, inserting this behavior back into (6) [38],
we find that the extensive variables N, and y, = A(k)«/ﬁ in
the bulk have Gaussian fluctuations

Ylc + dc,x*(c) — éx] ~

PN, = cN] = e (Ve Ne@F280 A —ﬂl SInpN,
T
C))
" 1 InN
P — ~ —{ly—+/Nx (C)]2/2Az}; A, = . (10
e =yl=~e 2= g N (10

up to O(1) corrections for large N, in agreement with
earlier results in both cases [19-22,39]. These estimates are,
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respectively, valid for N — oo such that Np? — oo, ie.,
for x “deeply” within the semicircle edges, and p, > 0,
ie.,, c =k/N € (0,1). However, for larger fluctuations, the
Gaussian form is no longer valid, and the distribution has
non-Gaussian LD tails described by the rate function (15).
Furthermore, the limit ¢ — 1~ (or symmetrically ¢ — 0%)
of (15) at fixed x (corresponding to the largest or smallest
eigenvalue [40,41]) is interesting. We find

lim M =W, (x), x>+2, (11
c—>1- —C
)]inll, Y(c,x) = V_(x), x <2, (12)

where W, (x) [[25], right-hand side of Eq. (13) with z — x]
and W_(x) [[24], Eq. (59)] are, respectively, the right and left
LD functions for the largest eigenvalue of Gaussian matrices.
The different scalings in N for the two branches of the largest
eigenvalue [~O(N 2) on the left and ~O(N) on the right]
can be recovered using a simple argument (see [28]). We
find particularly interesting (as already discovered for the
number statistics problem in a bounded interval [28]) that
a rate function obtained with a Coulomb gas calculation is
able to recover not only the “Coulomb gas” branch W_(x),
but also the “energetic” (or instantonic) branch W, (z), which
was originally calculated using an entirely different approach
[25] (see also [42] for a subsequent elaboration in the context
of quantum gravity and string theory). In the next section, we
sketch the derivation of the rate function (15).

Derivation. In order to evaluate the multiple integral (5)
for large N, we resort to the “constrained” Coulomb gas
method (introduced in [23,24] and subsequently used in
many different problems [35,36,43-51]), where a multiple
integral over an eigenvalue jpd [like (5)] is converted into
the partition function of the associated 2D-Coulomb gas
with density p(A) = N~' 3" | (A — 1), in equilibrium at
inverse temperature B. Skipping details [38], the multiple
integral (5) can be written as a functional integral over p,
PIN, = cN] o [ DlpldAid Aze PN EWIHOMN  where

E[p] =% / dAp(A)kz—% / / drd) p(M)p()In |x — )|

+ A, </ drp(M)B(x — A) — c)

+ As </ drp(L) — 1) (13)

is the action [the continuous version of the energy function
EM)] and A; and A, are Lagrange multipliers constraining
a fraction c¢ of eigenvalues to the left of x, and enforcing
normalization of the density to 1. The functional integral will
then be dominated by the equilibrium density of eigenvalues
(Coulomb gas particles) p;  (A) minimizing the action (13).

Using the resolvent method [38], we find that the equilib-
rium (saddle-point) density has the general form

Pt () = l\/(M — Mo —A)A —2)
T X —A

for X such that the radicand is positive. The edge points A >
Ao = A_ (depending parametrically on c,x) are the three roots

(14)
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FIG. 2. (Color online) Top: Possible equilibrium phases of the
Coulomb gas (14). Bottom: Corresponding regions in the (c,x) strip.
Phase III corresponds to the unperturbed semicircle law pg.. Phases
I and II are single support and correspond to having all (c = 1 and
x < ~/2)ornone (c = 0and x > —+/2) of the eigenvalues to the left
of x. The color code corresponds to regions where the action (13) at
the saddle point E[p} ] is larger (darker) or smaller (lighter).

of the polynomial P(z) = z® — xz? — 2z + 2[x — a(c,x)],
and the function «/(c,x) is determined by the solution of the
constraint ¢ = [*__ dAp’ (). It turns out that, depending on
the values of ¢ and x, five different phases of the gas of
eigenvalues are possible (see Fig. 2). For a generic position
of the barrier x, whenever ¢ = ¢*(x) we recover the semicircle
law p7.(,) . = Psc (phase III). For ¢ = 0 (respectively, ¢ = 1)

andx > —+/2 (respectively, x < +/2) we have a single support
solution (phases II and I, respectively). For all the other values
¢ # {c*(x),0,1} the solution has double support (phases IV and
V) and generalizes the density in [19,20] to the case x # 0. One
can see that the double-support phases IV and V are separated
by the unperturbed phase III (the semicircle law) that lies on
the curve ¢ = ¢*(x). This tiny separation in the (c,x) plane
between the double-support phases is ultimately responsible
for the weak nonanalytic behavior of the rate function close to
its minimum in both the ¢ and x directions [see (8)].

Once the saddle-point density is known, we precisely find
the law (6) with ¥(c,x) = E[p} ] — E[ps] (Where E[py]
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comes from the normalization factor Zy g in (2) and needs to
be subtracted), where

c*(x) , )\(2)(6’/) _ .X2 X ,
Y(c,x) =f dc (—2 +f dz S(z,c)),
c Ao(c’)
(15)

. The rate function in

22(z—x)=2[z—x+a(c,x)]
7—x

(15) can be written in closed form in terms of elliptic integrals

[38]. We have checked that for x = 0 we recover the rate

function for the so-called index problem [19,20], and all

the results have been checked numerically with excellent

agreement [38].

Conclusions. In summary, we provided a complete charac-
terization of the spectral order statistics of large dimensional
Gaussian random matrices. We showed that the problem is
amenable to a Coulomb gas treatment through a simple relation
between the distribution of the kth smallest eigenvalue A
and the number N, of eigenvalues smaller than a threshold x.
Details on the derivations, numerical checks, and the outlook
for future research will be provided elsewhere [38]. In the
future, it will be interesting to study the order statistics for
other ensembles and the crowding effects close to a specific

and S(z,¢) = z — \/

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 90, 040102(R) (2014)

eigenvalue in the bulk (see [52] for the first eigenvalue of
GUE), as well as to investigate finite N corrections and
its relation to the work done in [40] in terms of Fredholm
determinants and Painlevé transcendents. In the Fermi gas
picture (B8 = 2), our results provide the full statistics of
particle number on a semi-infinite line (extending recent results
[19,20,28]) and single-particle fluctuations in the bulk of a
system of 1D fermions in a harmonic trap, including their
LD tails. We expect the results presented here to apply also
to bosonic systems in the presence of very strong repulsive
interactions between bosons [53]. The link between 1D Fermi
gases and RMT makes it possible to speculate about the
possibility of “simulating” RMT eigenvalues in the laboratory
by manipulating Fermi gas systems, and the experimental
verification of LD results is an intriguing challenge whose
realization is very much called for.
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