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Valence-bond quantum Monte Carlo algorithms defined on trees
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We present a class of algorithms for performing valence-bond quantum Monte Carlo of quantum spin models.
Valence-bond quantum Monte Carlo is a projective T = 0 Monte Carlo method based on sampling of a set
of operator strings that can be viewed as forming a treelike structure. The algorithms presented here utilize
the notion of a worm that moves up and down this tree and changes the associated operator string. In quite
general terms, we derive a set of equations whose solutions correspond to a whole class of algorithms. As
specific examples of this class of algorithms, we focus on two cases. The bouncing worm algorithm, for which
updates are always accepted by allowing the worm to bounce up and down the tree, and the driven worm
algorithm, where a single parameter controls how far up the tree the worm reaches before turning around.
The latter algorithm involves only a single bounce where the worm turns from going up the tree to going
down. The presence of the control parameter necessitates the introduction of an acceptance probability for the
update.
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I. INTRODUCTION

Projective techniques are often used for determining the
ground-state properties of strongly correlated models defined
on a lattice. They were initially developed for nonlattice
models [1] and then used for the study of fermionic lattice
models [2]. They were subsequently applied to quantum
spin models [3–8] as well as other models. The underlying
idea is easy to describe. For a lattice Hamiltonian H , it
is possible to choose a constant K such that the dominant
eigenvalue E of K1 − H corresponds to the ground-state
wave function of H , |�0〉. We can then use P = K1 − H as
a projective operator in the sense that the repeated application
of P to a trial wave function P n|�T 〉 will approach En|�0〉
for large n. Hence, if n can be taken large enough, |�0〉 can
be projected out in this manner provided that 〈�0|�T 〉 �= 0.
Some variants of this approach are often referred to as Green’s
functions Monte Carlo (GFMC) [2,5–8]. Other projective
operators such as exp(−τH ) can be used depending on the
model and its spectrum. For a review, see Refs. [9,10]. The
convergence of such projective techniques may be nontrivial
as can be shown by analyzing simple models [11]. If P |�T 〉
can be evaluated exactly, this projective scheme is equiva-
lent to the power method as used in exact diagonalization
studies. As the number of sites in the lattice model is
increased, exact evaluation quickly becomes impossible and
Monte Carlo methods (projector Monte Carlo) have to be
used.

The efficiency of the Monte Carlo sampling is crucial
for the performance of implementations of the projective
method and detailed knowledge of such Monte Carlo methods
is of considerable importance. Here, we have investigated
a class of Monte Carlo algorithms for projective methods
for lattice models. We discuss these algorithms within the
context of quantum Monte Carlo where the projection is
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performed in the valence-bond basis [3,4,12–15], so-called
valence-bond quantum Monte Carlo (VBQMC). The algo-
rithms are, however, applicable to projective techniques in any
basis.

VBQMC was first developed by Liang [3,4] and then,
starting 15 years later, significantly further developed by
Sandvik and collaborators [12–15] and it is now widely
used. Since its inception, VBQMC has been improved and
generalized in several ways: it can be used on systems with
spins with S �= 1

2 [4] and states with total Sz = 1
2 [16]. An

efficient sampling algorithm with loop updates is known for
systems with S = 1

2 [15].
As outlined above, VBQMC works by projecting onto the

ground state by repeatedly acting on a trial state |�T 〉 with
P = K1 − H , where the constant K is chosen such that the
ground state has the biggest eigenvalue. For Hamiltonians with
bounded spectrum, such a K can always be found. For a simple
quantum spin model defined on a lattice, we have

H = J
∑
〈i,j〉

Si · Sj =
∑
〈i,j〉

hij (1)

and we can write P = K1 − H = ∑
Oij as a sum over NB

bond operators Oij . Taking P to the nth power then results in
a sum over products of these bond operators Oij :

P n =
∑

a

Oi(a,1)j (a,1) . . . Oi(a,n)j (a,n)︸ ︷︷ ︸
n operators

:=
∑

a

Sa. (2)

Each instance of this product then forms a string Sa of bond
operators of length n. When selecting such a string of length
n, one has to make a choice between the NB bond operators
at each position in the string. It is possible to view the
construction of such a string as a specific path in a decision
tree (see Fig. 1).

Although the algorithms we present can be extended to
higher spin models, we shall restrict the discussion to quantum
spin models with S = 1

2 where one usually takes K = JNB/4.
The action of the bond operators then takes an attractively
simple form.

1539-3755/2014/90(3)/033304(13) 033304-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.033304


ANDREAS DESCHNER AND ERIK S. SØRENSEN PHYSICAL REVIEW E 90, 033304 (2014)

FIG. 1. (Color online) The branching tree of length 5 for the
selection of an operator string in a system with a Hamiltonian of
NB (here 6) terms. The operator that acts on the state first is chosen at
the first node on the left. This node is called the root and the direction
towards the root we define to be up. The operator that acts on the
state last is at the end of the string. The two colored paths differ
in the choice of the last three operators. The last three branches,
thus, contribute different operators and weights (si , ti). The resulting
strings S and T are different.

In a valence-bond basis state spins are paired into singlets.
A specific pairing of all spins is usually referred to as a
covering. All such coverings form an overcomplete basis
for the singlet subspace of the model. We shall only be
concerned with models defined on a bipartite lattice in which
case a given valence bond covering C for a lattice with
N spins can be denoted by listing all N/2 pairs of [i,j ]
with i on sublattice A and j on sublattice B. Here, [i,j ] =
(|↑iA

↓jB
〉 − |↓iA

↑jB
〉)/√2. We label the initial covering (trial

state) as C0. The action of an operator Oij can take two forms
[3,4,12]:

(1) The sites i and j are in a singlet before the action of
the operator. Then, the action of the operator does not change
the state and we can associate a weight of w = 1:

Oij [i,j ] = 1[i,j ]. (3)

(2) The sites i and j are not in a singlet before the action of
the operator. Then, after the action of the operator, the sites i

and j form a singlet. The sites they were originally connected
to are also returned in a singlet state. Furthermore, the state is
multiplied by a weight equal to w = 1

2 :

Oij [i,k][l,j ] = 1
2 [i,j ][l,k]. (4)

A particularly nice feature is that the application of any
of the Oij to any given covering yields a unique other
covering and not a linear combination of coverings. Although
convenient, this feature of projections in the valence-bond
basis is not strictly necessary for the algorithms we discuss
here as they can be adapted to the case where a linear
combination of states are generated [17]. For a given operator
string Sa = ∏

k Ok , we can associate a weight given by
Wa = ∏

wk . The state SaC0 will contribute to the final
projected estimate of the ground state with this weight. One
can then sample the ground state by performing a random
walk in the space of all possible strings Sa according to the
weight Wa .

