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Unusual eigenvalue spectrum and relaxation in the Lévy–Ornstein-Uhlenbeck process
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We consider the rates of relaxation of a particle in a harmonic well, subject to Lévy noise characterized by
its Lévy index μ. Using the propagator for this Lévy–Ornstein-Uhlenbeck process (LOUP), we show that the
eigenvalue spectrum of the associated Fokker-Planck operator has the form (n + mμ)ν where ν is the force
constant characterizing the well, and n,m ∈ N. If μ is irrational, the eigenvalues are all nondegenerate, but
rational μ can lead to degeneracy. The maximum degeneracy is shown to be 2. The left eigenfunctions of the
fractional Fokker-Planck operator are very simple while the right eigenfunctions may be obtained from the
lowest eigenfunction by a combination of two different step-up operators. Further, we find that the acceptable
eigenfunctions should have the asymptotic behavior |x|−n1−n2μ as |x| → ∞, with n1 and n2 being positive
integers, though this condition alone is not enough to identify them uniquely. We also assert that the rates of
relaxation of LOUP are determined by the eigenvalues of the associated fractional Fokker-Planck operator and do
not depend on the initial state if the moments of the initial distribution are all finite. If the initial distribution has
fat tails, for which the higher moments diverge, one can have nonspectral relaxation, as pointed out by Toenjes
et al. [Phys. Rev. Lett. 110, 150602 (2013)].
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In the recent past, diffusion processes that are anomalous
have been observed in a wide variety of areas ranging from
financial markets, movement of active particles in biological
systems, diffusion in turbulent media, etc. [1–3]. In general,
the relaxation of a system undergoing normal diffusion
is multiexponential. The exponents are determined by the
eigenvalues of the Fokker-Planck (FP) operator associated
with the diffusion. The time scales involved are thus an intrinsic
property of the system, independent of the initial condition.
For normal diffusion of a particle in a potential V (x), the
associated FP operator is non-Hermitian [4]. However, one can
make a similarity transformation to get a Hermitian operator,
analogous to the Hamiltonian operator for a quantum system.
This shows that the eigenvalues of the operator are all real and
further, by imposing physically motivated boundary conditions
(vanishing at infinity and square integrability), one finds the
eigenvalue spectrum of the operator. This spectrum determines
the relaxation characteristics of the system completely. It
has been recently argued by Toenjes et al. [5] that this
traditional wisdom may not hold in general. They suggested [5]
that “initial distributions which are not mapped to square
integrable functions by the similarity transformation, cannot be
expanded in terms of the eigenfunctions of the corresponding
Hamiltonian operator and will therefore relax at rates that
may not be given by the Hermitian spectrum.” This has been
referred to as nonspectral relaxation. Further, it was also
suggested that “the smallest nonspectral rate can be smaller
than the smallest spectral relaxation rate and thus, it will
dominate the relaxation behavior over the whole time range.”
This has been argued [5] to happen even for the simplest of
processes, viz., the Ornstein-Uhlenbeck process (OUP).

In the recent past, a number of investigations have focused
on processes driven by Lévy noise. Several physical problems
in which they appear have been discussed in excellent
reviews [3,6,7]. The result of such driving is anomalous diffu-
sion, having the displacement scaling like (time)1/μ with 0 <

μ � 2. The process is governed by a fractional Fokker-Planck
equation [8–10], which is much more difficult to analyze.

The properties of such operators are not well understood, as
there are very few results on them. Laskin [11] introduced a
generalization of quantum mechanics referred to as fractional
quantum mechanics which has similar operators and the
eigenvalue spectra and eigenfunctions of some operators have
been investigated [12,13]. Toenjes et al. [5] discuss the case of
a particle in a harmonic well, subject to Lévy noise which is
governed by the equation

dx

dt
= −V ′(x)

mγ
+ η(t),

where V (x) is the potential that the particle is subjected to, and
m and γ are the mass and the friction coefficient, respectively.
η(t) is the Lévy noise, best described by its characteristic func-
tional 〈ei

∫ T

0 dt η(t)p(t)〉 which is equal to e−D
∫ T

0 dt |p(t)|μ [14–16].
The resultant Lévy–Ornstein-Uhlenbeck process (LOUP) is
one of the simplest of such processes. Though LOUP appears
to be quite simple, it has found applications in econophysics
and statistics, to analyze stochastic volatility models for
financial assets [1,2]. Also, the underdamped limit of LOUP
has found application in biology in describing the anomalous
dynamics of cell migration [17], and stochastic models for
active particles [18]. LOUP is governed by the corresponding
fractional Fokker-Planck equation, given by [8,19]

