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Drag force in bimodal cubic-quintic nonlinear Schrödinger equation
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We consider a system of two cubic-quintic nonlinear Schrödinger equations in two dimensions, coupled by
repulsive cubic terms. We analyze situations in which a probe lump of one of the modes is surrounded by a fluid of
the other one and analyze their interaction. We find a realization of D’Alembert’s paradox for small velocities and
nontrivial drag forces for larger ones. We present numerical analysis including the search of static and traveling
form-preserving solutions along with simulations of the dynamical evolution in some representative examples.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is a widely
used model in the study of quasimonochromatic, nonlinear
dispersive waves. Among other applications, it describes the
dynamics of Bose-Einstein condensates (BECs) in the mean
field approximation [1] or the propagation of laser beams
in optical fibers [2], for which different expressions have
been used for the nonlinearity of the refractive index [3].
The cubic-quintic NLSE [4] is arguably the simplest model
for competing nonlinearities [5] and has been used in many
different contexts; see, e.g., Refs. [6–9], and references therein.
In two transverse dimensions, which is a relevant case for
nonlinear optics, the cubic (focusing)-quintic (defocusing)
model (CQNLSE) presents remarkable features. There are
families of stable solitary waves (solitons and vortices) which
become flattop when the power of the beam is large: the
propagation constant never exceeds a critical value βcr, and,
for growing power β → β−

cr , there is a growing region where
the amplitude also tends to a critical value ψ ≈ eiβcrzψcr, as
was established by different numerical and analytical methods
in Ref. [10] and later rigorously proved in Ref. [8]. It is worth
remarking the similarity with results found in the study of the
complex cubic-quintic system in which linear and nonlinear
loss and gain terms are included; see Ref. [11], and references
therein. This model is used in the description of the generation
of ultrashort pulses in certain mode-locked laser oscillators.

The aforementioned behavior endows the flattop solutions
of the CQNLSE with the properties of a liquid [12]. The
|ψ | ≈ ψcr is a region of constant pressure, and the rapid decay
from |ψ | ≈ ψcr to |ψ | ≈ 0 can be identified with a liquid-vapor
interface characterized by a surface tension, leading to effects
analogous to capillarity and dripping in regular liquids [13].
Remarkably, the first neat experimental realization of this
liquid of light has been reported recently [14], following the
proposal of engineering the desired optical properties in a
coherent medium [15].

A natural question is whether there are other hydrodynam-
ical properties that can be defined for this kind of solutions
of the CQNLSE. In this paper we analyze the drag, namely,
the force which opposes to the motion of an object within
a surrounding fluid. An “object” inside the fluid described
by a NLSE can be modeled by implementing appropriate
boundary conditions at the edge of the moving body, as was
done in the framework of superfluidity in Refs. [7,16], where
similar questions to those addressed here were studied. We

will consider a different approach which might be suitable for
nonlinear optics or BECs: the probe object is also described by
a CQNLSE, leading to a bimodal system of coupled equations
for two wave functions ψ1, ψ2. In nonlinear optics [17], the
ψn typically correspond to different polarizations or different
carrier wavelengths, while in BECs they represent different
atomic species in the condensate [18] or different internal states
of the same isotope [19]; see, e.g., Ref. [20], and references
therein.

The system of equations we will study is the following:

−i∂zψ1 = ∇2ψ1 + (|ψ1|2 − |ψ1|4 − γ |ψ2|2)ψ1,
(1)

−i∂zψ2 = ∇2ψ2 + (|ψ2|2 − |ψ2|4 − γ |ψ1|2)ψ2,

where for simplicity we have fixed to unity several coefficients.
The Laplacian is taken over two transverse dimensions ∇2 =
∂2
x + ∂2

y . For the crossed interaction, we only introduce cubic
terms weighed by a constant γ . Being the most suitable
situation to formulate thought experiments regarding drag
forces, we will restrict ourselves to analyzing γ > 0, namely,
inter-modal repulsion resulting in a fluid with immiscible
phases. Even if the specific choice of the form of the crossed
terms in Eq. (1) is somewhat arbitrary, it is sufficient to explore
the general behavior of bimodal cubic-quintic systems of this
sort.

