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Micro-mutual-dipolar model for rapid calculation of forces between paramagnetic colloids
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Typically, the force between paramagnetic particles in a uniform magnetic field is calculated using either
dipole-based models or the Maxwell stress tensor combined with Laplace’s equation for magnetostatics. Dipole-
based models are fast but involve many assumptions, leading to inaccuracies in determining forces for clusters of
particles. The Maxwell stress tensor yields an exact force calculation, but solving Laplace’s equation is very time
consuming. Here, we present a more elaborate dipole-based model: the micro-mutual-dipolar model. Our model
has a time complexity that is similar to that of other dipole-based models but is much more accurate especially
when used to calculate the force of small aggregates. Using this model, we calculate the force between two
paramagnetic spheres in a uniform magnetic field and a circular rotational magnetic field and compare our results
with those of other models. The forces for three-particle and ten-particle systems dispersed in two-dimensional
(2D) space are examined using the same model. We also apply this model to calculate the force between two
paramagnetic disks dispersed in 2D space. The micro-mutual-dipolar model is demonstrated to be useful for
force calculations in dynamic simulations of small clusters of particles for which both accuracy and efficiency

are desirable.
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Paramagnetic colloidal particles suspended in liquid form
different structures, such as chains [1], sheets [2], membranes
[3], and networks [4], in the presence of different types
of magnetic fields. The versatility of structure manipulation
enables paramagnetic colloidal suspensions to have numerous
applications, such as smart fluids [5,6], biomedical sensing
[7,8], propulsion and transportation in fluids [9,10], and force
probes [11,12]. In these applications, the magnetic force
between paramagnetic particles must be calculated accurately.
Typically, dipole-based models, such as the dipolar model
(DM) and the mutual-dipolar model (MDM), are used to
calculate the force between paramagnetic particles placed in
an external magnetic field [2,5,13]. Dipole-based models are
usually fast but inaccurate for systems in which particles are
close to one another. Such models are inaccurate because they
do not consider multipolar effects [14]. The exact force can be
calculated by solving a Laplace equation for magnetostatics
with multiple boundary and initial conditions and calculating
the Maxwell stress tensor for each particle [15]. The solution
to the Laplace equation can be analytically approximated
by a solid harmonics expansion with the Hobson formula
applied to unify the coordinate system [14,16]. This coordinate
unification is very computationally expensive and suffers from
singularity-related issues [17,18]. A numerical solution to
Laplace’s equation can be obtained by using a smoothed repre-
sentation of susceptibility to replace the boundary conditions
[17]; this method is referred to as the Laplace equation solver
(LES) method. This numerical approach is stable in terms of
error propagation but still computationally time consuming.

Here, we present a more-sophisticated dipole-based model
that considers mutual interactions between dipole moments
and multipolar effects. All dipole-based models are based
on the fact that a single spherical paramagnetic particle is
uniformly magnetized in the presence of a uniform magnetic
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field [13]. In three-dimensional (3D) space, such a sphere
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acquires a magnetic dipole moment m = , where a

is the sphere’s radius, e = ;L—XX is the effective volumetric
susceptibility of the sphere, x is the magnetic susceptibility of
the material, and Hy is the applied magnetic field. When two
identical spheres are placed a distance » away from each other,
if the uniform magnetization is assumed to be maintained, the

force between the two spheres can be approximated as [13]

3
F= MOS |:(m1 -r)my + (my - r)m; 4 (m; - my)r
drr
5(mg - r)(my - 1)
. (1)
where F is the force exerted on sphere 1, mlzz"T’li%HO is