This way of sampling is used in all VBQMC implementa-
tions [3,4,12] and quite different from GFMC’s sampling even
though VBQMC and GFMC are closely related projective
techniques. GFMC, as it is used in, for instance, Ref. [6], is
usually performed in the Sz basis but can also be done in
terms of the valence-bond basis [18]. In GFMC, the projection
is done by stochastically evaluating the action of the whole
projection operator on a trial state. This is done by introducing
probabilistic “walkers.” In contrast, as mentioned, in VBQMC
a single state results and the strings Sa are sampled according
to their weight. A different approach for a projective method
on a lattice system based on reptation quantum Monte Carlo
was proposed [19].

Clearly, the efficient sampling of states resulting from the
stochastic projection of the trial state is a difficult problem.
Here, we propose to use worm (cluster) algorithms for this
purpose.

In Monte Carlo calculations, one averages over many
configurations of the system which are generated with appro-
priate probabilities. Usually, this is done in a Markov chain,
where one configuration is chosen as a variation of the last.
One important feature of an efficient algorithm is that these
consecutive configurations are as uncorrelated as possible.
This led to the introduction of algorithms where whole clusters
and not just single elements are changed going from one
configuration to the next [20,21] or where all elements in the
path of a worm are changed [22].

Here, we show how it is possible to adapt such worm
algorithms for projections in the context of VBQMC. The
algorithms we have studied are based on the notion of a
worm moving around in the decision tree described above.
As in earlier worm algorithms, the change of many elements
is achieved by moving the worm based on local conditions
[22–26] and one might refer to the algorithms as tree-worm
algorithms. In general, the algorithms can be viewed as
directed [25] algorithms.

When we update the string, we start with a worm at the
end of the tree and move it up the tree (see Fig. 1). The worm
then moves around in the tree and where it goes the operator
string is changed. When the worm finds its way back to the
bottom of the tree, the update is complete. We derive a set of
simple equations governing the movement of the worm. The
solution of these equations leads to parameters defining a class
of algorithms. Quite generally, many solutions are possible,
leaving significant room for choosing parameters that will lead
to the most optimal algorithm.

We focus on two specific choices of parameters corre-
sponding to two different algorithms. The bouncing worm
algorithm, for which every update is accepted and the driven
worm algorithm, for which the update is accepted with some
probability. With the driven worm algorithm, one can choose
at will how much of the operator string is on average changed
in a successful update.

In order to test the algorithms, we calculate the ground-state
energy of the isotropic Heisenberg chain. This quantity is easy
to calculate with VBQMC and can be exactly computed using
the Bethe ansatz. It is thus a very convenient quantity to test the
algorithms with. The algorithms presented in this paper can,
however, be used for the same calculations as other VBQMC
implementations (see, e.g., [13]).

033304-2



VALENCE-BOND QUANTUM MONTE CARLO ALGORITHMS . . . PHYSICAL REVIEW E 90, 033304 (2014)

In Sec. II, we derive the general equations governing
the movement of the worm. Section III contains a descrip-
tion of the specific implementation corresponding to the
two choices of parameter solutions we have studied. The
bouncing worm is detailed in Sec. III A while the driven
worm algorithm is described in Sec. III B. The algorithms
are then compared in Sec. IV. We present our conclusions
in Sec. V.

II. TREE ALGORITHMS

We now turn to a discussion of the general framework for
the algorithms we have investigated. We begin by deriving the
equations governing their behavior in a general way. Let us
take the Hamiltonian to have NB terms. We now imagine a
tree where each node indicates the decision to choose one of
the NB bond operators composing the string (see Fig. 1). Each
branch of the tree corresponds to one of the NB bond operators.
A given operator string then corresponds to selecting a path
in the tree. Consider two such paths S and T that are identical
for the part of the operator string first applied to the trial state.
The last three operators, however, differ. This leads to different
weights, which we denote with si and ti .

As it is done in most Monte Carlo methods, we set out to
construct a Markov chain. Here, it is a chain of different strings.
If the probabilities to go from one string to the next have
detailed balance, the Markov chain contains the strings with
the desired probability. For detailed balance, the probabilities
for starting from operator string S and going to operator string
T and reverse have to satisfy

P (S → T)

P (T → S)
= t3t4t5

s3s4s5
. (5)

We can achieve this ratio of probabilities by imagining a worm
(tree worm) working its way up the tree to the point p where
it turns around and then working its way down again.

Let us call the valence-bond covering of the trial state
C0. Up to numerical factors, the application of an operator
string S of length n will yield a new valence-bond covering
SC0 ∝ Cn. The worm is started by removing the last applied
bond operator and considering the resulting covering Cn−1. A
decision now has to be made if the worm is to continue “up”
the tree by removing more bond operators from the string or
if it should instead go “down” the tree by adding a new bond
operator to the string. At each node in the tree, the decision
to continue up or turn around is made according to a set of
conditional probabilities P (up|s) and P (t |s). Here, P (up|s)
denotes the probability for going up after coming from a bond
operator that carried weight s and P (t |s) is the probability
for turning around by applying a bond operator of weight t

coming from an operator with weight s. Likewise, P (s|up)
denotes the probability of choosing an operator with weight s

given that the worm is coming from further up the tree. With
these conditional probabilities, the left-hand side of Eq. (5)
can be written as

P (S → T)

P (T → S)
= P (t5|up)P (t4|up)P (t3|s3)P (up|s4)P (up|s5)

P (up|t5)P (up|t4)P (s3|t3)P (s4|up)P (s5|up)
.

(6)

Clearly, Eq. (6) is satisfied if we choose

P (up|s)

P (s|up)
= c

s
and

P (t |s)

P (s|t) = t

s
, (7)

where c is an additional free parameter included for later
optimization of the probabilities. If we can choose conditional
probabilities with these properties, we can go between different
operator strings always accepting the new string. The rejection
probability is then zero. This is a very desirable property for
any Monte Carlo algorithm. We mostly focus on so-called
zero bounce algorithms for which if the worm turns around
the probability for replacing a bond operator with the same
operator is zero. Then, the two operator strings S and T are
always different. This means that

P (s|s) = 0. (8)

Quite generally, it is easy to find many solutions to the
equations (7) leading to many Monte Carlo algorithms which
can be tuned for efficiency.