A bimodal cubic-quintic model similar to (1) was first
introduced in Ref. [21] to discuss the interaction between
solitons of both species. Variations of this model were later
used for the study of vector solitons [22], their dynamics [23],
and modulational instability [24,25]. It is worth pointing out
that these works mostly deal with intermodal attraction γ < 0.
An exception is Ref. [25], which deals with BECs where
interspecies forces can be tuned using Feshbach resonances
and can be either attractive or repulsive.

In Eqs. (1), the norm
∫ |ψn|2 dx dy for each species is

conserved separately upon evolution in z. Moreover, it is
straightforward to check that total momentum is preserved:

�p = 1

2i

∫ ∑
n=1,2

(ψ∗
n
�∇ψn − ψn

�∇ψ∗
n )dx dy, (2)

but the �pn associated to each species are not separately
conserved, i.e., momentum can be transferred between species,
leading to intermodal macroscopic forces. In the following, we
will consider the dynamics of a droplet of ψ1 surrounded by
a large background of ψ2, with

∫ |ψ2|2 dS � ∫ |ψ1|2 dS. We
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thus study the effects of the drag force exerted by the ψ2 fluid
on an ψ1 probe “object.”

In Sec. II we discuss the static solutions. In Sec. III
we find form-preserving traveling solutions which can be
interpreted as dragless motion of an object within an inviscid
fluid and are therefore related to D’Alembert’s paradox. These
configurations exist below some limiting velocity. We also
discuss how this kind of solutions can be approached in
processes with dynamical evolution. In Sec. IV we devise
a kind of thought falling ball viscometer experiment and
introduce an approximate analogy between this intricate
nonlinear setup and a simple mechanical system. In Sec. V we
consider a case in which both species are initially separated and
show the similarity of simulated processes with the entrance of
a rigid object in a liquid. Finally, we present our conclusions
in Sec. VI.

II. STATIC SOLUTIONS

We start by looking for radially symmetric, stationary
solutions with a circle of ψ1 surrounded by an infinite critical
background of ψ2, with

∫ |ψ2|2 dS = ∞, namely,

ψ1 = ei β1 zf1(r) , ψ2 = ei βcr zf2(r), (3)

where f1(r), f2(r) are real functions and βcr = 3
16 [8]. The

system (1) is reduced to

∂2
r f1 + r−1∂rf1 = β1f1 − (

f 2
1 − f 4

1 − γf 2
2

)
f1,

(4)
∂2
r f2 + r−1∂rf2 = βcrf2 − (

f 2
2 − f 4

2 − γf 2
1

)
f2.

Boundary conditions at infinity are

lim
r→∞ f1(r) = 0 , lim

r→∞ f2(r) = ψcr =
√

3/2. (5)

The profile of the functions at r → ∞ consistent with (5) can
be found by computing the leading terms in (4). We find that
f1(r) ∼ r−1/2 exp(−√

β1 + 3γ /4 r). Therefore, solutions can
only exist for − 3

4γ < β1. The function f2 behaves as
√

3/2 −
f2(r) ∼ r−1/2 exp(−√

3r/2) if β1 > 3
16 (1 − 4γ ) and as√

3/2 − f2(r) ∼ exp(−2
√

β1 + 3γ /4 r) for β1 � 3
16 (1 − 4γ ).

At r = 0, solutions must be regular f ′
1(0) = f ′

2(0) = 0. By
performing a Taylor expansion, we find that near the origin the
functions can be written in terms of two constants:

f1(r) = a0 + a0

4

(
β1 − a2

0 + a4
0 + γ b2

0

)
r2 + O(r4),

f2(r) = b0 + b0

4

(
3

16
− b2

0 + b4
0 + γ a2

0

)
r2 + O(r4).

For a given γ , numerical solutions of (4) and (5) can
be found by rewriting the equations in a finite differences
scheme and solving the resulting nonlinear algebraic system by
standard methods. The asymptotic expansions presented above
give some evidence on the existence of the full solutions and
are useful to cross-check that the numerical approximations
match the analytical computations in both limits r → 0 and
r → ∞. Figure 1 shows three examples of f1(r), f2(r) pairs
computed numerically.

