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Transparent lattices and their solitary waves
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We provide a family of transparent tight-binding models with nontrivial potentials and site-dependent hopping
parameters. Their feasibility is discussed in electromagnetic resonators, dielectric slabs, and quantum-mechanical
traps. In the second part of the paper, the arrays are obtained through a generalization of supersymmetric quantum
mechanics in discrete variables. The formalism includes a finite-difference Darboux transformation applied to
the scattering matrix of a periodic array. A procedure for constructing a hierarchy of discrete Hamiltonians is
indicated and a particular biparametric family is given. The corresponding potentials and hopping functions are
identified as solitary waves, pointing to a discrete spinorial generalization of the Korteweg-deVries family.
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I. INTRODUCTION

There is increasing interest in the study of tight-binding
models and their application to several areas, such as optical
waveguides [1–3], ultracold atoms in optical lattices [4–6],
and artificial realizations of condensed matter, e.g., graphene
[7–11]. Noteworthy is the area of quantum metamateri-
als [12,13], where transmission properties can be tailored
at the level of quantum degrees of freedom. The subject
has reached the domain of supersymmetric models through
a recent realization of a Dirac oscillator [14–16], which
seems to be the first experimental construction of an N = 2
supersymmetry. In these applications, technical developments
towards the engineering of local potentials and couplings
between sites have been reached with several purposes [17,18],
even with microwaves [19]. A particular example of interest is
the perfect transmission of signals through discrete arrays and
its associated scattering problem in the presence of local lattice
modifications. It is important to mention that transparency
has been extensively studied in continuous variables [20,21],
but never in a tight-binding array [22]. In this paper we
provide an elegant solution of the problem by extending
the well-developed apparatus of supersymmetric quantum
mechanics [23,24] (SUSYQM) to discrete variables.

We shall proceed in the following order: In Sec. II we define
our problem and state the main result of our work by giving
a family of transparent potentials in tight-binding arrays. In
Sec. II A we study the possibility of implementing such mod-
els: matter waves in optical traps (Sec. II A 1), electromagnetic
waves in nanoscopic and mesoscopic arrays (Sec. II A 2),
and dielectric slabs (Sec. II A 3) are considered. Section III
provides the necessary definitions and generalizations for
discrete SUSYQM. This section can be read separately and
is divided into five parts: Sec. III A, the factorization method;
Sec. III B, isospectrality and transparency (where we address
the problem of discrete-variable Darboux transformations);
Sec. III C, the continuous limit of the theory; Sec. III D,
a numerical check of the required properties, and, in full
analogy with traditional SUSYQM, Sec. III E studies a set of
discrete solitons given by potentials and hopping parameters.
Section IV gives a brief conclusion.
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II. A FAMILY OF MODELS

Several areas benefit from second quantized tight-binding
models with and without particle interactions. In one dimen-
sion, and with units such that � = 1, one typically has

Hquantum =
∑
〈n,m〉

[�nmC†
nCm + �∗

nmC†
mCn], (1)

where Cn,C
†
m are local field operators of bosonic or fermionic

nature. The off-diagonal �nm’s are hopping parameters and the
diagonal �nn’s represent on-site potentials. The propagation of
signals in such models can be viewed as a scattering problem in
which one or many particle states with well-defined momenta
can be ideally prepared at infinity. In the absence of terms of the
form C

†
nCmC

†
i Cj (dilute matter waves [25] or photonic crystal

waveguides [26]), the lack of particle interactions allow a
single-particle treatment of the scattering problem. Therefore,
we restrict ourselves to a Hamiltonian in first quantization.
With the help of Wannier functions 〈x|n〉 localized around site
n, we have

H =
∑

n

�n|n〉〈n − 1| + �∗
n|n − 1〉〈n| + Vn|n〉〈n|. (2)

For simplicity, only nearest neighbors are assumed. One can
expand a stationary state |ψ〉 as

|ψ〉 =
∑

n

ψn|n〉, (3)

and from this expansion, the Schrödinger equation associated
with (2) acquires its typical recurrence form,