We now focus on S = 1
2 Heisenberg models defined on

bipartite lattices. As has been described above, for these
models only two weights can occur: 1, 1

2 . The two weights
correspond to the two different actions the bond operators can
have on the state. It is 1 if the operator acts on two sites that
are in a valence bond. The state is not altered under the action
of such an operator. We call such operators diagonal. The
weight is 1

2 if the operator acts on two sites that are not in a
valence bond. After the action of the operator, the two sites are
connected by a bond as well as the sites they were connected
to. We call such operators nondiagonal.

Because it depends on the state acted on, whether an
operator is diagonal or nondiagonal is not an inherent feature
of an operator. For two different states, the same operator may
be diagonal for one state and nondiagonal for the other.

If a decision has to be made at the node at position m,
the conditional probabilities depend on how many of the NB

bond operators will yield a weight of 1 (are diagonal) or 1
2

(are nondiagonal) when applied to the present covering Cm−1.
We shall denote these numbers by N1 and N1/2, respectively.
When the worm is started, N1 and N1/2 therefore have to be
calculated for Cn−1, if they are not already known from an
earlier update. It is thus sensible to store N1 or N1/2 at all
nodes. N1 can only be zero at the node furthest up the tree
(the root) and only if the trial state is chosen such that the
Hamiltonian contains no diagonal operators. N1/2 cannot be
smaller than NB/2.

We can now write an (NB + 1) × (NB + 1) matrix M of
conditional probabilities for each node of the tree. The j th
column of the matrix describes the probability for going in any
of the NB + 1 directions when coming from the direction j .
For clarity, we order the rows and columns such that the first
N1/2 correspond to the nondiagonal operators and the next
N1 to the diagonal operators. The last column contains the
probabilities for going down the tree when coming from above
and the last row the probabilities for going up the tree when
coming from below. The remaining part of the matrix describes
the probabilities for replacing one operator with another when
the worm turns from going up to going down. The matrix M
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has the form
N 1

2︷ ︸︸ ︷ N1︷ ︸︸ ︷ up︷ ︸︸ ︷

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
(

1
2

∣∣ 1
2

)
P

(
1
2

′∣∣ 1
2

)
P

(
1
2

′∣∣ 1
2

)
. . . P

(
1
2

′∣∣ 1
2

)
P

(
1
2

∣∣1)
P

(
1
2

∣∣1)
. . . P

(
1
2

∣∣1)
P

(
1
2 |up

)
P

(
1
2

′∣∣ 1
2

)
P

(
1
2

∣∣ 1
2

)
P

(
1
2

′∣∣ 1
2

)
. . . · · · . . . · ·

· · · · · · · ·
· · · · · · · ·

P
(

1
2

′∣∣ 1
2

)
P

(
1
2

′∣∣ 1
2

)
P

(
1
2

′∣∣ 1
2

)
. . . P

(
1
2

∣∣ 1
2

)
P

(
1
2

∣∣1)
P

(
1
2

∣∣1)
. . . P

(
1
2

∣∣1)
P

(
1
2 |up

)
P

(
1
∣∣ 1

2

)
P

(
1
∣∣ 1

2

)
P

(
1
∣∣ 1

2

)
. . . P

(
1
∣∣ 1

2

)
P (1|1) P (1′|1) . . . P (1′|1) P (1|up)

· · · P
(
1
∣∣ 1

2

)
P (1′|1) P (1|1) . . . · ·

· · · · · · · ·
· · · · · · · ·

P
(
1
∣∣ 1

2

)
P

(
1
∣∣ 1

2

)
P

(
1
∣∣ 1

2

)
. . . P

(
1
∣∣ 1

2

)
P (1′|1) P (1′|1) . . . P (1|1) P (1|up)

P
(
up

∣∣ 1
2

)
P

(
up

∣∣ 1
2

)
P

(
up

∣∣ 1
2

)
. . . P

(
up

∣∣ 1
2

)
P (up|1) P (up|1) . . . P (up|1) P (up|up)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where P (s ′|s) refers to the conditional probability of coming from an operator with weight s and going to a different operator
with the same weight. As mentioned above, P (up|s) denotes the probability for going up coming from an operator with weight
s and P (t |s) is the probability for turning around by choosing a bond operator of weight t coming from an operator with weight
s. Likewise, P (s|up) denotes the probability of choosing an operator with weight s coming from further up the tree.

To shorten the notation, we introduce the shorthand

x = P (1/2′|1/2), y = P (1/2|1), z = P (1′|1). (9)

Furthermore, we define the bounce probabilities

b1/2 = P (1/2|1/2), b1 = P (1|1), bu = P (up|up). (10)

Here, it is implied that the probabilities are for going from one operator to the same operator. Finally, we also need to define the
branching probabilities

u = P (1/2|up), w = P (1|up), (11)

from which it follows [using Eq. (7)] that

2cu = P (up|1/2), cw = P (up|1). (12)

The matrix M is then given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b 1
2

x x . . . x y y . . . y u

x b 1
2

x . . . x y y . . . y u

· · · · · · · ·
· · · · · · · ·
x · · . . . b 1

2
y y . . . y u

2y 2y 2y . . . 2y b1 z . . . z w

· · · 2y z b1 . . . · ·
· · · · · · · ·
· · · · · · · ·

2y 2y 2y . . . 2y z z . . . b1 w

2cu 2cu 2cu . . . 2cu cw cw . . . cw bu

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

There are only few distinct entries in the matrix because
there are only two different bond operators. For less special
Hamiltonians (for example with higher spin), there may be
more distinct entries. For most common Hamiltonians, the

matrix will contain very many redundant entries. Storing its
information at every node can therefore easily be done.

The requirement that this matrix be stochastic (i.e., some
branch is chosen with probability one) means that the entries in
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each column have to sum to 1. This leads to the set of equations

1 = N1/2u + N1w + bu,

1 = N1/2y + (N1 − 1)z + cw + b1, (14)

1 = (N1/2 − 1)x + N12y + 2cu + b1/2.

These simple equations are the central equations governing
the behavior of the algorithms. To find an algorithm, we need
to solve these three equations with the constraints that 0 �
x,y,z,b1/2,b1,bu,u,w � 1, a straightforward problem.

