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Quasilongitudinal soliton in a two-dimensional strongly coupled complex dusty plasma in the
presence of an external magnetic field
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The propagation of a nonlinear low-frequency mode in two-dimensional (2D) monolayer hexagonal dusty
plasma crystal in presence of external magnetic field and dust-neutral collision is investigated. The standard
perturbative approach leads to a 2D Korteweg-de Vries (KdV) soliton for the well-known dust-lattice mode.
However, the Coriolis force due to crystal rotation and Lorentz force due to magnetic field on dust particles
introduce a linear forcing term, whereas dust-neutral drag introduce the usual damping term in the 2D KdV
equation. This new nonlinear equation is solved both analytically and numerically to show the competition
between the linear forcing and damping in the formation of quasilongitudinal soliton in a 2D strongly coupled
complex (dusty) plasma. Numerical simulation on the basis of the typical experimental plasma parameters and
the analytical solution reveal that the neutral drag force is responsible for the usual exponential decay of the
soliton, whereas Coriolis and/or Lorentz force is responsible for the algebraic decay as well as the oscillating tail
formation of the soliton. The results are discussed in the context of the plasma crystal experiment.
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I. INTRODUCTION

The Coulomb complex (dusty) plasma is a many-particle-
interacting system consisting of a finite number of charged
dust particles. These charged particles interact with each other
through a screened strong Coulomb potential and confined
by the (electrostatic) external forces [1–3]. In thermody-
namic equilibrium, this complex plasma is characterized
by two physical parameters: Coulomb coupling constant
� = Q2/(4πε0�Td ) (the ratio of the electrostatic potential
energy to the thermal energy between two neighboring dust
particles) and the screening strength κ = �/λD , where ε0

is the permittivity of free space, Q is the dust charge,
� = (3/4πnd )1/3 represents the mean interdust distance, Td

is the dust kinetic temperature (in units of energy), and λD

is the plasma Debye length. These two parameters define
the screened Coulomb coupling parameter �∗ = � exp(−κ) to
characterize the Coulomb complex (dusty) plasma. The system
is called weakly coupled when �∗ � 1, whereas the system
is called strongly coupled when �∗ > 1. The dust particles
are suspended in a highly ordered state and form crystalline
structures when �∗ � �∗

cr (critical value) �1, which is known
as dusty plasma crystal [4–6]. Presently, strongly coupled
complex plasma (SCCP) is also being considered as the
plasma state of soft condensed matter [7]. However, the dusty
plasma crystal supports wave modes such as longitudinal and
transverse dust-lattice wave (DLW) [8–12].

These DLWs are the reminiscent of wave propagation in
atomic chains, which are dominated by nonlinear phenomena,
due to intrinsic nonlinearities of interatomic interactions. In
absence of an external magnetic field, the dynamics of the
linear collective modes and also nonlinear structures such as
Mach cones [13–16], solitons [17–26], and also shock [27–29]
were extensively studied experimentally and theoretically in
two-dimensional (2D) SCCP.
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The presence of external magnetic field plays an important
and interesting role in SCCP. The presence of an external
magnetic field introduces new modes of particle oscillations
in a one-dimensional (1D) particle chain in crystals [30]. Later,
theoretical investigations [31,32] and molecular dynamics
(MD) simulation [31] predict the existence of “upper-hybrid
dust-lattice wave,” “lower-hybrid dust-lattice wave,” and the
coupling of these two modes in the presence of a constant
external magnetic field in a 2D hexagonal dusty plasma crystal
due to the Lorentz force acting on the dust particles. In the
presence of a weak magnetic field, the electrons are magne-
tized, while ions are not magnetized. In the range of strong
magnetic field, both electrons and ions are magnetized while
the dust particles are still not magnetized. To magnetize the
dust particles, an ultrastrong magnetic field is needed because
of its extremely low charge-to-mass ratio. Recent experimental
observation [33] reveals that for strong magnetic field (in the
experiment B > 2 T), the plasma system becomes unstable
and forms complex patterns due to filamentation of plasma
particles. Thus, magnetizing the dust cloud without destroying
the background plasma homogeneity for the observation of the
propagating waves is extremely challenging [34]. Recently,
an alternative approach was proposed [35,36] to magnetize
the dust particles (by putting them into a rotating neutral gas
column) in a SCCP. On the basis of the well-known Larmor
theorem, it is suggested [35,36] that the rotation-induced Cori-
olis force acts exactly as the Lorentz force in a magnetic field.