∂P (x,t)

∂t
=

{
−D

(
− ∂2

∂x2

)μ/2

+ ∂

∂x

V ′(x)

mγ

}
P (x,t). (1)

The usual Smoluchowski equation is a special case of this and
is obtained when one puts μ = 2. Taking the potential to be of
the form V (x) = kx2/2, and changing over to a new variable
D−1/μ x → x and putting k/(mγ ) = ν, we can write this as

∂P (x,t)

∂t
= −ĤμP (x,t), (2)

with

Ĥμ = −
{

−
(

− ∂2

∂x2

)μ/2

+ ν
∂

∂x
x

}
. (3)
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The relaxation of the system governed by Eqs. (2) and (3)
was studied by Toenjes et al. [5]. We briefly summarize
their main arguments. The relaxation is governed by the
eigenvalues λ of the operator determined by Ĥμψ = λψ , if the
initial state satisfies the acceptability conditions (see below).
Interestingly, one can find solutions of Ĥμψ = λψ for any
λ, but when one imposes acceptability conditions on the x

dependence of ψ , only certain discrete values λn and the
associated eigenfunctions ψn are allowed. In particular, when
μ = 2, the acceptability condition imposed is ψ(x)eνx2/4 → 0
as x → ±∞, which leads to λn = νn, with n ∈ N. According
to them, the relaxation of the system, from any initial state
P0(xi), which can be expanded in terms of these eigenfunctions
as

P0(xi) =
∑

n

cnψn(xi)e
νx2

i /4, (4)

is determined by these eigenvalues. In the above, cn are the
expansion coefficients. This means that the slowest relaxation
would correspond to ν (i.e., n = 1). According to the paper, if
the initial condition cannot be expanded as in Eq. (4), then the
relaxation can be much slower.

On going over to Fourier space, with P(p,t) =∫
dx P (x,t)eipx , Eq. (2) becomes

∂P(p,t)

∂t
= −Ĥμ P(p,t), (5)

with

Ĥμ = |p|μ + νp
∂

∂p
. (6)

In the case with μ �= 2, Toenjes et al. [5] perform a similarity
transformation given by p = |κ|2/μsgn(κ), under which the
operator Ĥμ gets transformed to κ2 + μν

2 κ ∂
∂κ

. As this operator
is similar to the one for OUP, they impose boundary conditions
appropriate for OUP and get the eigenvalues nμν/2, with
n ∈ N, similar to that of OUP. For cases where the initial
distribution has a long tail behaving like |x|−α−1, Toenjes
et al. claim to solve the time evolution exactly and find
that it contains time scales determined not by nμν/2, but
by the numbers ν(n + mμ + lα), where α is determined by
the characteristics of the initial distribution and l,m,n ∈ N.
This does not coincide with the eigenvalue spectrum of the
operator found by the similarity transformation and hence, the
authors argue that nonspectral relaxation is the rule rather than
the exception for such processes. Note that according to their
paper, the long term relaxation is not necessarily determined
by the lowest nonzero eigenvalue of the operator Ĥμ.

In this Rapid Communication, we point out that the Green’s
function for the operator in Eq. (2) is enough to propagate
any arbitrary initial condition for any value of μ, including
μ = 2, which is the usual OUP. We use the expression for
the propagator that is already known [6,8,15,20] and find
the exponents that are involved in the time evolution. They
are of the form ν(n + mμ), thus showing that the eigenvalue
spectrum of the FP operator for the LOUP is characterized,
in general, by two “quantum numbers” n and m ∈ N (and not
one, as one would normally expect). If μ = 1 or 2, then the
spectrum coincides with that for the OUP, but the degeneracies
are different for μ = 1. Also, we identify the left and right

eigenfunctions of the operator and arrive at a generalization
of the expansion of the propagator for OUP which is given
in terms of the Hermite polynomials [4]. Further, we give
operators that can be used to generate the right eigenfunctions
from the lowest possible eigenfunction, similar to the step-up
operators of quantum mechanics. We also discuss the boundary
conditions that when imposed on the solutions would lead
naturally to the correct identification of these eigenfunctions
and eigenvalues.