At the root, the equations are modified slightly: since it
is not possible to go further up the tree, 2cu, cw, bu are not
meaningful and can be set to zero. For convenience, we set
b1 = x and b2 = z at the root. This allows one to just choose
diagonal operators twice as often as nondiagonal operators.
Since the number of diagonal operators does not change at
the root, a table generated at the beginning of the calculation
suffices to perform this task.

It can be very useful to choose different c’s at different
nodes. Then, calculating the probabilities to choose operators
according to the rules introduced in this section will not lead to
an algorithm with detailed balance because ci from different
strings will not cancel in Eq. (6). It is necessary to work with
an acceptance probability. We find

P (S → T)

P (T → S)
= t3t4t5

s3s4s5

cS
4 cS

5

cT
4 cT

5

Pacc(S → T)

Pacc(T → S)
. (15)

Here, cS
i and cT

i denote c at the different nodes in the strings
S and T, respectively. To validate the algorithm, we must
therefore introduce an acceptance probability that must cancel
the factor (cS

4 cS
5 )/(cT

4 cT
5 ). This can be achieved by choosing

Pacc(S → T) = min

(
1,

cT
4 cT

5

cS
4 cS

5

)
, (16)

meaning that when a new string is generated through a worm
move, it is accepted with this probability.

The very first string is filled just as one fills the string any
time the worm reaches the root. This first string is always
accepted. Since we always start from the bottom of the tree
(the last operator applied), the worm algorithms presented in
this paper always change a block of consecutive branches at
the end of the string. This is favorable to changes across the
whole string because changes far up the string might be partly
undone by changes closer to the end of the string [14]. In this
way, the most important part of the string is updated most
substantially.

It is also important to note that the algorithm will
conserve certain topological numbers. For instance, for a
two-dimensional system S = 1

2 Heisenberg model the number
of valence bonds crossing a cut in the x or y direction is either
odd or even. Hence, the initial covering, C0 is characterized
by these two parities. It is easy to see that the application of
P to any covering can not change these parities and they are
therefore preserved under the projection.

III. IMPLEMENTATIONS OF
TREE-WORM ALGORITHMS

As is explained in the last section, many different algorithms
can be found because many different solutions to the equations
(14) exist. In this section, we present two different algorithms:
one pure worm algorithm where every update is accepted (the
bouncing worm algorithm), and an algorithm that allows for
control over how far in the tree updates are attempted (the
driven worm algorithm). To test and compare the different
algorithms, we calculate the ground-state energy of the
antiferromagnetic Heisenberg chain.

The same quantities as with other VBQMC implementa-
tions can be calculated with the worm algorithms presented
here. How this can be done is explained in earlier publications
about VBQMC [12–14]. Since we only use the ground-state
energy E0, we restrict ourselves to an explanation of its
calculation.

The Néel state |Néel〉 has equal overlap with all valence-
bond states. This can be used to very directly estimate the
ground-state energy E0:

E0 = 〈Néel|H |�0〉
〈Néel|�0〉

= lim
n→∞

〈Néel|HP n|C0〉
〈Néel|P n|C0〉

= lim
n→∞

Nn
B∑

a=1

〈Néel|HSa|C0〉∑Nn
B

a=1〈Néel|Sa|C0〉

= lim
n→∞

Nn
B∑

a=1

Wa∑Nn
B

a=1 Wa

〈Néel|H |Ca〉
〈Néel|Ca〉 . (17)

If we take EaCb = HCa and assume that the Monte Carlo
sampling will visit strings according to their weight Wa , then
for a Monte Carlo sequence of length N of independent strings
we find

E0 = 1

N

N∑
a=1

Ea, (18)

where again we have used the fact that 〈Néel|C〉 is independent
of the covering C.

To analyze the correlation properties of the worm algo-
rithms, we use the energy autocorrelation time, which we take
to be the number of updates it takes the energy autocorrelation
function

AE(t) = 〈EiEi+t 〉 − 〈E〉2

〈E2〉 − 〈E〉2
(19)

to decay to 0.1. The results of all update attempts enter the
calculation of the expectation values. The autocorrelation time
is measured in units of one update attempt. The shorter the
autocorrelation time is, the more substantially do Monte Carlo
steps decorrelate samples.

This way of estimating the autocorrelation time does not
take into account the possibility of subleading modes with large
autocorrelation times. It is intuitive, however, and sufficient in
the context of this first exhibition of the worm algorithms.
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The reader should be advised that other observables may
have different autocorrelation times. We expect this to affect
all algorithms used in this paper in the same way. If not stated
otherwise, an operator string of 20 000 operators was used
for calculations with worm algorithms. To calculate the errors
given for estimates of E0, we binned measurements taken one
autocorrelation time apart. The number of measurements in
one bin was chosen such that the size of the error did not
change appreciably when multiplying or dividing it by two.

A. Bouncing worm algorithm

The first algorithm we discuss is the bouncing worm
algorithm. Only a few of the variables that appear in the
equations (14) are chosen to be nonzero. We choose to set

x = y = 0, b1 = b1/2 = 0, (20)

while z = P (1′|1) �= 0 as is u,w. We leave bu as a parameter
that can be zero or nonzero allowing for tuning of the
algorithm. With this choice, when the worm is moving up the
tree, the only possibility for it to turn around is by opting to
replace one diagonal operator with another diagonal operator.
The ci are chosen to be the same at all nodes: ci = c.

The equations for the nonzero parameters are then

u = 1

2c
,

w = 1

N1

(
1 −

N 1
2

2c
− bu

)
, (21)

z = 1 − cw

N1 − 1
.

The requirements that z,w > 0 imply that

N1/2

2(1 − bu)
� c � NB + N1

2(1 − bu)
. (22)

To satisfy Eq. (22) with node independent c, we set

c = NB

2(1 − bu)
. (23)

With this choice of parameters, we find the probability to
go up the tree if the worm is at a node with a nondiagonal
operator to be

P (up|1/2) = 2cu = 1, (24)

for any bu. Likewise, if the worm is at a node with a diagonal
operator, the probability to go up is given by

P (up|1) = cw = 1/2, (25)

independent of bu. The probability for going up the tree is
therefore independent of bu.