�nψn−1 + �n+1ψn+1 + Vnψn = Eψn. (4)

Now we define H to be asymptotically periodic if at the
far ends of the array (left and right) we have asymptotically
constant couplings and potentials, i.e., �n ∼ �0 and Vn ∼ V0

if n � 1. A diagram is shown in Fig. 1. The main finding of
this work is the existence of a family of potentials and hopping
parameters (or functions, since they depend on site n) for
which the reflection coefficient of a Bloch wave vanishes for
all energies. The most general expression for the biparametric
family can be written in terms of continued fractions, as we

1539-3755/2014/90(3)/033205(8) 033205-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.033205
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FIG. 1. (Color online) Two asymptotically periodic arrays.
Bonds represent couplings �n and site colors (shades of gray)
represent potential values Vn. Example (a) has two identical asymp-
totic regions indicated by rectangular boxes. In example (b), the
asymptotically periodic regions do not coincide.

shall see in Sec. III E. To this end, we employ the notation,

[an,bn; an−1,bn−1; ...] = an − bn

an−1 − bn−1

···
. (5)

An important case is given by a monoparametric subfamily
Ṽn,�̃n, which can be written in terms of hyperbolic functions,

Ṽn = V0 + �0

(
cosh[nλ + β]

cosh[(n − 1)λ + β]

− cosh[(n + 1)λ + β]

cosh[nλ + β]

)
, (6)

�̃n = �0

√
cosh[(n − 2)λ + β] cosh[nλ + β]

cosh[(n − 1)λ + β]
, (7)

where β is a free parameter and the convenient definition,

λ = 1

2
ln

⎛
⎝V0 −

√
V 2

0 − 4�2
0

V0 +
√

V 2
0 − 4�2

0

⎞
⎠ , (8)

has been used. Evidently, |V0| � 2|�0| is a necessary condition
and it can always be met by recognizing that V0,�0 are
independent parameters. Some examples are depicted in Fig. 2
as a function of γ = e2β .

A. Experimental feasibility

Tight-binding models can be implemented in a variety
of settings, ranging from matter waves to electromagnetic
waves. The implementation of our model relies strongly on the
possibility of reaching physical values for our on-site energies
Vn and hopping functions �n. In this respect, it is important to
ensure that all the values provided by (6, 7) are bounded. It is a
simple task to find upper and lower bounds for such functions:

|�0| < |�̃n| < |�0 cosh(λ)|, (9)

and

V0 + �0

(
1 − cosh(3λ/2)

cosh(λ)

)
< Ṽn < V0 + �0. (10)

These bounds depend entirely on V0,�0, and there is no value
of λ in Eq. (8) that leads to singular limits for nontrivial
configurations.

With these bounds, we are in the position to discuss realistic
parameters in available experiments.
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FIG. 2. (Color online) Our discrete potential Ṽn described by a blue-filled (gray-filled) curve and our hopping function �̃n described by
a green-filled (or light-gray) curve. Each panel corresponds to a different value of γ . The minimum of the potential and the maximum of the
hopping parameter lie in the same region and suffer a linear displacement to the right when γ is increased exponentially (the center is denoted
by C).
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1. Quantum-mechanical waves

With the aim of understanding wave propagation in solids,
artificial crystals have been produced by means of optical
traps. Bose-Einstein condensates (BECs) are produced and
held by potentials that, in some applications, can be tuned in
frequency and shape. Hubbard models with tailored hopping
parameters [27] have been achieved with different purposes,
such as the emulation of non-Abelian gauge fields in two
dimensions (phase variation of �) and the study of localization
phenomena, with its corresponding insulator transition as
a function of disorder [28]. It is important to recall that
reasonable on-site energies have values around |Vn − V0| <

h × 3.2 kHz, providing thus an interval to play with. The
hopping parameters are in turn determined by such potential
heights and by the lattice spacing (830 nm < λ < 1076 nm for
laser traps). Moreover, the minimization of self-interactions
(or suppression of nonlinear terms in the effective Gross-
Pitaevskii wave equation) has been achieved in BECs with
atoms such as K, Cs, and Li, making linear tight-binding
models more realistic [29]. We must recognize, however,
that full trap tunability depends on the use of lasers at many
different frequencies. Well widths and depths can be controlled
in this way, but recent applications have only used a few
frequencies; for example, Ref. [28] reports two colors in order
to produce nonperiodic configurations.