For a given γ , we find a one-parameter family of nodeless
monotonic solutions [f ′

1(r) < 0 and f ′
2(r) > 0 ∀r > 0]. Thus,

for fixed β1 and γ there exists a single solution of the equations.

1=− 0.5

β1=0.125 β1=0.16
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FIG. 1. (Color online) Solutions of (4) and (5) with γ = 1 for
β1 = −0.5, β1 = 0.125, and β1 = 0.16. For larger β1, the value r∗
at which f1(r) decays and f2(r) rises increases, and, therefore, the
normalization

∫ |ψ1|2dS also grows. Dashed lines correspond to f1(r)
and solid lines to f2(r).

In Fig. 2 we depict the values f1(0) = a0, f2(0) = b0 for the
families of solutions with γ = 1 and γ = 2.

The parameter β1 can take values in the interval − 3
4γ <

β1 < 3
16 . When β1 → − 3

4γ , we have a0 → 0 and b0 → √
3/2,

yielding a solution where, simply, f1(r) = 0 and f2(r) =√
3/2 for all r , meaning that there is only the ψ2 liquid. In

the opposite limit β1 → 3
16 , we find a0 → √

3/2 and b0 → 0.
Near r = 0 one has the ψ1 liquid, and for large r one finds the
ψ2 liquid. Thus, the solution is a kink-antikink interpolating
between the two immiscible “liquids.” Naming r∗ the radius of
the region where f1(r) dominates, we have r∗ → ∞ (the norm
of ψ1 diverges) in the strict limit β1 → 3

16 , with f1(r) ≈ ψcr

for r  r∗ and f1(r) ≈ 0 for r � r∗ and vice versa for f2(r).
In the following sections, we will take γ = 1. The qualita-

tive results hold for more general values of γ > 0.

a0 1
a0 2

b0 1b0 2

1.5 1.0 0.5 β1
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0.6
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FIG. 2. (Color online) Values of f1(0) = a0 (dashed lines) and
f2(0) = b0 (solid lines) computed from the numerical solutions for
the families computed taking γ = 1 and γ = 2. The horizontal dotted
line marks ψcr = √

3/2.
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III. D’ALEMBERT’S PARADOX

The so-called D’Alembert’s paradox (1752) is the con-
tradiction with observation of the mathematical solutions of
the hydrodynamic equations in which an object can move
within a fluid experiencing no drag. Experimentally this can
only happen in superfluids. Drawing an analogy with the
case at hand is useful to establish the liquid-like properties
of the CQNLSE, although one should keep in mind that the
equivalence is limited.

We now show that there exist solutions of Eqs. (1) in which
the main bulk of the first species moves with constant velocity
U within the fluid of the second species, i.e., there are situations
in which the drag force is exactly zero. They correspond to
steady flows in the moving reference frame. A similar behavior
involving a different NLSE model was first found in Ref. [16].
Notice that we abuse of language using the word “velocity” to
refer to derivatives with respect to z, which in the nonlinear
optics framework correspond to propagation distance rather
than time. In that case, the variations in z are a consequence of
having nontrivial components of the wave vector apart from
kz and this velocity is, physically, the propagation angle with
respect to the z axis. We introduce an ansatz of the form

ψ1 = ei βU zφ1(x,y − U z),
(6)

ψ2 = ei βcr zφ2(x,y − U z).

This system of equations can be treated along the lines of
Ref. [26]: consider η = y − U z and write the system as a
PDE in x, η. One finds the following:

iU∂ηφ1 = ∇2φ1 + (|φ1|2 − |φ1|4 − γ |φ2|2 − βU )φ1,
(7)

iU∂ηφ2 = ∇2φ2 + (|φ2|2 − |φ2|4 − γ |φ1|2 − βcr)φ2,

where ∇2 should now be understood as ∂2
x + ∂2

η . Bound-
ary conditions at infinity (x2 + η2 → ∞) are φ1 → 0,
φ2 → √

3/2. We split real and imaginary parts as

φ1 = φ1R + i φ1I , φ2 = φ2R + i φ2I . (8)