We define the penetration depth (p. depth), which we denote
by r , as the maximal height that the worm reaches. The mean p.
depth 〈r〉 is a measure of how much of the string is on average
changed per update. The actual length of the worm is denoted
by l and with bu = 0 we find l = 2r . The penetration depth
r will determine how much the operator string is changed.
Obviously, it is desirable to have the worm reach as far up the
tree as possible. It is possible to force the worm farther up the
tree by having it bounce back to going up after it has turned
to go down (see Fig. 2). In that case, the actual length of the

FIG. 2. (Color online) A possible path that contains one bounce
and connects the string S and the string T. The worm first goes up to
the node 2 where it turns to go down to node 3. The worm bounces
back and goes all the way to node 1. Then the worm turns around and
does not bounce again.

worm, l, will then be substantially different from twice the
penetration depth since the worm can turn many times, a point
we shall return to later. Such bounces occur with a likelihood
of bu which was left as a free parameter and can now be used
as a tuning parameter.

The algorithm is straightforward to implement and the
acceptance probability for a worm update is 1. The move is
always accepted. Specific details of an implementation of the
bouncing worm update can be found in the Appendix, Sec. A 1.

We begin by discussing the case of bu = 0. In this case, the
worm first moves up the operator string, turns around once,
and then proceeds down to the bottom of the tree. It does
not go back up the operator string since bu = 0. In order to
measure the performance of the algorithm, we did calculations
on an antiferromagnetic Heisenberg chain with 50 sites using
an operator string of length 100 000. As can be seen in Table I,
this leads to a rather small mean penetration depth (p. depth) of
about 5. The maximal penetration depth of 50 is substantially
larger. Both these numbers are, however, substantially smaller
than the length of the operator string (100 000) and it appears
that the algorithm with bu is not very effective.

We now turn to the case bu �= 0. In this case, the worm can
now switch directions many times during construction (see
Fig. 2). The results for the mean and maximal penetration

TABLE I. Data for several runs at different bu. At bu ≈ 0.25
increasing the bounce probability starts to significantly slow down
the algorithm. The last column contains the runtimes divided by the
runtime for bu = 0. The data were generated with an operator string
of 100 000 operators. The maximal penetration and the expected
slowdown could thus not be resolved for bu = 0.2790. We used
106 measurements and a chain with 50 sites.

bu Mean p. depth Max p. depth Slowdown

0.0000 4.561(4) 50 1
0.2500 7.38(1) 305 1.7
0.2750 10.44(3) 1,465 9.7
0.2789 15.64(9) 41,010 316.7
0.2790 19.7(5) >100,000 <5,535.7
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FIG. 3. (Color online) The autocorrelation time of the energy as
a function of system size N . The lines indicate tentative power-law
fits to the data at large N with a power of 2.21 for bu =0.26 and 2.16
for bu =0.275. Operator strings of 20 000 operators were used.

depths are also listed in Table I. As bu is increased from zero,
the maximal penetration depth first increases very slowly until
about bu = 0.25. It then grows dramatically and, not surpris-
ingly, reaches the length of the operator string. This occurs at
bu ≈ 0.2790. At the same time, the mean penetration depth
only increases by a factor of roughly 4, from 5 to about 20. For
bounce probabilities bigger than bu ≈ 1

4 , the program is slowed
down significantly compared to the algorithm with bu = 0 as
indicated in the last column in Table I. Thus, even though a
large penetration depth is desirable, the computational cost can
become so big that increasing bu might not be worthwhile.

In contrast to the maximal penetration depth, the mean
penetration depth grows very slowly for the values of bu

we have been able to study. For computations of reasonable
computational cost, it never reaches the size of the system and
thus also not the length of the operator string which has to be
chosen to be several times the size of the system. That only a
small part of the string is updated regularly is directly reflected
in the energy autocorrelation time (see Fig. 3). The number of
bonds that can change in one update of the worm calculations
is twice the penetration depth. Typical updates never reach far
into the operator string. Thus, the bigger the system is, the less
it is perturbed by the update and the more correlated are the
energies measured after consecutive updates.

As shown in Fig. 3, increasing bu decreases the autocor-
relation time. However, for large system sizes, the overall
scaling of the autocorrelation time with the system size appears
independent of bu. At bu = 0.26 we find a power law with an
exponent of 2.21 while a slightly larger bu =0.275 yields a
power of 2.16.

The shorter autocorrelation time for larger bu comes with
more work that has to be done per update since the worm
is much longer and more operators have to be changed per
update. It is thus instructive to look at a scaled autocorrelation
time that takes this into account. Such a scaled autocorrelation
time can be obtained by multiplying the autocorrelation time
with the length of the worm, 〈l〉, divided by two. The scaled
autocorrelation time indicates how many operators have to be
changed in order to substantially change the operator string.

FIG. 4. (Color online) The scaled autocorrelation time of the
energy as a function of system size N . The data from Fig. 3
were multiplied with 〈l/2〉 which was estimated in independent
calculations. Operator strings of 20 000 operators were used.

Interestingly, for large N , the amount of operators that have to
be changed because of the meandering worm for large bu and
deep penetration compensates for the shorter autocorrelation
time measured in terms of updates of the operator string, as is
shown in Fig. 4.

Even though the mean penetration depth is small, one can
still obtain high quality results. In particular, it is not necessary
for the mean penetration depth to reach a value close to the
length of the operator string (the projection power) in order
to get reliable results. Since the maximal penetration depth
is substantially larger than the mean, the operator string is
often updated deeper than the mean penetration depth. Hence,
the mean penetration depth can be much smaller than the
length of the operator string has to be for otherwise equivalent
calculations with conventional VBQMC. We discuss this effect
in more detail in Sec. IV.

As one increases the probability to bounce up the tree, a
longer part of the string actually partakes in the projection.
Thus, also the quality of the projection is better (see Fig. 5).
If operators are never updated, they do not contribute to the
projection; they do, however, modify the trial state used in
the projection. This leads to the irregularly scattered pattern
the data show for small bu. In this sense, one can think of
rare updates that go high up the tree as effectively changing
the trial state and the whole calculation as an averaging over
these trial states. Equivalently, one can also view this irregular
pattern as the result of nonergodic sampling of all operator
strings because on average only a small part of the string is
changed during one update.

As is evident from Fig. 5, the bouncing worm algorithm
yields good results for bu > 0.25. It is an attractively simple
algorithm with zero bounce probability and a probability
of 1 for accepting a new string. The autocorrelation time
can be reduced by increasing bu, whereas the overall power
of the growth at large system sizes appears independent of
bu. However, the increased computational cost associated
with increasing bu is considerable and we have therefore
investigated another parameter choice leading to a different
algorithm, the driven worm algorithm. We now turn to a
discussion of this algorithm.