In a different domain of quantum mechanics, we find the so-
called quantum metamaterials [12], where it is possible to tune
the transmission properties of arrays made of doped nanorods.
By illuminating our proposed configuration of resonators, one
may be able to switch its properties from full reflectivity (due
to a bandgap) to transparency (as in our case).

2. Electromagnetic waves

We propose the use of dielectric media disposed in conve-
nient configurations (Figs. 3 and 4), such as those employed
in the fabrication of photonic crystals (nanoscopic scales)
and microwave resonators (mesoscopic scales). The first
possibility is within range, if we recall that carved structures
in controlled patterns have been consistently produced for a
few decades [30,31]. See [32] and, in particular, a so-called
stage I coupler in the inset of Fig. 5 of the same paper.
The main idea is to vary the size, the interdistance, and

FIG. 3. (Color online) Dielectric rods of variable radii. The cou-
plings �n can be tuned by varying the distance between the cylinders.
The optical axis z is parallel to their longitudinal coordinate.

FIG. 4. (Color online) Dielectric slabs of variable thickness and
alternating refraction index. As before, the distance between dark-
blue (dark-gray) slabs can be used to control �n.

refraction indices of such structures. Realistic parameters can
be quoted; for example, in Ref. [31] we find refraction indices
in the range 3.20 < n < 3.25 and slab thicknesses d ∼ 1 μm.
Realizations with nanorods of AlO and GaAs mixtures work
with 1.61 < n < 3.37, as reported in Ref. [32], and with
variations of their radii (around ρ ∼ 125 nm) one may further
induce shifts in their resonant frequencies. In this way, one may
achieve a variable on-site potential in effective tight-binding
models as a function of resonator size. The hopping parameters
can be tuned by varying the distance between structures such
as slabs, rods or coupled waveguides in general. Finally, the
values cited above determine the elements of transfer matrices
for the propagation of TE and TM modes, e.g., Eq. (1) in
Ref. [33].

For photonic structures carved in Si substrates [33], the
reported permittivities are εa = 2.22 and εb = 1 (air layers).
Frequency gaps can be achieved at central wavelengths
λcenter ∼ 1011 nm for normal incidence of light, but such
values can be tuned down to 350 nm by varying the angle
of incidence, covering the complete optical range. When
the structures are built in a nonperiodic pattern of a similar
size, the corresponding frequency levels tend to be discretely
distributed, but they lie in the same (optical) region. The
thickness of each barrier or slab can be in the range 95 nm <

d < 459 nm.
Other realizations with variable couplings using photons in

waveguides have been reported [34]. The couplings �n are
tuned again by the interdistance mechanism. Similar settings
were produced in Ref. [19]. An exponential law for �n

as a function of interdistance d was shown in both cases.
This dependence can be further refined by modified Bessel
functions arising from cylindrical geometries.

In the case of ceramic microwave resonators (Temex series
from E2000 to E7000), different types of spectra have been
produced by the method of variable couplings [8,14,19]. The
parameters were tuned by analyzing the level separation of a
dimer as a function of the distance between resonators. It is
important to mention that the emulation of (6) also requires a
mechanism that adjusts the on-site potential. To this end, it is
convenient to employ resonators made of different materials,
with selected resonant frequencies ranging from 800 MHz to
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FIG. 5. (Color online) Numerical solutions of the scattering problem in discrete variable n for a Bloch wave impinging from the left. Each
panel shows a different scattering energy E. The parameters are γ = e−6, V0 = 6�0. Solid gold (or solid gray), |ψ̃ |; dashed blue (or dashed
dark-gray), Re(ψ̃); dashed orange (or dashed light-gray), Im(ψ̃); blue-filled curve (or light-gray), Ṽ ; red-filled curve (or dot-dashed), �̃; solid
black, E. In all cases |T |2 = 1 and the original Bloch wave picks up a phase at the right end of the array.