We now give our analysis of the problem. Equation (5) can
be solved by the method of characteristics, for any initial con-
dition P(p,0) = P0(p) to get the solution at a final time T as

P(p,T ) = P0(pe−νT )e−|p|μ(1−e−μνT )/(μν). (7)

Writing P0(p) = ∫
dxi eipxi P0(xi), we can express the

position space probability distribution at the final time T as

P (xf ,T ) =
∫

dxi G(xf ,T |xi,0)P0(xi) (8)

with

G(xf ,T |xi,0)

=
∫

dp

2π
e−|p|μ(1−e−μνT )/(μν)+ip(xf −xie

−νT ) (9)

=
(

(μν)1/μ

(1 − e−μνT )1/μ

)
Lμ

(
(μν)1/μ(xf − xie

−νT )

(1 − e−μνT )1/μ

)
,

(10)

where Lμ(x) is the Lévy stable distribution defined by

Lμ(x) = 1

2π

∫ ∞

−∞
dp eipx−|p|μ . (11)

If μ > 1, this may be evaluated as the series

Lμ(x) = 1

πμ

∞∑
n=0

(−1)nx2n
�

(
2n+1

μ

)
�(2n + 1)

. (12)

We have recently developed a path integral approach to Lévy
flights which leads to exactly this result [15]. The above
analysis shows that irrespective of what the initial distribution
is, the time development of the system is determined only by
the propagator. Note that this conclusion is valid for all values
of μ and is therefore applicable to the usual Brownian motion
too. It is possible to expand the propagator G(xf ,T |xi,0)
in terms of the left eigenfunctions ψ̃n(x) and the right
eigenfunctions ψn(x) of the operator Ĥμ as

G(xf ,T |xi,0) = 〈xf |e−T Ĥμ |xi〉 =
∑

n

ψ̃n(xi)ψn(xf )e−λnT .

(13)

As Ĥμ is not a Hermitian operator, the eigenfunctions are not
necessarily orthogonal. It is obvious that if we can expand the
right-hand side of Eq. (9) as a series in exponentials involving
T (note that there are two exponentials involving T leading
to a double summation), then we would be able to find the
eigenvalues and eigenfunctions of the operator Ĥμ.

G(xf ,T |xi,0) =
∞∑

n,m=0

(−xi)n

�(n + 1) �(m + 1)

×ψn,m(xf ) e−(n+mμ)νT , (14)
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where

ψn,m(xf ) = 1

2π

∫ ∞

−∞
dp e−|p|μ/μν (ip)n|p|mμeipxf . (15)

We can now expand eipxf as a series and perform the integral
over p to obtain the right eigenfunction in the position space as

ψn,m(xf ) = 1

μπ

∞∑
k=0

(−1){(n+[n])/2}+k

([n] + 2k)!

×�

(
n + [n] + 2k + 1

μ
+ m

)
x

(2k+[n])
f , (16)

where [n] = n modulo 2. Note that the above expansion is con-
vergent for all xf only if μ > 1. From Eq. (14), it is clear that
the eigenvalues of Ĥμ(x) have the form (n + mμ)ν with n and
m belonging to N. Thus we have a very interesting situation
that if μ is irrational, the eigenvalues are characterized by two
“quantum” numbers n and m, unlike the usual situation where
there is only one quantum number for a 1-D problem such as
this. Further, for such values of μ, the left eigenfunction is
simply ψ̃n = (−xi)n/�(n + 1) while the right eigenfunction
is given by ψn,m(xf ). If μ is a rational number, the left
eigenfunction can become a little bit more complex. This point
will be elaborated in the later part of this Rapid Commnication.
Equation (14) is the generalization of the classic expansion of
the propagator for the Ornstein-Uhlenbeck process [4], to the
LOUP. The eigenvalue spectrum for LOUP is shown in Fig. 1
as a function of μ. We also note that to use the expansion (14)
and to calculate P (xf ,T ) using Eq. (8), it is necessary that all
the moments of the initial distribution P (xi) should exist. If one
chooses an initial distribution for which the moments diverge
[for example, P (xi) = 1

w0
Lα(xi/w0)], then one cannot use

Eq. (14) and the relaxation can contain other time scales [21]
leading to nonspectral relaxation as pointed out in [5].

0.5 1.0 1.5 2.0 Μ
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FIG. 1. (Color online) Eigenvalues n + mμ plotted as functions
of μ for μ ∈ [0,2], for n = 0,1,2 . . . 6 and m = 0,1,2 . . . 6. The
spectrum has only nondegenerate eigenvalues if μ is irrational.
Intersections of two or more lines occur when μ is rational and
can lead to points where there is degeneracy. However, the maximum
degeneracy is only 2, even though more than two lines may intersect
at the same point. At μ = 2, all eigenvalues are nondegenerate, and
when μ = 1, all eigenvalues except the lowest are doubly degenerate.