It is observed in various experiments [37–44] that the dusty
plasma crystal undergoes a complicated rotational dynamic
in the presence of an external field. Generally, it is believed
that Lorentz force induced E × B (where E is the radial
electric field and B is the axial magnetic field) ion drift flow
is the driving force for the observed dusty plasma crystal
rotation and also responsible for the self-rotation of the dust
particles. Even, in the absence of external magnetic field, the
dust-charging process (the ion flux around the dust-particle
surface) is found to be responsible for the spinning motion of
the asymmetric dust particle [45,46]. The presence of external
magnetic field causes the spinning dust particles to precess
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around the magnetic field direction and significantly modifies
the dust particles charging properties [45].

Thus, in presence of external magnetic field, the dust
particles experience the Lorentz force and Coriolis force (due
to the rotation of dusty plasma crystal). Dust particles also
suffers neutral drag force due to the dust-neutral collision
in SCCP. In the present work, we want to investigate the
effects of these forces on dust particles on the formation of
quasilongitudinal localized structures (solitons) of the weakly
nonlinear DLW in a 2D SCCP (�∗ � �∗

cr). The well-known
reductive perturbation technique (RPT) is used to study the
nonlinear dynamics of low-frequency quasilongitudinal DLW.
It is found that in presence of Coriolis force and/or Lorentz
force on the dust particles and dust-neutral drag force, the
dynamics of the nonlinear wave is governed by a new nonlinear
equation, which is the combination of the 2D Korteweg-de
Vries (KdV) equation, linear forcing, and damping terms. This
novel equation is solved analytically and numerically.

The manuscript is organized in the following manner. The
effects of external magnetic field on the dust-particle-charging
characteristics are discussed in Sec. II. This section also
contains the physical assumptions of the problem and the
derivation of the nonlinear evolution equation that governs
the dynamics of the weakly nonlinear quasilongitudinal DLW.
The analytical solution of the nonlinear equation is derived
in Sec. III. The numerical simulation of the derived nonlinear
equation with the graphical representations are discussed in
Sec. IV. Finally, a brief summary of the results and its possible
applications are discussed in Sec. V.

II. THEORETICAL MODEL AND QUASILONGITUDINAL
NONLINEAR DUST LATTICE WAVE

The strongly coupled complex (dusty) plasma consists
of electrons, ions, and the dust particles. The mass of the
dust particle is md , and the particle gains large negative
charge Q. Both Q and md are assumed to be constant. The
repulsive interdust potential is shielded by the electron-ion
plasma, characterized by the constant Debye length λD .
We consider a monolayer 2D hexagonal lattice as shown
Fig. 1. In equilibrium, the particle coordinate is [xs =

Z

θ
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FIG. 1. Elementary single-layer hexagonal 2D crystal centered at
(n,m) with lattice spacing �. The quasilongitudinal wave propagation
vector makes an angle θ with the x axis.

�(n + m/2),ys = m
√

3�/2], where � is the lattice spacing
(interdust distance) and s = (n,m) denotes a pair of integers
such that s = {(0,±1),(±1,0),(1,−1),(−1,1)}. The external
static magnetic field �B(=B0ẑ) of field strength B0 is in the
direction perpendicular to the particle layer.