50 GHz and various permittivities. Isolated sharp peaks of
	 ∼2 MHz for each resonator provide reasonable spectra in
arbitrary arrays. It should be noted that other approaches to
vary on-site energies are possible, as indicated in Ref. [9].
The spectral gap of boron nitride was emulated by breaking a
dimer symmetry using antenna couplings, rather than varying
the permittivity of the constituents.

3. Couplings and on-site potentials for dielectric layers

Let us analyze a problem of parallel dielectric slabs, with the
aim of extracting the thickness and interdistance dependence
of couplings and on-site potentials. We start with a single
slab of permittivity ε1 immersed in a medium of permittivity
ε2 (cladding). We have ε1 > ε2. If the slab is parallel to the
x axis, as in Fig. 4, we will have a continuous TE mode Ex

traveling along k, which lies in the y-z plane. We would like to
analyze the behavior of Ex along the coordinate y, i.e., across
media interfaces. Our starting point is the three-dimensional
Helmholtz equation (c = 1):

(∇2 + ε1ω
2)Ex = 0, r ∈ �,

(∇2 + ε2ω
2)Ex = 0, r /∈ �. (11)

This equation can be transformed to a Schrödinger-like one-
dimensional equation with a potential well: Assuming no
confinement along x, we reduce (11) to(

− ∂2

∂y2
+ U0
(L/2 − |y|)

)
φ(y) = Eφ(y), (12)

with E ≡ ε2ω
2 − k2

z < 0,U0 ≡ (ε2 − ε1)ω2 < 0 and
Ex(x,y,z) = xφ(y)eikzz. The solutions φ(y) are confined

along y by the walls of the potential, i.e.,

φ(y) = N ×
{

exp
(−|y−L/2|

λ

)
(y > L/2)

exp
(−|y+L/2|

λ

)
(y < −L/2),

(13)

and for |y| < L/2, φ is a trigonometric function. The skin
depth λ is related to the effective energy by the simple relation
λ = 1/

√|E|. In order to find E we must solve a well-known
transcendental equation; with the variables ξ0 ≡ L2U0/4,ξ ≡√

E + U0L/2, one has
√

ξ 2
0 − ξ 2 = ξ tan ξ , but in the regime

of interest only one bound state is needed. Therefore we take
ξ � 1 and solve the previous relation, which leads to the
following estimate to lowest order in U0:

E ≈ −L2U 2
0

4
= −ω4L2(ε1 − ε2)2

4
, (14)

and

λ ≈ 4

ω2L(ε1 − ε2)
. (15)

We are now able to find the couplings of a nearest-neighbor
Hamiltonian. When a second slab of permittivity ε1, skin
depth λ′, and width L′ is centered at y = d + (L + L′)/2, a
significant overlap between functions φ,φ′ appears and the
eigenfrequencies of the system are modified. We obtain a
nondiagonal element in the effective Hamiltonian (12), given
by

� =
∫ +∞

−∞
dy(φHeffφ

′∗) ≈ −
∫ L/2+d

L/2
dyφ

d2φ′

dy2
. (16)

This integral contains exponential tails and it can be carried
out easily. It is important to note that the normalization
constants of φ,φ′, i.e., N ,N ′, must be redefined in the interval

033205-4



TRANSPARENT LATTICES AND THEIR SOLITARY WAVES PHYSICAL REVIEW E 90, 033205 (2014)

[L/2,L/2 + d]. With this in mind, we obtain an exponential
dependence,

�(d) = �(0) exp

(
− (λ + λ′)d

2λλ′

)

×
√

λλ′ sinh
( (λ−λ′)d

2λλ′
)