However, if the initial distribution has α = μ or is a truncated
Lévy distribution, then the relaxation is purely spectral.

It is possible to express the eigenfunctions in an interesting
way. If one allows T → ∞, G(x,T |xi,0) approaches the
steady equilibrium state and becomes

ψ0,0(x) = (μν)1/μLμ[(μν)1/μ x].

This is the lowest eigenfunction of the operator Ĥμ, having the
eigenvalue zero. It is easy to prove the following commutation
relations: [

∂

∂x
,Ĥμ

]
= −ν

∂

∂x
(17)

and [(
− ∂2

∂x2

)μ/2

,Ĥμ

]
= −μν

(
− ∂2

∂x2

)μ/2

. (18)

The above imply that if ψ is an eigenfunction of Ĥμ with an
eigenvalue ε, then ∂ψ

∂x
and (− ∂2

∂x2 )μ/2ψ , too are eigenfunctions
with eigenvalues ε + ν and ε + μν, respectively. It follows
that the right eigenfunction ψn,m(x) ∝ (− ∂2

∂x2 )μm/2 ∂n

∂xn ψ0,0(x).
The asymptotic behavior as x → ±∞ is

ψn,m(x) ∼ 1

|x|n+1+μ
when m = 0 (19)

and

ψn,m(x) ∼ 1

|x|n+1+mμ
when m �= 0. (20)

However, one can find eigenfunctions other than these, as
shown below. This is easily done in the momentum space.

The eigenvalue equation in the momentum space(
|p|μ + νp

∂

∂p

)
ψλ(p) = νλψλ(p), (21)

has the solution

ψλ(p) = e−|p|μ/(μν)pρ |p|σ , (22)

for any real positive numbers ρ and σ such that λ = ρ + σ .
Its position space representation is given by

ψλ(x) = 1

2π

∫ ∞

−∞
dp e−|p|μ/(μν)+ipxpρ |p|σ . (23)

For an arbitrary λ = ρ + σ , we may rearrange Eq. (23) to get

ψλ(x) = 1

2π

∫ ∞

−∞
dp e−|p|μ/(μν)+ipx |p|λ (sgn p)ρ

= (1 + eiπρ)

2π
Cλ(x) + i

(1 − eiπρ)

2π
Sλ(x), (24)

with

Cλ(x) =
∫ ∞

0
dp e−pμ/(μν)pλ cos(px), (25)

Sλ(x) =
∫ ∞

0
dp e−pμ/(μν)pλ sin(px). (26)

From the momentum space eigenfunction in Eq. (22), it ap-
pears that a continuous infinity of λ will satisfy the differential
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equation in Eq. (21). However, we find that λ = n + mμ are
the only eigenvalues we find in the spectrum. The question that
we ask is, what is the sanctity of these λ = n + mμ and why
are the other values of λ unacceptable? In order to answer this
question, we now look at the asymptotic behavior of the two
linearly independent solutions in the position space for the
eigenvalue equation (21), viz., Cλ(x) and Sλ(x) which have
the same eigenvalue νλ. For this we use the identity

cos(px) = 1

2i

∫ c+i∞

c−i∞
ds

�(s)

�
(

1−s
2

)
�

(
1+s

2

) (px)−s ,

where c > 0 (note the right-hand side of the equation is a
Mellin-Barnes integral) in the expression for Cλ(x) and then
perform the integral over p, to get

Cλ(x) = (μν)(λ+1)/μ

2iμ

∫ c+i∞

c−i∞
ds

�(s)�
(

1+λ−s
μ

)
�

(
1+s

2

)
�

(
1−s

2

) [(μν)1/μx]−s .

(27)

If one closes the contour on the left-hand side using a
semicircle of radius R → ∞, one gets a series expansion in
terms of xn, while if one closes the contour on the right-hand
side, one gets an asymptotic expansion in inverse powers of x.
This asymptotic expansion is

Cλ(x) = (μν)(λ+1)/μ

μ

∞∑
k=0

(−1)k
�(λ + kμ + 1)

�(k + 1)

× cos

(
π

2
(λ + kμ + 1)

)
[(μν)1/μx]−(λ+kμ+1).