the dipole moment of sphere 1, m,= is the dipole
moment of sphere 2, i is the vacuum permeability, and r
is the connector vector from sphere 1 to sphere 2, which has
magnitude r. The DM is inaccurate in two aspects: (1) The
dipoles mutually interact with the dipole-induced magnetic
field, and (2) the induced magnetic field distorts the uniform
magnetization of the sphere, thereby generating higher-order
multipolar fields rather than the simple superposition of
dipolar fields. The MDM accounts for mutual interactions by
modifying the dipole moment expression as follows:
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where Hg;p(r) = %(w — %) is the dipole-induced mag-
netic field, N is the number of spheres, and r,’s are the
positions of the dipole moments for n = 1,2,...,N. Nev-
ertheless the MDM’s neglect of multipolar effects leads to a
significant deviation in the calculated force in the near field
[17]. The multipolar effects are caused by the asymmetric
magnetization inside the spheres when they are placed close
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FIG. 1. (Color online) (a) The magnetic field strength distribu-
tion of a two-sphere system at the midplane z = 0 with o = 30°
determined by directly solving Laplace’s equation for magnetostatics.
For clarity, the logarithm of the magnetic field strength is plotted. The
color scale represents the magnetic field strength in units of In(A/m).
(b) The difference between the dipole moments calculated using
different dipole-based models at o = 30°. The solid arrow (cyan)
denotes the DM, the dashed arrow (blue) denotes the MDM, and the
dotted arrow (red) denotes the MMDM. Note that the positions of
the MMDM dipole moments differ from those of the DM or MDM
dipole moments as shown in the zoomed-in inset. (c) The magnitude
of dipole moments calculated using different models at » = 1.1D.
(d) The trajectories of the location of the shifted dipole moments
on the left particle for different center-to-center distances calculated
using the MMDM. The curves from inside to outside correspond the
positions of shifted dipole for /D = 1.1, 1.05, and 1.1, respectively.
The red dot on the curve corresponds to the condition in (b).

to each other. Figure 1(a) shows the magnetic field strength
distribution at the cross section at z = 0 for @« = 30°, where «
is the angle from the connector vector r to the applied magnetic
field Hy. For simplicity, we situate the two spheres on the x
axis and z = 0 plane. Note that the magnetic field strength
used in all of the calculations is 6 G. The spheres used in
the calculations have @ = 1.4 um and x.¢ = 0.73 unless
otherwise noted. Because the asymmetric magnetization is
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the source of multipolar effects, if a dipole-based model is
able to consider asymmetric magnetization, theoretically, its
accuracy will approach that of the LES. In the new model, we
use shifted positions of dipole moments to properly represent
the effects of nonuniform magnetization. The positions of
the dipole moments are calculated by taking the integral of
different positions over the volume of the sphere weighted by
the local magnetic field strength. In this manner, the dipole
moments are no longer located at the central positions of the
spheres but rather are dependent on the physical properties of
the spheres and the applied magnetic field. Because the dipole
moments and their positions are both different from those in
the DM, 2N equations must be solved simultaneously,

N
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In the above equations, R,’s are the positions of the dipole
moments, q is the position of the current integral volume dV,
and A is the exponent of the weight factor. The Maxwell stress
tensor, used in the LES method to calculate the force, depends
quadratically on the magnetic field strength; thus, the exponent
A must be greater than 2 to account for all of the multipolar
effects. Using a two-sphere system, a least squared analysis of
force versus A determined an optimized value of A = 3, which
is used for the following calculations. Because of its dipolar
basis and consideration of the microscopic mutual interactions,
this model is referred to as the micro-mutual-dipolar model
(MMDM). The dipole moments and their positions calculated
using different dipole-based models are shown in Fig. 1(b).
The dipole moments calculated from DM and MDM are
located at the central positions of the spheres, but their
directions and magnitudes are distinctly different because
of the mutual interaction. The dipole moments calculated
from the MMDM have directions and magnitudes that are
very similar to those yielded by the MDM, but the positions
are clearly offset from the central positions of the spheres
because the positions are calculated using Eq. (4). This offset
characterizes the asymmetric gradient of the magnetization,
which is shown in Fig. 1(a); the asymmetric gradient is not
considered in the MDM. The magnitude of the dipole moment
is calculated for different models using an external magnetic
field with different configurations, shown in Fig. 1(c). The
dipole moments calculated from the MDM and MMDM
have different offsets from the DM for different «’s. In the
DM model, the dipole moment is only a function of the
external field strength and does not consider mutual magnetic
induction from neighboring particles. In the MMDM model,
the dipole moments are shifted upwards from those calculated
from the MDM, namely, they are larger in the attractive
region (0 < « < 55° and 125° < o < 180°) and smaller in
the repulsive region (55 < « < 125°). The magnitude change
is caused by the change in position of the dipole moments
[Fig. 1(d)]. Similar to the magnitude of the dipole moments,
the positions of the dipole moments also have a period of 180°
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as a function of «. The trajectories of the dipole positions
are ellipses with centers closer to the neighboring particle. As
the distance between particles decreases, the ellipse trajectory
dilates, leading the dipole center to further lean toward the
neighboring particle, as a result of the increase in asymmetric
inhomogeneity of magnetization over the sphere.