(λ − λ′)
√

sinh
(

d
2λ

)
sinh

(
d

2λ′
) . (17)

For practical purposes, we can approximate this expression by
the exponential alone. On the other hand, the on-site potentials
in a tight-binding approximation are given by the eigenvalues
of isolated potential wells E ∼ 1/λ2,E′ ∼ 1/λ′2. Finally, we
can see that a careful control of the independent parameters
L,L′,d—and possibly ε1,ε2—generates couplings and on-site
potentials that can be used in arrays of many sites. Given a set
of couplings and potentials {�n,Vn}, we obtain a set of widths
and separations {Ln,dn} through the relations,

Ln = 2

ω2(ε1 − ε2)

√
|Voffset − Vn|, (18)

dn = −
(

2√|Vn| + √|Vn+1|
)

log

(
�n

�(0)

)
. (19)

III. A PATH TO DISCRETE SUSYQM

In the rest of this paper we establish the mathematical methods
that lead to transparency in the context of discrete variables.
This shall be done with the help of discrete SUSYQM.

A. The discrete factorization method

The central discretization of the Schrödinger equation leads
naturally to a nearest-neighbor tight-binding Hamiltonian,
therefore we focus on such local quantum-mechanical models
for our constructions. A generic expression for H in terms of
operators can be written as

H = �(N )T + T †�(N )† + V (N ), (20)

where N is the site number operator and T is a translation
in one unit. These operators satisfy [F (N ),T ] = T {F (N +
1) − F (N )} for any function F . Their action on localized
states |n〉 is given by N |n〉 = n|n〉 and T |n〉 = |n + 1〉. The
functions V (N ) and �(N ) represent the on-site potential
and the nearest-neighbor hopping function, respectively. Their
eigenvalues are Vn and �n, with Vn real. In full analogy with
traditional SUSYQM in continuous variables, we propose a
factorization scheme of (20) as follows:

H = A†A, A = F (N )T + G(N ). (21)

The reconstruction of (20) will be possible if we impose the
restrictions Vn = |Gn|2 + |Fn+1|2 and �n = G∗

nFn, as can be
verified by applying the product A†A to some state |n〉. It is
important to recognize that this scheme can be applied only if
the potential is positive definite or, without loss of generality,
if it is bounded below. This property enables us to consider
the existence of a ground state and to further subtract it from
the Hamiltonian, which is a usual procedure [20]. We should
also point out that given a positive Vn and a complex �n, we
may determine Fn and Gn up to phase factors (which can be
gauged away trivially in one dimension). To this end one has

to solve the recurrence Vn = |Fn+1|2 + |�n|2/|Fn|2 for |Fn|2
by the method of continued fractions,

|Fn|2 = [Vn−1,|�n−1|2; Vn−2,|�n−2|2; ...], (22)

and then reconstruct G with the relation,

|Gn|2 = |�n|2
[Vn−1,|�n−1|2; Vn−2,|�n−2|2; ...]

. (23)

Our proposal for the factorization of H is in full corre-
spondence with the continuous case, in view of the analogy
Adiscrete ↔ Acontinuous, i.e.,

F (N )T + G(N ) ←→ d

dx
+ W (x), (24)

where W (x) is a superpotential satisfying the Riccati equa-
tion [20]. A clear connection with continuous variables can be
given by means of a lattice spacing a: The translation of wave
functions 〈x − a|n〉 = 〈x|n + 1〉 motivates the substitutions
T = exp(−a · d/dx),x = aN , which in turn lead to the limit,

F

(
x

a

)
exp

(
−a

d

dx

)
+ G

(
x

a

)
−→ φ(x)

d

dx
+ γ (x).

(25)

Here we have imposed F (x/a) + G(x/a) → γ (x) and
aF (x/a) → −φ(x). This limit resembles the usual Darboux
operator [35,36]. Moreover, our discrete A in Eq. (21) is a
particular case of a series of automorphisms, but we should
stress that F (N ) �= constant is a more general choice and
allows more freedom in our models. In connection with
singularities in our limits, we should note that aF (x/a) is
regular at a = 0, but F (x/a) is not. The function G(x/a)
compensates for the singularity of F (x/a) rendering a finite
γ (x). We shall come back to this point in connection with the
Pöschl-Teller potential as a plausible continuous limit.