A. Effects of external magnetic field on
dust-charging characteristics

Dust particles immersed in plasmas acquire charges by col-
lecting the surrounding ions and electrons. The dust charging
can be described by the often used orbit-motion-limited (OML)
theory [47,48]. However, the presence of an external magnetic
field changes the plasma currents on the dust surface and the
magnitude of the dust charge [37,39,45,46,49,50]. To discuss
the effects of magnetic field on the equilibrium dust-charging
process, we define dimensionless parameter

βBe
= a

ρe

= a

ρi

√
σmi

me

= μ βBi
,

where μ = (σmi/me)1/2, σ = Ti/Te, Te(i) is the electron (ion)
temperature, me(i) is the electron (ion) mass, ρe(i) is the
electron (ion) gyroradius, and a is the dust-grain radius.
Note that besides the magnetic field, the parameter μ (i.e.,
temperature and mass ratios) also plays an important role in the
dust-charging process. The gyrofrequency of a particle of mass
me(i) and charge (magnitude) e, is given by ωce(i) = eB0/me(i),
while the gyroradius is given by ρe(i) = v⊥/ωce(i), where
v⊥ is the perpendicular velocity component of a charged
particle gyrating in a magnetic field. Thus, ρe(i) is inversely
proportional to the magnetic flux density.

In the presence of weak magnetic field when βBe
< 1, the

charging characteristics are not significantly influenced by
the existence of external magnetic field, since the curvature
effect of the trajectory of an electron (ion) impinging on a
dust particle are negligible and in this case the actual charge
Q(= −Ze, where Z is the number of electrons that reside on
the dust particles) of the dust particle is determined by the
following relation for σ � 1 [45],

exp(−z) = z/μ,

where z = Ze2/4πε0aTe is a dimensionless dusty plasma
parameter (the ratio of the electrostatic energy of a dust particle
of radius a to the electron thermal energy Te).

As soon as the magnetic field becomes larger than the
critical field determined by βBe

� 1(βBi
> 1), the electron

starts to be magnetized and the electron gyroradius ρe becomes
small, causing the restriction of electron motion to decrease
the probability of electron deposition on the dust particles.
Only high-energy magnetized electrons would be involved in
the charging process and a fraction of low-energy magnetized
electrons would be reflected backwards along the magnetic
field direction. As a consequence, the charging cross-section
for electrons would be smaller than that in the absence of the
magnetic field. The ions will attach to the dust particles with
the same rate (as in absence of magnetic field) as the ions are
not magnetized and their effective charging cross-section will
be much larger than the geometrical cross-section πa2. The
net result is the reduction of dust charge and the effective dust

033108-2



QUASILONGITUDINAL SOLITON IN A TWO- . . . PHYSICAL REVIEW E 90, 033108 (2014)

charge Qeff(= −Zeffe) is determined by the relation [45]

exp(−zeff) = 4zeff/μ,

where zeff = Zeffe
2/4πε0aTe and Zeff is the effective charge

number (which is smaller than the actual dust-particle charge
number Z). In this case the Lorentz force induced E × B
electron drift effect in the vicinity of dust particles is negligible.

However, in presence of a sufficiently strong magnetic
field (βBi

� 1), the ion starts to be magnetized. Note that
this condition can be achieved in experiments for large dust
particles and light ions. Actually, for such strong magnetic
field, both the ions and electrons in the charging process are
magnetized. In this case, the Lorentz force-induced E × B ion
drift flow plays an important role and due to this ion flow, the
ion shielding close to the dust grain is weak, which results
in the increase of the charge number on the dust particles
[45,50]. The possible explanation could be the ion acceleration
in presence of ion flow. According to the OML theory, this
leads to the smaller ion charging cross-section (than that in the
absence of a magnetic field) and thus to the smaller ion current
to the dust particles, resulting in a more negative charge. The
effective dust charge Qeff is determined by the relation [45]

exp(−zeff) = σ/μ.