The calculation of the dipole moment is the core of every
dipole-based model because Eq. (1) is used for the force
calculations in all of the models. Figure 2 shows the calculated
force for a two-sphere system yielded by different models
and the LES method. When the magnetic field is parallel
to the connector vector (¢ = 0°) as shown in Fig. 2(a), the
DM and MDM results both exhibit significant deviations from
the LES results; the LES method is believed to perform the
most-accurate force calculation because it does not employ
any simplifying assumptions [17]. Nevertheless, the MMDM
results agree well with the data points calculated using the LES
method. Likewise, for the case described in Fig. 2(b) in which
the magnetic field is perpendicular to the connector vector
and o = 90°, the MMDM provides very accurate estimations
compared with the LES results. The magnetic force results at
different angles when the two spheres are sufficiently close are
shown in Fig. 2(c). The results yielded by different methods are
clearly stratified without intersection. The two on the top are
from the DM and the MDM, which are overall shifted upwards
significantly from the LES results. This is a direct result of the
shifted magnitude of the dipole moment shown in Fig. 1(c).
The MMDM yields the best estimation with a slight deviation
near the angle at which the attraction and repulsion cancel each
other. This deviation is due to the nonlinearity of the multipolar
effects being amplified as the attractive well dampens. Despite
the slight deviation, the magnetic force calculated using the
MMDM for a circular rotational magnetic (CRM) field agrees
very well with that calculated using the LES as shown in
Fig. 3(a).

The magnetization distributions in the spheres of a two-
sphere system are not symmetric because of the spheres’ mu-
tual interaction; thus, these distributions are further modified
when a third sphere is added, thereby creating a three-body
effect for systems with isotropic interactions [19,20]. The
three-body effect of a three-sphere system in a CRM field can
be characterized by the difference between the pair magnetic
force and the effective pair magnetic force calculated for
a three-sphere system. Here, the effective pair force for a
three-sphere system is defined as the magnetic force on sphere
1 divided by +/3, which gives the decomposed pair force from
sphere 2 or 3 only [the inset at the bottom of Fig. 3(a)]. The
effective pair forces for the three-sphere system calculated
using the two different methods also agree well as shown in
Fig. 3(a). For clarity, the MDM results are not superimposed in
this figure, but one should be reminded that the pair magnetic
force calculated using the MDM is slightly greater than the
effective pair force for a three-sphere system calculated by
using the LES (magenta squares) [17]; this offset indicates
a significant deviation of the MDM results from the LES
results for a CRM field. This deviation is due to the multipolar
effects that exist in reality as illustrated earlier. The MMDM is
capable of reproducing the LES results because it essentially
uses asymmetric magnetization inside the spheres to trigger
multipolar effects that are similar to the real ones. To confirm
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FIG. 2. (Color online) The magnetic force between two param-

agnetic spheres calculated using different models (a) for different

r’s at @ = 0°, (b) for different r’s at « = 90°, and (c) for different

o’satr = 1.1D. Note that positive values indicate repulsive forces,
whereas negative values indicate attractive forces.

that the accuracy of the MMDM is not unique for spheres with
Xett = 0.73, we further use hypothetical spheres with the same
radius but x.¢ = 1.88 to calculate the same force. The inset at
the top of Fig. 3(a) shows that the agreement between the LES
and the MMDM results for the higher susceptibility value is
as good as the agreement for the lower susceptibility value.
The failure of the MDM is mostly observed in the force
calculation for spheres located along the edge of small clusters
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FIG. 3. (Color online) (a) The pair magnetic force and effective
pair magnetic force atr = 1.1 D for a three-sphere system in a CRM
field calculated using different methods. The inset shows the pair
magnetic force calculated using different methods with an increased
sphere susceptibility x.g. (b) The magnetic force at r = 1.1D on
sphere 1 of a ten-sphere system for different «’s calculated using
different methods.

of spheres where the many-body effects are most significant
[17]. The aforementioned three-body effect of a three-sphere
system is the simplest case for the edge effect caused by
many-body effects. For larger aggregates in a 2D plane, the
performance of the MDM is even worse. Figure 3(b) shows the
magnetic force on sphere 1 of a ten-sphere system calculated
using different methods. The MDM results exhibit significant
deviation from the LES results, whereas the MMDM results
agree well with the LES results for all angles. However, further
increasing the aggregate size may impair the accuracy of the
MMDM for the edge spheres. For the edge sphere in the system
that contains more than 24 spheres, the MMDM results deviate
considerably from the LES results.