With these considerations, we are ready to construct a
discrete superpartner H̃ with the prescription,

H̃ = AA† = �̃(N )T + T †�̃(N )† + Ṽ (N ). (26)

The new potential and hopping functions are given by

�̃(N ) = G(N − 1)†F (N ), (27)

Ṽ (N ) = G(N )G(N )† + F (N )F (N )†, (28)

and their eigenvalues obey the relations �̃n = G∗
n−1Fn,Ṽn =

|Gn|2 + |Fn|2. Remarkably, the functions which determine the
superpartners come in pairs, since both � and V must be
modified.

B. Isospectrality and transparency

Our method can be readily applied to bound states as well
as scattering solutions. Let |ψk〉 be a solution of H |ψk〉 =
Ek|ψk〉. If H̃ |ψ̃k〉 = Ẽk|ψ̃k〉, we deduce the relations,

|ψ̃k〉 = (Ek+1 − E0)−1/2{F (N )T + G(N )}|ψk+1〉, (29)

Ẽk = Ek+1. (30)

The N = 2 supersymmetry is realized by defining super-
charges with the help of A,A† and the Pauli matrices σ±.
We have

Q = σ−A, Q† = σ+A†, H = {Q,Q†}, (31)
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where H is the central charge. The aforementioned isospec-
trality can be used for many purposes, but we are interested
now in the transformation properties of the scattering matrix
and their relation with transparency.

Let us define the conditions of a scattering problem in
discrete variables. We take H,H̃ asymptotically periodic, such
that in the limit n → ±∞ we have Vn → V±,Ṽn → Ṽ±,�n →
�±,�̃n → �̃±. The solutions with continuous parameter k

become Bloch waves: 〈n|ψk〉 → N eikn and similarly for
〈n|ψ̃k〉. The limit values of F and G can be reconstructed
via the relations |F±|2 = 1

2 (V± ±
√

V 2
± − 4�2

±), where V 2
± �

4�2
±. With this information on the factorization parameters,

we are ready to apply the discrete Darboux transformation to
the asymptotic form of the wave functions,

〈n|A|ψk〉 = (Gn + eikFn)ψk
n → (G± + eikF±)eikn. (32)

It may happen that the asymptotic regions at ±∞ have differ-
ent associated constants, i.e., V+ �= V−,�+ �= �−. However,
we always have the energy (or dispersion) relation E =
2�− cos k + V− = 2�+ cos k′ + V+ satisfied at both ends of
the array. In general k′ �= k, and the reflected and transmitted
waves have different Bloch quasimomenta, expressed by the
limits,

〈n|ψk〉 −→
n→−∞ eikn + Re−ikn, (33)

〈n|ψk〉 −→
n→+∞ Teik′n. (34)

The application of the discrete Darboux transformation (32)
to (33) and (34) leads to waves of the same energy but with
modified transmission and reflection coefficients T̃ ,R̃. The
results are

R̃ =
(

G− + eikF−
G− + e−ikF−

)
R, (35)

T̃ =
(

G+ + eik′
F+

G− + e−ikF−

)
T , (36)

which constitute a generalization of the usual scattering matrix
transformations with the replacement ik �→ eik . The reality
condition for G− and F− establishes that |R̃| = |R|. Moreover,
in the problem of transparency R̃ vanishes if R = 0. Let us
examine this possibility by proposing H as a free Hamiltonian,
i.e., a periodic chain. This means that �n = �± ≡ �0 and
Vn = V± ≡ V0. Now we must find Ṽn and �̃n by solving the
recurrence,

|Gn|2 = V0 − |Fn+1|2 = |�0|2
|Fn|2 , (37)

for |Fn|2. With the definitions μ± = 1
2 (V0 ±

√
V 2

0 − 4�2
0) we

obtain

Fn =
√

α+μn+ + α−μn−
α+μn−1

+ + α−μn−1
−

, (38)