033304-7



ANDREAS DESCHNER AND ERIK S. SØRENSEN PHYSICAL REVIEW E 90, 033304 (2014)

FIG. 5. (Color online) With a bigger probability to bounce bu,
the bouncing worm algorithm yields a better approximation of the
ground-state energy. The ground-state energy was calculated using the
Bethe ansatz and is indicated by a dotted line. Since some operators
in the string are never updated, calculations with different bu were
effectively done with different trial states. The calculation was done
for a chain with 50 sites. Operator strings of 20 000 operators were
used and for each point 107 measurements taken.

B. Driven worm algorithm

Clearly, it is desirable to have all updates result in a
substantial change of the operator string. Then, fewer updates
have to be performed. For the problem at hand, this means
that we need the worm to go far up the tree as often as
possible without increasing the computational cost too much.
Direct control over the associated probability would be very
convenient. We achieve this by setting the probabilities to go
up the tree to be

2cu = cw = α. (26)

The value of α is the probability to, at each node, decide to go
up the tree. Since u and w depend on N1 and N2, this is only
possible by allowing c to vary with the node. As explained at
the end of Sec. II, the acceptance step of Eq. (16) thus has to
be introduced. Updated strings may be rejected.

We set all bounce probabilities to be zero, b1 = b1/2 =
bu = 0. Hence, the worm will move up the tree and then
turn around once. To get a working algorithm, we have to
find solutions to the equations (14) which will determine
the transition probabilities [see Eq. (13)]. If N1/2,N1 > 1 the
solutions to equations (14) are given by

x = 1

N1/2(N1/2 − 1)
[2N1(N1 − 1)z + (1 − α)(N1/2 − 2N1)],

y = 1

N1/2
[(1 − N1)z + 1 − α],

(27)
u =1/(N1/2 + 2N1),

w =2u,

where

1 − α

N1 − 1

[
1 − N1/2

2N1

]
� z � 1 − α

N1 − 1
. (28)

If N1 �= 1, we set

z = 1 − α

N1 − 1

[
1 − 1

2

N1/2

2N1

]
(29)

if it results in z > 0 or

z = 1

2

1 − α

N1 − 1
(30)

otherwise. In this way, Eq. (28) is always satisfied and z � 0.
If N1 = 1 we set z = 0. Finally, we note that the worm update
in this case has to be accepted or rejected according to the
probability (16). Specific details of an implementation of this
driven worm algorithm can be found in the Appendix, Sec. A 2.

How far up the tree updates are attempted can in this case
easily be calculated. The probability for the worm to have
length l and turn around after going up r = l/2 nodes is given
by P (r) = αr (1 − α). The expectation value of r is given by

〈r〉 = 1

1 − α
. (31)

The probability distribution for the worm to penetrate the
tree r nodes deep during a computation of m updates is given
by

Pm,α(rmax) =
(

1 − (1 − α)
∞∑

q=r

αq

)m

︸ ︷︷ ︸
probability that in m attempts no worm

turns at a node with r > rmax

−
⎛
⎝(1 − α)

r−1∑
q=1

αq

⎞
⎠m

︸ ︷︷ ︸
probability that in m attempts all worms

turn at a node with r < rmax

= (1 − αr )m − (1 − αr−1)m. (32)

How far up the tree is updated is not given by how far the
worm goes up the tree since the update might be rejected. The
mean penetration depth is therefore not equal to 〈r〉. In Fig. 6,
we show results for the mean and maximal penetration depths
for two different system sizes (N = 50,1000) as a function
of 1/(1 − α). As expected, both the mean and maximal
penetration depths increase monotonically with 1/(1 − α).

Another measure of the performance of the algorithm can
be established by simply looking at the calculated ground-state
energy and its error. This is done in Fig. 7 where the ground-
state energy is shown as a function of 1/(1 − α). Operators
that are never updated only change the effective trial state
the ground state is projected out of. The sampling in turn
is nonergodic. By forcing the worm further up the tree, one
can have a bigger part of the operator string partake in the
projection (see Fig. 6). This leads to a better approximation of
the ground-state energy as can be seen in Fig. 7.

For the driven worm algorithm, we have also studied the
behavior of the scaled autocorrelation time of the energy.
Here, the scaled autocorrelation time can very easily be
calculated from the autocorrelation time because the number of
attempted operator updates is given by 1/(1 − α). The scaled
autocorrelation time is therefore calculated by multiplying the
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FIG. 6. (Color online) The mean and the maximal penetration
depths grow as α approaches one. The mean penetration depth is
always smaller than 〈r〉 = 1/(1 − α). This behavior is independent
of the system size. For the chain with 50 sites 3 × 108 and for the
chain with 1000 sites 107 updates were performed. Operator strings
of 20 000 operators were used.

autocorrelation time by 1/(1 − α). Our results are shown in
Fig. 8 as a function of 1/(1 − α). The behavior is in this
case not monotonic. At first, the scaled autocorrelation time
decreases, but then it starts to grow at larger 1/(1 − α).

This can be understood in the following way: As long as
〈r〉 is much smaller than the size of the system, the scaled
autocorrelation time decreases with increasing α. This follows
naturally from the fact that increasing 1/(1 − α) will increase
〈r〉 and therefore lead to larger and more effective updates.
This decreases the correlations between operator strings. The
farther the worm travels up the string, the smaller is the
probability that an update is accepted (see Table II). For bigger
α, and thus also 〈r〉, this effect dominates and the scaled
autocorrelation time grows. A characteristic minimum can be

FIG. 7. (Color online) The bigger the penetration probability α,
the better the approximation of the ground-state energy given by
the driven worm algorithm. The ground-state energy was calculated
using the Bethe ansatz. It is indicated by a dotted line. Since some
operators in the string are never updated, calculations with different α
were effectively done with different trial states. The calculation was
done for a chain with 50 sites. Operator strings of 20 000 operators
were used and for each point 107 measurements taken.