(28)

Sλ(x) can be evaluated in an exactly similar fashion to be

Sλ(x) = (μν)(λ+1)/μ

μ

∞∑
k=0

(−1)k
�(λ + kμ + 1)

�(k + 1)

× sin

(
π

2
(λ + kμ + 1)

)
[(μν)1/μx]−(λ+kμ+1).

(29)

From these expressions, we can see that unless λ = n + mμ,
the functions will not have the correct asymptotic behavior
as prescribed by Eqs. (19) and (20). Interestingly even
imposing this condition is not enough to restrict eigenfunctions
and eigenvalues to those found from the Green’s function,
because for any λ we still seem to be having two solutions,
viz., Cλ(x) and Sλ(x). We now discuss how to identify
the correct eigenfunctions which appear in the expansion
of Eq. (14).

For any value of λ, we can write down the different possible
ways in which the eigenvalue can have the form n + mμ. We
now consider two separate possibilities:

(1) μ is irrational: For any λ = n + mμ, the values (n,m)
are unique. Further, from Eqs. (25) and (26), it is clear
that if n is even, then Cn(x) behaves like |x|−n−μ−1, and
Sn(x) ∼ |x|−n−1 and hence, only Cn(x) is acceptable. The
function Cn+mμ(x) is obtained from Cn(x) by the application
of (− ∂2

∂x2 )μ/2 m times, an operation which does not change
its symmetry. Therefore, Cn+mμ becomes the acceptable
eigenfunction for λ = n + mμ where n is even, as Cn(x) itself

is acceptable. Sn+mμ(x) is an unacceptable solution when
n is even since Sn(x) itself is not. One can make a similar
argument when n is odd.

(2) μ is rational: μ can be written as p/q, where p and
q are integers having no common factors. Then one can have
degeneracy if m is an integral multiple of q equal to kq.
The associated eigenvalue is (n + kp)ν. Then all the states
having quantum numbers (n + kp,0), (n + (k − 1)p,q),
(n + (k − 2)p,2q) . . .(n,kq) will have the same eigenvalue
and hence, one expects degeneracy. However, if n and p are
even, then all these possibilities lead to the even eigenfunction,
viz., Cn+kp(x), and the level will be nondegenerate. On the
other hand, if either n or p is odd or both are odd, then
one of the states will be Sn+kp(x) and the other will be
Cn+kp(x). Thus one would have degeneracy in this case, and
the degeneracy would be 2.

Another interesting observation about the degeneracies
of states has emerged out this analysis. If we consider a
particular state, say, λ = 4 for μ = 1 in Fig. 1, we see that
five lines intersect at this point, seeming to suggest that the
degeneracy of this state is 5. However, from the previous
arguments the degeneracy of this state can be found to
be 2. Of the five states which intersect at λ = 4, three of
them become exactly identical to C4(x) and two of them to
S4(x), and therefore are not independent states. When the
right eigenfunctions become identical, the corresponding left
eigenfunctions, (−xi)n/�(n + 1), will add up to give a single
left eigenfunction. This sudden reduction in the number of
eigenstates as one goes from μ = 1 − ε to μ = 1 to where
ε is infinitesimally small is not a problem as they are not
constrained to be orthogonal, as in the case in quantum
mechanics. This can also be treated as evidence for the lack of a
similarity transformation for the LOUP operator converting it
to a Hermitian operator, as proposed by Toenjes et al. If such a
transformation existed, it seems impossible for the eigenfunc-
tions to undergo this sudden reduction in their number.

In conclusion, we have shown that the eigenvalue spectrum
of the Fokker-Planck operator for LOUP to be of the form
n + mμ, characterized by the two “quantum numbers”
n,m ∈ N. Using the spectral expansion of the propagator, we
have found the left and right eigenfunctions of the operator.
For irrational values of μ the spectrum is nondegenerate,
while for rational μ there could be degeneracies with
the maximum degeneracy being 2. We also find that any
acceptable eigenfunction of the operator should satisfy the
condition that as |x| → ∞, the functions should behave like
|x|−(n1+μ n2), where n1 and n2 are positive integers, though
this condition alone is not enough to uniquely identify the
eigenstates. If the moments of the initial distribution are
all finite, then the relaxation is governed only by these
eigenvalues, while for initial distributions having long tails,
one can have nonspectral relaxation in agreement with [5].

We thank the authors of Ref. [5] for their com-
ments and a crucial clarification. We also thank Dipti-
man Sen for useful comments. The work of both the
authors is supported by Department of Science and Tech-
nology, Ministry of Science and Technology, Government
of India through the J. C. Bose Fellowship of K. L.
Sebastian.
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