The definition of the MMDM does not specify the di-
mension of the particle system; therefore, the MMDM can
also be applied to lower-dimensional spaces. In 2D space, the
expressions for the dipole moments and the dipolar force must
be modified. In the presence of a uniform magnetic field, when
two identical disks are placed a distance » from each other, the
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force between them can be rewritten as

F= M—O4 [(ml -rmy + (my - r)m; + (m; - my)r
or
om0, g
r

with the same definitions of the parameters as in 3D space.
The expression of the dipole moment in the MDM is modified
to be

N
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where Hyip(r) = 2= V(%5)=-L (2% — 1) is the dipole-
induced magnetic field and x4 = 22+_Xx is the effective volu-
metric susceptibility of the disks because the demagnetization
factor in an infinitely long magnetized cylinder in the radial
direction is 1/2 [21]. Because Eqgs. (3) and (4) are independent
of the number of dimensions, they are directly used for the
MMDM in 2D space. The magnetic forces between two
paramagnetic disks for ¢ = 0° and « = 90° are calculated and
shown in Figs. 4(a) and 4(b), respectively. The 2D calculation
yields results that are similar to those of the 3D calculation.

(a)ox 10° (b) 5x‘10'3

F (N/m)

Complexity

FIG. 4. (Color online) The magnetic force between two param-
agnetic disks calculated using different models (a) for different »’s at
o = 0° and (b) for different r’s at @« = 90°. (c) The time complexity
for different sphere numbers and different methods. The inset shows
the same complexity with a shorter x-axis interval and logarithm
scales for both axes.
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The MMDM and LES results agree well, whereas the MDM
results deviate considerably. Note that the calculated force
is essentially over a unit axial length of a cylinder with
a circular cross section and therefore has a unit of N/m.
In practice, the MMDM can be used to calculate the force
between long cylinders with a circular cross section as a com-
plement to the calculation for long needles with square cross
sections [22,23].

In addition to accuracy, another important factor that
determines the effectiveness of a numerical method is its time
complexity. The time complexity is expressed as a function of
the input size, namely, the number of particles N. Here, we use
the 3D case as an example, and the complexity for the 2D case
can be derived similarly. Because dipole-based models must
scan over all the possible combinations of particle pairs to
calculate the force, the MDM and MMDM have a complexity
that is on the order of N2. The LES method does not have
to calculate the pairwise force, but it has to propagate the
infinite boundary conditions in 3D space toward the center.
For an aggregate in a 2D plane, the complexity is on the order
of N3/2. Figure 4(b) shows the time complexity of different
methods. Although the complexity of the LES method grows
more slowly with increased N, it has a much higher starting
point as shown in the inset of Fig. 4(b). Thus, the computational
time of the LES method is usually more than 5 orders of
magnitude greater than that of the dipole-based models when
the system consists of less than 1000 particles. The LES
method is faster than the MMDM only when N > 3 x 10'!
as shown in Fig. 4(b). In computer simulations of particle
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systems, because of the applied periodic boundary conditions,
the number of particles is usually no greater than 10°. This
fact restricts the application of the LES method and makes
the MMDM both accurate and efficient for magnetic force
calculations.

The MMDM has been demonstrated to be able to accurately
and quickly calculate the magnetic force between paramag-
netic spheres or disks for small aggregates. The extra accuracy
compared with the MDM originates from the offset positions
of the dipole moments, which represent the asymmetry
of magnetization over the material. For small aggregates,
the MMDM is able to accurately calculate the forces on
exterior particles which have large asymmetric inhomogeneity
of magnetization. For interior particles, the inhomogeneity
decreases due to the surrounding particles that are more
symmetrically situated. The force on the interior particles can
be therefore accurately approximated by superimposing the
pair LES force results. For large aggregates, the performance of
the MMDM is impaired for exterior particles. Moreover, large
aggregates have more interior particles, whose configurations
are more important for determining different order functions.
Thus MMDM is an outstanding model for calculating magnetic
forces for small aggregates and has potential applications for
dynamical simulations without periodic boundary conditions.
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