FIG. 8. (Color online) The scaled autocorrelation time decreases
with 〈r〉, if typical updates are smaller than the system size.
Since bigger 〈r〉 means better projection, this implies that the
autocorrelation time decreases as the quality of the projection is
improved. Operator strings of 20 000 operators were used.

identified as is clearly evident in Fig. 8. The acceptance rate
grows with the size of the system (see Table III)

IV. COMPARISON OF ALGORITHMS

In the following, we compare worm updates to simple
conventional VBQMC updates as described, for example, in
Refs. [12–14]. This means that for VBQMC we attempt to
change four randomly selected operators during one update.
We do not compare to loop updates as introduced in Ref. [15]
since we anticipate the worm algorithms to be of most use with
problems for which loop updates are not known although our
current implementations of them are similar to conventional
VBQMC.

We first consider the convergence of the energy with the
projection power (the length of the operator strings). Our
results for a 50 site Heisenberg chain are shown in Fig. 9.
It turns out that if the worm algorithms penetrate the tree
sufficiently deeply, the results do not depend on the type of
algorithm in use. In particular, the dependence of the results
on the length of the string is the same for all three algorithms
(see Fig. 9), just as one might have expected since the power
method underlies all three algorithms.

When using the worm algorithms, the operator string is
usually chosen so long that the worm never or very rarely
reaches the root of the tree. This means that there are almost
always nodes close to the root with operators that are never
updated and thus act on the trial state after every update. In this
way, we are effectively using an optimized trial state. The effect

TABLE II. The acceptance rate drops when the string is updated
more substantially. The calculations were done for a chain with 50
sites.

1/(1 − α) Acceptance rate

200 0.41
1000 0.13
5000 0.03
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TABLE III. The acceptance rate is higher for bigger systems.

1/(1 − α) N Acceptance rate

1000 100 0.15
1000 1000 0.31
100 100 0.63
100 1000 0.88

is similar to generating the trial state by performing several up-
dates on a randomly chosen trial state and taking the resulting
state for the actual calculation. We used such a trial state for
the conventional VBQMC calculations shown in this section.

A useful measure of the effectiveness of an algorithm
can be obtained from the autocorrelation function. If simply
measured as a function of the number of updates, it decreases
dramatically faster for the worm algorithms when compared to
conventional VBQMC. However, just using one update as the
temporal unit puts conventional VBQMC at an unfair disad-
vantage. The reason is that in calculations with conventional
VBQMC, one attempts to change four operators per update
while for the worm algorithms it could be many more. We
take this into account by, just as above, scaling the temporal
axis of the autocorrelation function. Then, one can easily see
which algorithm has the smallest correlations when on average
the same number of changes has been attempted.

In Fig. 10, we therefore show results for the energy
autocorrelation function for the two worm algorithms as well
as for conventional VBQMC with the temporal axis rescaled
by the number of operators one attempts to change in a single
update. During one update with worm algorithms, one tries to
update l/2 operators. The scaled number of updates is simply
#updates × 〈l/2〉 with 〈l/2〉 = 4 for conventional VBQMC

FIG. 9. (Color online) Upon increasing the quality of the projec-
tion by using longer operator strings, the estimate of the ground-state
energy converges to the correct value in the same way for worm and
conventional VBQMC algorithms as long as the string is penetrated
sufficiently deeply. The driven worm algorithm was run with the
probability to go up the tree α = 0.995, which corresponds to a
mean penetration depth of about 90 and full penetration of the string.
The bouncing worm algorithm was run with a bounce probability
bu = 0.2675, which corresponds to a mean penetration depth of
roughly 8 and full penetration of the string. The calculation was
done for a chain with 50 sites. For the worm algorithms 107 and
for the conventional VBQMC 106 measurements were taken at each
point.

FIG. 10. (Color online) The autocorrelation function versus
scaled number of updates for the two worm algorithms and conven-
tional VBQMC. The number of updates was scaled by the number
of operators attempted to be changed in an update 〈l/2〉. Hence, data
for conventional VBQMC updates, the driven worm algorithm, and
the bouncing worm algorithm were multiplied by 4, 200, and 63.758,
respectively. For the worm algorithms, the same parameters as in
Fig. 9 were used. This means that α = 0.995 and bu = 0.2675. An
operator string of length 1000 was used for all three algorithms. The
horizontal line at 0.1 was added to allow for easy visual estimation
of the scaled autocorrelation time.

and 〈l/2〉 = 〈r〉 = 1/(1 − α) for the driven worm algorithm.
For the bouncing worm algorithm, 〈l〉 has to be measured
during the simulation since the bouncing worm can go up
and down the tree many times. Thus, 〈l/2〉 can be orders
of magnitudes bigger than the mean penetration depth. For
instance, for the calculations shown in Fig. 10, the mean
penetration depth was approximately 7.8 whereas 〈l/2〉 =
63.758. Even including such a rescaling of the temporal axis,
it is clear that the autocorrelation times are much shorter for
the worm algorithms, as shown in Fig. 10.

The two worm algorithms change operators of the string
starting from one end while the conventional VBQMC selects
four operators at random to be changed. As mentioned in
Sec. III A, the mean and the maximum penetration depths are
usually much smaller than the length of the operator string
(the projection power). It is therefore natural to ask if one can
reach a similar quality of results using worm algorithms and
conventional VBQMC.

That this is so can be seen by plotting the absolute
deviation from the ground-state energy |�E| versus the mean
penetration depth. As shown in Fig. 11, the mean penetration
depth can, in fact, be much smaller than the projection power
of a conventional VBQMC calculation and still yield results
of the same accuracy.

Finally, we look at how the scaled autocorrelation times
of the worm algorithms depend on the size of the system
studied. Our results are shown in Fig. 12 for a fixed length
operator string of 20 000. For the simulations shown in Fig. 12,
the mean penetration depths for the driven worm algorithm
were about 100. The scaled autocorrelation time for the driven
worm algorithm starts to increase appreciably at this system
size, while it is initially almost flat. We conclude that a
significant increase in the autocorrelation time appears once
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FIG. 11. (Color online) The deviation |�E| from the exact
Bethe-ansatz results for a chain with 100 sites. The results are
shown for the driven and bouncing worm algorithms versus the mean
penetration depth and for conventional VBQMC updates versus the
projective power (length of operator string). The worm algorithms
reach the same small value of |�E| with a mean penetration depth
an order of magnitude smaller than the projective power used for
the calculation with conventional VBQMC updates. The bars on
the markers indicated the statistical uncertainty. The colored (dark)
surfaces are due to overlapping error bars. Operator strings of 20 000
operators were used for the calculations with the worm algorithms.
For each point, 105 measurements were taken.

the system size significantly exceeds the mean penetration
depth. A similar effect can be observed for the bouncing worm
algorithm. The mean penetration depths for the bouncing
worm algorithm are, however, much smaller (around 9; see
Fig. 11). Results for N smaller than the mean penetration
depth are therefore not shown in Fig. 12. The autocorrelation
times remain manageable for the system sizes studied, even
though they are consistently increasing.