The system (7) is invariant under x → −x and under η → −η

together with φ1I → −φ1I , φ2I → −φ2I . Thus, it is enough
to compute the functions for x > 0, η > 0 and solutions must
be consistent with the following set of Neumann and Dirichlet
boundary conditions at x = 0 and η = 0:

0 = ∂xφ1R|x=0 = ∂xφ2R|x=0 = ∂xφ1I |x=0 = ∂xφ2I |x=0,

0 = ∂ηφ1R|η=0 = ∂ηφ2R|η=0, (9)

0 = φ1I |η=0 = φ2I |η=0.

We have found numerical solutions of the problem (7), (9)
by using a finite difference method: we discretize the x − η

plane in a lattice of Nx × Nη points and write the resulting
(approximately) 4NxNη algebraic nonlinear equations for the
same number of real variables. Given a judicious initial ansatz,
solutions can be found by a standard Newton-Raphson method.
For fixed γ , there is a two-parameter family of solutions,
depending on U and βU . Since the solutions with U = 0
have been computed in Sec. II, they are a good starting point
to search for different solutions of the family. In particular,
we are interested in solutions with different U but constant
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FIG. 3. (Color online) Contour plots of |φ1|2 + |φ2|2 for four
solutions of Eqs. (7) with

∫ |φ1|2 dx dη ≈ 355. This normalization
corresponds to β1 = 0.15 in the formalism of Sec. II. The four images
correspond to U = 0, U = −0.1, U = −0.15, and U = −0.17,
respectively. There is a central lump corresponding to the first species,
surrounded by a region where |φ1|2 + |φ2|2 drastically diminishes and
immersed in the bulk of the second species, such that, far from the
center |φ1|2 + |φ2|2 → |φ2|2 → 3/4.

∫ |φ1|2 dx dη. The relation of βU with the norm is nontrivial,
but, for fixed U , we can vary βU and compute different
solutions until we get the one with the desired normalization.
For fixed normalization, there is a maximal value of |U | for
which the solution exists.

A few examples of numerical approximations, computed in
a 120 × 240 lattice, are depicted in Fig. 3. We depict contour
maps of the quantity |φ1|2 + |φ2|2. It should be understood that
the inner region mostly corresponds to |φ1|2 and the outer one
to |φ2|2. The region where |φ1|2 + |φ2|2 drastically decreases is
the interface. The plots show how the |φn|2 distributions of the
traveling solutions get deformed as the velocity is increased.

It is also interesting to understand what happens if the
initial conditions do not correspond exactly to these stationary
solutions. With that aim, we have performed simulations in
which the static solutions of Sec. II are given a boost; i.e., ψ1 is
multiplied by e−i u0 y/2 where u0 is (minus) the initial velocity
and then used as initial conditions in (1). The evolution is
computed by a standard split-step pseudospectral method, the
so-called beam propagation method. In order to avoid spurious
effects related to boundary conditions, we have taken a finite
droplet for the second species. Simulations [28] show that,
initially, the boosted soliton loses momentum to the medium
but eventually tends to a constant velocity, approaching the
above described behavior related to D’Alembert’s paradox.

In order to describe this effect quantitatively, let us define
the central position of the ψ1 droplet as

〈y1〉(z) =
∫ ∫

y|ψ1(z)|2 dx dy∫ ∫ |ψ1(z)|2 dx dy
(10)
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FIG. 4. (Color online) Examples of the evolution with z of the
velocity of the first species main bulk immersed in the dragging
fluid. The horizontal lines mark the asymptotic velocity inferred from
the simulations. Larger values of u0 yield larger asymptotic values
of u(z).

and its velocity as u(z) = − d〈y1〉(z)
dz

. Figure 4 shows how u

evolves upon propagation for different examples.