The numerical solution [45] shows that in this case for μ =
100, Zeff is larger (up to 12 times) than the actual dust-particle
charge number Z.

B. Physical assumptions

To formulate the problem, we make the following physical
assumptions:

(i) In the presence of strong external magnetic field, the
ion flow dynamics is affected and subsequently the dielectric
response function [51–53] of the plasma medium. In the pres-
ence of a low-frequency (ω � k⊥VT e, k⊥ is the longitudinal
wave number, the wave number perpendicular to the direction
of magnetic field, and VT e is the electron thermal velocity),
long wavelength (k⊥ρe � 1), and longitudinal oscillation the
electron polarization effect is insignificant and the electrons
rapidly thermalize along the Z axis to establish a Boltzmann
response. Actually, the effect of the magnetic field enters
through the modification of the ion susceptibility, which
affects the Debye-Hückel (DH) interaction potential (Yukawa
potential) and the oscillatory wake-field potential around
charged dust grains. Therefore, we consider the modified DH
interaction potential [52] between dust particles. In the limit
of low-frequency (ω � ωci) oscillations, the corresponding
interdust force between sth and śth particle becomes

�Fś,s = −∇r̄s

[
Q̄2

eff

4πε0r̄ś,s

exp

(
− r̄ś,s

λD

)]
, (1)

where Q̄eff = Qeff/f
3/4, r̄ś,s = rś,s/

√
f , rś,s =

|�rś,s | = |�rś − �rs |, f = (ωpi/ωci)2, ωpi = (ni0e
2

/ε0mi)1/2 is the ion plasma frequency, and ωci(= eB0/mi) is
the ion cyclotron frequency.

(ii) The spinning motion of the asymmetric paramagnetic
dust particles resulting in the formation of the magnetic dipole
moment [43,45,54,55]. These charged and magnetized dust
particles interact with each other due to induced magnetic
dipoles via a dipole magnetic force [45,54,55]. However, for
small dust particles (a � 100 μm) the interaction due to mag-
netic force is always weaker than the Coulomb interactions in
existing experimental conditions [45] in the crystal formation.
Therefore, as a first approximation, we neglect the dust-dust
interactions due to magnetic force.

(iii) As mentioned before that the SCCP is characterized by
the two parameters: � (Coupling parameter) and κ (screening
parameter). Presence of external magnetic field modify the
DH potential around a stationary dust particle and also the
screening parameter. Thus, we define the modified coupling
parameter (�̄) and screening parameter (κ̄) by

�̄ = �

f
= Q2

eff

4πε0�f Td

and κ̄ = κ√
f

= �√
f λD

.

This shows that an increase in the external magnetic field
results in the increase of the modified coupling parameter and
the screening parameter. The screened coupling parameter then
becomes �̄∗ = �̄ exp(−κ̄). Due to the exponential dependence
of (−κ̄), the strength of the screened coupling parameter
reduces with an increase in external magnetic field and
therefore higher value of � is required for the crystaline state.
The Mach cone experiments [13,15,16] (in absence of
magnetic field) in 2D monolayer hexagonal dusty plasma
crystals reveal that the nearest-neighbor approximation for
the interaction is justified for large values of the screening
parameter (lattice parameter) κ (in Refs. [13,15], κ � 1.5).
Therefore, as in the unmagnetized case, we consider κ̄ = 1.5
so that dust particles in the monolayer 2D hexagonal crystal
(Fig. 1) interact with their six nearest neighbors.

(iv) In the presence of an external magnetic field, the dust
particle experiences the Lorentz force FL = mdωcd (v × ẑ),
where v is the dust-fluid velocity vector, ωcd (= QeffB0/md )
is the dust-cyclotron frequency. Dust particles also rotate due
to dusty plasma crystal rotation and experience Coriolis force
FC = 2mdω(v × ẑ), where ω is the rotating frequency. The
ratio of these two forces becomes∣∣∣∣FL

FC

∣∣∣∣ = 1

2

ωcd

ω
= 1

2

(
Qeff

md

)
B0

ω
.