FIG. 12. (Color online) The scaled autocorrelation time for the
driven and bouncing worm algorithms as a function of system size. A
fixed operator string of length 20 000 was used in the calculations. In
the calculations shown, the bouncing worm algorithm was run with
bu = 0.275 and the driven worm algorithm was run with α = 0.995.
For the scaling we use 〈l/2〉 = 200 for the driven worm algorithm
and an 〈l/2〉 between 60 for N = 10 and 221 for N = 1000 for the
bouncing worm algorithm.

Compared to simple implementations of VBQMC, the
worm algorithms have significant overhead. This is largely
compensated by the large number of operators that can be
changed in an update and resulting shorter autocorrelation
times, as we found in all computations. Given the somewhat
different properties of the two worm algorithms, a realistic
implementation could combine the two by performing updates
with the driven worm algorithm mixed with updates using the
bouncing worm algorithm (and perhaps conventional VBQMC
updates).

V. CONCLUSION

We have shown that valence-bond quantum Monte Carlo
can be implemented with an update build around the notion
of a worm propagating through a tree. Many different such
algorithms are possible. We studied the validity and efficiency
of two of them: one for which no update is rejected (the
bouncing worm algorithm) and one for which big parts of
the operator string are updated (the driven worm algorithm).
Both algorithms are attractively simple and straightforward to
implement and produce high quality results.

While they may not be computationally competitive with
state of the art loop update algorithms [15] for VBQMC, the
algorithms presented here are intrinsically interesting since
they represent a class of algorithms that should be generally
applicable to projective methods. These algorithms are not
restricted to the valence-bond basis and preliminary results
show that they can be quite efficient in the Sz basis [17] method
and might spark further development of it. We also note that
many other algorithms can easily be found with the results
contained in this paper and that it is possible that the parameter
space allows for much more efficient algorithms than the two
we have studied here.

In terms of further optimizing the algorithms, several
directions may be interesting to pursue. Not updating some
of the operators the worm visits might boost the acceptance
ratio of the driven worm algorithms and thereby reduce the
autocorrelation times. This could be combined with attempting
to reduce the overhead of the driven worm calculations by
always forcing the worm all the way down to the root. This
would eliminate the need to keep track of the state at each
node. With the current practice of updating all operators after
turning around, going all the way to the node during every
update leads to very small acceptance ratios.
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APPENDIX: PSEUDOCODE FOR IMPLEMENTATIONS OF
THE TREE-WORM ALGORITHM

This appendix contains pseudocode that shall serve to clar-
ify the algorithms proposed in this paper. To simplify notation,
we refer to diagonal operator as NDOP and nondiagonal
operators as NDOP.
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1. Bouncing worm algorithm

In this section, we give detailed information on a straight-
forward (albeit not optimized) implementation of the bounce
algorithm (see Sec. III A). Shown is an outline of the central
part of the algorithm: the update of the operator string and the
state.

The algorithm works its way up the tree. It starts at the last
branch which is assigned the nth position. At each position
it is decided if the worm goes up the tree or down, in which
case a new operator is chosen for the branch at this position.
The necessary probabilities are calculated according to the
expressions given in Eqs. (21) and (23). If an operator is chosen
for the nth branch, the update is complete.

It is assumed that the tree is so high (the operator string so
long) that the root is never reached. If the root is reached, one
has to choose an operator for the first branch according to the
probabilities outlined in Sec. II after Eq. (14). The first string is
initialized by filling it as if the worm had just reached the root.

Schematically, using pseudocode, a bouncing worm update
of a tree with n nodes can be outlined as follows:

pos = n � start at last branch
going up = TRUE
while pos ! = n + 1 do

ran = uniform(0,1)
if going up then

if operator at pos is NDOP then
pos = pos − 1

else if ran < cw then
pos = pos − 1

else
going up = FALSE
choose new DOP at pos
update state, w and N1 at pos
pos = pos + 1

end if
else

if ran < bu then
going up = TRUE

else
if ran − bu < wN1 then
choose DOP at pos

else
choose NDOP at pos

end if
update state, w and N1 at pos
pos = pos + 1

end if
end if

end while

The weights w,u and bu, N1 as well as the state are stored
at each node.

2. Driven worm algorithm

We now turn to a description of a (not optimized) imple-
mentation of the driven worm algorithm (see Sec. III B). As
above, we show an outline of the central part of the algorithm:
the update of the operator string and the state.

The worm works its way up the tree. It starts at the last
branch which is assigned the position n. While going up the
tree, the worm, at each node, goes further up the tree with
probability α or turns around with probability 1−α. After
turning around, the worm keeps going down until it reaches the
end. At the nodes the worm visits, new operators are chosen.
When the worm reaches the end, it has to be decided whether or
not the update should be accepted. The associated probabilities
are calculated according to the expressions given in the main
text [see Eqs. (26), (27) and (16)].

As above, we assume that the tree is so high (the operator
strings so long) that the root is never reached. If the root is
reached, one has to choose an operator for the first branch
according to the probabilities outlined in Sec. II after Eq. (14).
The first string is initialized by filling it as if the worm had just
reached the root. This first string is always accepted.

Shown is the driven worm update of a tree with n nodes.
Using pseudocode language, a driven worm update then takes
the following form for a tree with n nodes:

pos = n � start at last branch
going up = TRUE
while pos ! = n + 1 do

ran = uniform(0,1)
while going up do

if ran < α

pos = pos − 1
else

going up = FALSE
if operator at pos is DOP then

if ran − α < yN1/2 then
choose new NDOP at pos

else
choose DOP at pos

end if
else

if ran − α < zN1 then
choose new DOP at pos

else
choose NDOP at pos

end if
update state, weights, c, and N1 at pos
pos = pos + 1

end if
end if

end while
if ran < wN1 then

choose DOP at pos
else

choose NDOP at pos
end if
update state, weights, c, and N1 at pos
pos = pos + 1

end while
Accept or reject using old and new c’s

The weights c, N1 as well as the state are stored at each
node. A new string is not always accepted.
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