Gn = �0

√
α+μn−1

+ + α−μn−1
−

α+μn+ + α−μn−
, (39)

where α± are arbitrary constants of the same sign, preserving
the reality of Fn. The potential and hopping functions

are now

Ṽn = V0 + α+μn
+ + α−μn

−
α+μn−1

+ + α−μn−1
−

− α+μn+1
+ + α−μn+1

−
α+μn+ + α−μn−

, (40)

�̃n = �0

√
(α+μn+ + α−μn−)(α+μn−2

+ + α−μn−2
− )

α+μn−1
+ + α−μn−1

−
. (41)

Finally, H̃ given in Eq. (26) is a nontrivial monoparametric
family enjoying the property of being reflectionless. One
can show that the solutions depend only on γ ≡ α−/α+,
and that Ṽ ,�̃ can be put in terms of hyperbolic functions
sinh(n ln μ±), cosh(n ln μ±). In Fig. 2 we show the behavior
of potentials and hopping parameters under the modification
of γ , resulting in a translation of the interaction region or
potential well. This is reminiscent of shape invariance in
continuous variables, where generalized Pöschl-Teller or Scarf
potentials can be translated at will on the real line (among other
operations, such as rescaling). However, such a similarity is to
be taken with a grain of salt, since continuous translations of
discrete variables yield the same (translated) potentials only
if ν = ln(γ )/ ln(μ+/μ−) is an integer. We can distinguish
these features in the panels of Fig. 2, as the centers of Ṽ ,�̃

move to the right and the functions suffer slight variations for
noninteger values of ν.

C. The continuous limit

It is important to make contact with the well-known results
of transparent potentials in continuous SUSYQM. The limits
can be reached by letting a → 0 as before. In order to recover a
Schrödinger equation with double derivatives and ground-state
energy U0, we must impose x = an, �0 ∼ −R0/a

2 with
R0 > 0 and V0 + 2�0 ∼ U0. In the process, we note that
T ∼ 1 − a · d/dx and (μ+/μ−)n ∼ exp(4x

√
R0/U0). The

particular choice γ = 1 leads to a familiar case of hyperbolic
superpotentials; we have

Fn ∼
√

R0

a
+

√
U0

R0
tanh

(
2

√
U0

R0
x

)
, (42)

Gn ∼ −
√

R0

a
+

√
U0

R0
tanh

(
2

√
U0

R0
x

)
, (43)

and the Darboux operator becomes

A ∼ 2

√
U0

R0
tanh

(
2

√
U0

R0
x

)
+

√
R0

d

dx
. (44)

This is the usual operator for the Rosen-Morse superpotential
with nonzero ground state U0.

D. A numerical test for transparency

We test the reflectionless property by solving numerically
the scattering problem for various energies. A reasonable
choice of parameters for the potential and hopping functions
is γ = e−6 (producing strong asymmetry in the potential) and
V0/�0 = 6, localizing the region of interaction in a small
portion of a few sites. The numerical solution is reached by
imposing a Bloch wave at least at two sites, since (4) is a
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second-order recurrence. For instance, at sites n = 0 and n = 1
we have

ψ̃0 = ei×0 = 1, ψ̃1 = eik. (45)

Such boundary conditions generate ψ̃n+1 through the recur-
rence,

ψ̃n+1 = �̃nψ̃n−1 + (E − Ṽn)ψ̃n

�̃n+1
, (46)

provided that E and k are related by E = V0 + �0 cos k. We
have used four different energies in the scattering regime:
E/�0 = 7.66,7.80,7.91,7.97, verifying that the modulus of
the transmitted wave function recovers the value 1 in all cases.
The results are shown in Fig. 5, where the modulus, the real,
and the imaginary part of ψn are displayed. At the right end of
the array (25 sites) the wave recovers its modulus and phase
factor, but at this region the potential is negligible and the
solution will continue to be a Bloch wave propagating to the
right if the array is prolonged indefinitely.