This yields that

| FL |>| FC | if B0 >
2mdω

Qeff
.

In the experiments in Refs. [37,39,43,45], the observed
frequency of rotation ω ∼ (10 − 30) Hz for a = 5 μm. This
value estimates that Lorentz force dominates over Coriolis
force only if B0 > 103 T (because of the small value of the
charge-to-mass ratio of dust particles), which is far beyond
the present experimental capabilities (implying the dominance
of Coriolis force over Lorentz force). Thus, the total force
becomes

F = 
r (v × ẑ) , where 
r = (2ω + ωcd ) 
 2ω.
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To include the influence of rotation on quasilongitudinal
nonlinear DLW, we assume that 
r is low compare to the
dust-lattice oscillation frequency ωL ∼ O(102 − 103) s−1.

(v) The dust particles collide with the neutral (gas) with
frequency νdn, and therefore they are subject to a weak neutral
drag force. In typical plasma crystal experiment [13,19],
νdn = (2.4 − 10) s−1. Therefore, to include this effect in the
nonlinear oscillations, we assume that νdn is low compare to
ωL.

(vi) Finally, an external force Fext is often introduced for
the initial laser excitation and/or the parabolic confinement
to ensure the horizontal lattice equilibrium in experiments
[13,21,27]. However, this force Fext has no direct consequence
in the formation of soliton in strongly coupled complex plasma
[19,20]. Also in the rotating frame, the centrifugal component
of the inertial force only softens the horizontal confinement
[35]. Therefore, for simplicity, we neglect these forces in the
equation of motion.

Next on the basis of these physical assumptions, we
consider the equation of motion and the nonlinear dynamics
of the quasilongitudinal DLW.

C. Dynamics of quasilongitudinal nonlinear dust-lattice wave

To write the equation of motion due to the action of
weak external force, we assume that �rś,s = �rś,s(0) + �D(ś,s),
where �rś,s(0) is the relative equilibrium position and �D(ś,s) =
dl(ś,s)x̂ + dt (ś,s)ŷ is the relative displacement vector of the
sth lattice due to the external force, dl(ś,s)[= dl(ś) − dl(s)]
and dt (ś,s)[= dt (ś) − dt (s)] are, respectively, the x̂-direction
(longitudinal) and ŷ-direction (transverse) displacement com-
ponents. Thus, the equations of motion of the sth particle in
the x̂ direction and ŷ direction are as follows:

∂2dl

∂t2
=

(∑
s �=ś Fs,ś

)
x

md

+ 
r

∂dt

∂t
− νdn

∂dl

∂t
,

(2)
∂2dt

∂t2
=

(∑
s �=ś Fs,ś

)
y

md

− 
r

∂dl

∂t
− νdn

∂dt

∂t
,

where dl ≡ dl(ś,s), dt ≡ dt (ś,s), and s,ś ∈
{(0,±1),(±1,0),(1,−1),(−1,1)}. In the right-hand side
of both Eqs. (2), the first term is the X and Y components of
the Yukawa force, the second term arises due to the rotation
(Coriolis force and/or Lorentz force), and the third term is the
neutral drag force.

To study the nonlinear dynamics of the low-frequency small
amplitude quasilongitudinal DLW, we adopt the RPT and
introduce the following stretched coordinates:

ξ = ε�−1(x − �t), η = ε2�−1y and τ = ε3ωLt, (3)

where ε is a small parameter that measures the strength of the
nonlinearity and � is the wave velocity. For a quasilongitudinal
wave, the transverse displacement (dt ) has a higher-order
smallness than that of the longitudinal displacement (dl) and,
therefore, we expand the dependent variables (dl,dt ) in a power
series of ε in the following way:

dl = εd
(1)
l + ε2d

(2)
l + · · · ; dt = ε2d

(1)
t + ε3d

(2)
t + · · · (4)