IV. TERMINAL VELOCITY AND DRAG FORCE

We now devise a thought experiment which can be
considered an NLSE version of the evolution of a body moving
within a fluid subject to an external force. Let us modify (1)
to include an extra term accounting for a potential acting on
ψ1 along the y direction, which in the case of optics would
correspond to a linear variation of the linear refractive index:

−i∂zψ1 = ∇2ψ1 + (|ψ1|2 − |ψ1|4 − γ |ψ2|2)ψ1 − g y ψ1,

−i∂zψ2 = ∇2ψ2 + (|ψ2|2 − |ψ2|4 − γ |ψ1|2)ψ2. (11)

We will consider an initially static solution as discussed in
Sec. II, for which g is eventually turned on, namely, g = 0
for z < 0 and is shifted to a constant for z > 0. We compute
this evolution by numerically integrating (4) by the split-step
pseudospectral beam propagation method. The ψ1 distribution
starts drifting driven by g, but the drag force of the fluid
eventually stops the acceleration and the motion tends to a
terminal velocity uT (g).

The qualitative behavior is different for small and large g.
For large g, a void is generated in the wake of the moving
object. For smaller g, vortex-antivortex pairs get detached
from this void, contributing to the drag force. This behavior is
parallel to the one described in Ref. [7] for the case in which
a superfluid modeled by a cubic-quintic equation flows past a
rigid obstacle. It is worth mentioning that the confluence of
the liquid which isolates the vortex and antivortex from the
void generated by the moving object qualitatively resembles
a splash singularity [27], even if the mathematical details are
rather different.

Notice that, as also happened in the setup of Sec. III,
the initially round ψ1 distribution gets somewhat deformed.
As it could be expected, the deformation is greater when
larger velocities are reached. Moreover, for large velocities,
the surface tension forces of the surrounding liquid fail to
rapidly occupy the void left at the object’s trail and a bubble is
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FIG. 5. (Color online) Evolution with g = 8 × 10−4. The initial
configuration is the static solution with β1 = 0.15. The four first
images correspond to z = 0, 800, 1900, and 2000, respectively, and
their color convention is as in Fig. 3. A little droplet of the first
species moves within a large but finite drop of the second one (|ψ1|2 +
|ψ2|2 → 0 as r → ∞). The terminal velocity is moderate, and the
moving object leaves a trail of vortex-antivortex pairs (shown in the
figure as regions with small |ψ1|2 + |ψ2|2), whose nucleation and
detachment contribute to the drag force. The plot below explicitly
shows the phase singularities of the vortex and antivortex, which
appear as forklike structures in the interference pattern of the wave
function with a plane wave. Concretely, the image corresponds to
|ψ2(z = 2000) + 7 exp(1000 i x)|2.

generated. Figures 5 and 6 show representative examples see
also Ref. [28].

In this setup, it is possible to compute numerically the
terminal velocity for different values of g and different initial
functions ψ1, corresponding to different values of β1 as defined
in Sec. II. We restrict ourselves to values of β1 not far from
βcr in order to have distributions of ψ1 for which the analogy
to a body within a fluid is applicable to some extent. We plot
some results in Fig. 7.

As g → 0 the value of uT tends to a positive constant, as
it could be expected from the D’Alembert’s paradox behavior.
This result is reminiscent of Ref. [16], even if the setup is rather
different. For large values of g, the drag becomes quadratic in
velocity. When β1 is very near βcr, the quadratic drag regime
already starts at small velocities. Presumably, the reason is
that the lump becomes more malleable in this regime yielding
a modification of the qualitative behavior.
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FIG. 6. (Color online) Evolution with g = 2 × 10−3. The four
images correspond to z = 100, 300, 600, and 900, respectively. Colors
are as in Fig. 3. The terminal velocity is larger than in the previous
case, and the advance of the main bulk of the first species leaves a
bubble at its wake.