E. Biparametric solitons

The solutions of the Korteweg-deVries (KdV) equa-
tion [37,38] are known to be represented by a hierarchy
of superpotentials [39]. Such a hierarchy can be obtained
through a step-by-step method for generating superpartners.
In our discrete case, however, the application of new Darboux
transformations can be increasingly challenging. Yet, a simpler
strategy to obtain families of solutions consists of finding at
once all the superpartners of a given reflectionless problem.
We proceed in this direction in what follows. Let us start with
a monoparametric transparent problem given by (40) and (41).
We now consider a Hamiltonian,

H (α) = �(α)(N )T + T †�(α)(N )† + V (α)(N ), (47)

where α is a new parameter, yet to be determined. The
factorization procedure yields the relations,

V (α)
n = ∣∣G(α)

n

∣∣2 + ∣∣F (α)
n+1

∣∣2
, �(α)

n = [
G(α)

n

]∗
F (α)

n , (48)

but another set of recurrences in terms of Ṽn and �̃n must be
satisfied for the reflectionless problem:

Ṽn = ∣∣G(α)
n

∣∣2 + ∣∣F (α)
n

∣∣2
, �̃n = [

G
(α)
n−1

]∗
F (α)

n , (49)

where (40) and (41) must be substituted in the left-hand side
of (49). These relations are sufficient to determine |F (α)

n |2
and |G(α)

n |2. A particular solution is given, of course, by (38)
and (39), but the most general solution of (48) is a continued
fraction, ∣∣F (α)

n

∣∣ = [|�̃n|2,Ṽn−1; ...; |�̃1|2,Ṽ0 − α],
(50)∣∣G(α)

n

∣∣ = |�̃n+1|2
[|�̃n+1|2,Ṽn; ...; |�̃1|2,Ṽ0 − α]

.

We identify the new parameter α with the initial condition of
the recurrence, i.e., α = |F (α)

0 |2. The potentials and hopping
functions can be reconstructed by means of the relations,

V (α)
n = Ṽn + ∣∣F (α)

n

∣∣2 − ∣∣F (α)
n+1

∣∣2
, (51)

�(α)
n = �̃n

F (α)
n

F
(α)
n+1

. (52)

The expressions (51) and (52) represent a biparametric
family of transparent potentials and hopping functions. It is
worthwhile to investigate their behavior as a function of both
α and the original parameter γ . For example, setting α = 1.5
takes us to two solitons for each of the functions V (α)

n ,�(α)
n .

For values γ ∼ 1 the solitons are close to each other (see
Fig. 6). Increasing γ exponentially produces their motion
with respect to the origin as well as a relative displacement
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FIG. 6. (Color online) The motion of discrete solitonic potentials (blue-filled curve or dark-gray) and solitonic hopping functions (green-
filled curve or light-gray). The parameter α = 1.5 produces two solitons (a maximum and a minimum) for each graph. As γ increases, their
centers C1 and C2 move to the right at different velocities. This is shown progressively from top left to right bottom.
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between them. Thus, we have two solitons with two different
velocities [39].

IV. CONCLUSION AND OUTLOOK

Lattice design by site and coupling engineering gives rise
to many possibilities of which the present paper is an ex-
ample. A concrete experiment showing transparency—among
other properties predicted by SUSYQM—can be proposed
using current technologies, as discussed in Sec. II A. A
particular configuration using dielectric slabs was provided
in Sec. II A 3. We also recognize that SUSYQM is indeed
a powerful method; its application to discrete problems has

been demonstrated by finding systems with a desired property.
From the mathematical point of view, we have found that
some aspects of solitons [39–41] can be reproduced also in
tight-binding arrays, motivating further explorations towards
discrete spinorial KdV equations. The extension of the present
study to two-dimensional lattices seems plausible. Moreover,
discrete exactly solvable problems [42,43] and their relation
with shape-invariant potentials can be explored in this context.
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