For certain ranges of g and different values of β1, the
results can be approximated by straight lines (notice, however,
that for small g, uT can decrease with increasing g). This
linear growth suggests the possibility of considering a simple
modeling of the situation in which the drag force is just
considered linear in velocity. A body subject to a constant
force and a quadratic drag force satisfies d〈y1〉

dz
= −g + k u,

which gives 〈y1〉 = − g

k2 (k z + e−k z − 1). We have compared
the numerically computed trajectories 〈y1(z)〉 to fits of the
form

〈y1(z)〉 = −a(b z + e−b z − 1), (12)

where a and b are taken as free parameters. It turns out that the
simple mechanical model is rather precise for the setup of the
present section in a large range of parameters. This cannot be an
exact characterization of the system for several reasons: first,
we have seen in Sec. III that there are dragless flows and (12)
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FIG. 7. (Color online) Some examples of g(uT ).
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FIG. 8. (Color online) Examples of comparison of 〈y1(z)〉 com-
puted numerically (dots) with fits to the simple model (12) (solid
lines). In all cases the initial conditions use the β1 = 0.15 solution
of Sec. II. As it could be expected, for greater values of g, the
displacement 〈y1(z)〉 is larger.

fails to describe them. Indeed, a more complicated dependence
of the drag force on u was found in Fig. 7, which could
be introduced in the mechanical model at the cost of losing
simplicity. Moreover, since the “object” itself gets deformed
while propagating, its interaction with the environment should
depend on its form too. This explains, for instance, the mild
oscillations of the simulated motion in Fig. 8 around the solid
lines. As the β1 of the initial distribution deviates away from
βcr, the precision of the simple modeling (12) declines.
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FIG. 9. (Color online) A soliton entering the bulk of a fluid, as
described by a bimodal system of cubic-quintic nonlinear Schrödinger
equations. The different images correspond to z = 10,50,500,700 in
the simulation. Colors are as in Fig. 3. In the last image, six bubbles
[blue (dark gray) spots] inside the liquid and separated from the
wake of the object can be observed. The four at the object’s trail
correspond to two vortex-antivortex pairs. The two small ones by
the vertical edges of the figure are rarefaction pulses, namely, dark
traveling waves without vorticity.
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V. INITIALLY SEPARATED SPECIES

Up to now we have considered situations in which species
1 is initially within the fluid. In this section we illustrate the
case in which both species are separated at the outset, while
afterwards the soliton of species 1 enters the bulk of species 2.
Concretely, we consider Eqs. (1) with a linear potential term
−g y ψn for both species. For species 2, we also include a
potential barrier at the bottom. Periodic boundary conditions
are considered in the x direction. The evolution is depicted in
Fig. 9; see also Ref. [28].

We observe that the collision produces surface and body
waves. Due to the analogy to a system with surface tension
of the cubic-quintic equations, the behavior at the surface
resembles that of a liquid hit by an object. Once the soliton
enters the liquid, it starts experiencing a drag force as described
in the previous sections. The simulation shows the eventual
nucleation of vortex-antivortex pairs related to this friction
process; see the last image in Fig. 9. Moreover, since the liquid
is somewhat stirred, dark solitary traveling waves (namely,
rarefaction pulses [9,26]) can be excited. Two of them moving
horizontally in opposite directions can be seen in the plots.

VI. CONCLUSIONS

We have analyzed a coupled system of cubic-quintic
nonlinear Schrödinger equations in order to understand drag
forces in physical systems that can be modeled as fluids within
this formalism, such as the so-called liquid light or certain
Bose-Einstein condensates. The two equations correspond to
having two modes, such as transverse polarizations for light
or different atomic species. A concentrated distribution of one

of the species immersed in a larger fluid of the other one is
subject to macroscopic forces that influence its dynamics. For
small velocities, there are situations in which a D’Alembert’s
paradox situation exists, namely, the lump moves preserving
its form and velocity. Notice, however, that it would be wrong
to say that it is unaffected by the inviscid fluid, since the
energy distribution of the first species does depend on its
velocity, as shown in Fig. 3. For larger velocities, the drag
forces set in. Roughly, it can be said that they grow linearly
with u in a certain region and then grow quadratically for
larger u. It is possible to establish an approximate mechanical
analogy and consider that the system is just described by a
simple equation for a rigid object subject to a force which only
depends on velocity. This modeling is accurate to some extent
but it is obviously limited since, for instance, it disregards
deformations of both the fluid and the object as described by
the CQNLSEs, which also alter the macroscopic dynamics.
Overall, these results give further evidence of the qualitative
resemblance of physical systems modeled by the CQNLSE to
ideal liquids.
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