Also, for the low (compare to ωL) gyration rate and collisional
rate, we consider the following scaling, which are consistent

with the perturbation Eqs. (3) and (4):


r

ωL

= 
ε2 and
νdn

ωL

= νnε
3, (5)

where both 
 ∼ O(1), νn ∼ O(1), i.e., of the order of unity.
Note that if 
r/ωL and νdn/ωL are not so small, one can
still use the same substitution but now both 
 and νn should
be large. This does not present any hurdle to the subsequent
theoretical analysis [56].

Next, we assume that the typical scale length of the wave
form (characteristic scale length L) is much larger than the
lattice spacing �, so that s = (n,m) can be considered as a
quasicontinuous variable (coordinate). Applying the nearest-
neighbor approximation, we expand D(ś,s) in Taylor’s series
and retain the terms O(�/L)4 [20,22]. Then, substituting
Eqs. (3)–(5) in Eq. (2), we obtain the following relations in the
lowest order of ε:

� = 3

2
√

2
CDL;

∂2d
(1)
t

∂ξ 2
= ∂2d

(1)
l

∂ξ∂η
+

√
2


∂d
(1)
l

∂ξ
. (6)

Finally, the usual perturbation analysis yields [keeping the
terms O(ε5)] the following 2D KdV equation with a linear
forcing term due to the rotation of dust particles and a linear
damping under the action of mainly Coriolis and neutral drag
forces, respectively,

∂

∂ξ

[
∂u

∂τ
− αu

∂u

∂ξ
+ β

∂3u

∂ξ 3
+ νu

]
+ γ

∂2u

∂η2
= 
2u√

2
, (7)

where u = �−1∂ξd
(1)
l and

α = 3

16
√

2

[
2κ̄3 + 5κ̄2 + 10κ̄ + 10

κ̄2 + 2κ̄ + 2

]
, (8)

and

β = 11

192
√

2
, ν =

√
2νn

3
, and γ = 3

4
√

2
. (9)

In Eq. (7), the term ∝
2 arises due to the presence of external
magnetic field (which is responsible for Coriolis and Lorentz
forces on dust particles), whereas, the term ∝γ arises due to the
anisotropy (2D geometry). In the absence of rotation (
 = 0),
we recover the 2D KdV equation with a linear damping term
(damped 2D KdV equation), where the damping arises due to
the neutral drag.

On the other hand, in the absence of collisions (ν = 0),
we recover the rotation modified 2D KdV equation [57] for
quasilongitudinal nonlinear DLW. Then, in the absence of
anisotropic effect (γ does not arise), i.e., in the 1D limit, we
obtain the following equation:

∂

∂ξ

[
∂u

∂τ
− αu

∂u

∂ξ
+ β

∂3u

∂ξ 3

]
= 
2u√

2
.

In the literature, this is known as the Ostrovsky’s equation
[58], which describes the nonlinear internal waves in a rotating
ocean.

033108-4



QUASILONGITUDINAL SOLITON IN A TWO- . . . PHYSICAL REVIEW E 90, 033108 (2014)

However, in the absence of both rotation and collision
(
 = 0,ν = 0), we recover the usual 2D KdV equation (or
Kadomstev-Petviashvili equation) [59]. Then, in the 1D limit,
the nonlinear dynamics of the longitudinal DLW is governed
by the celebrated KdV equation [60]. In the subsequent
sections, we investigate the analytical as well as numerical
solution of the novel Eq. (7).

III. ANALYTICAL SOLUTION: DECAY OF SOLITONS
WITH OSCILLATING TAILS

In this section, we shall investigate analytically the effects
of external magnetic field (Coriolis and/or Lorentz force) and
dust-neutral collision on localized solutions of the nonlinear
dust-lattice waves in 2D crystal. First, we transform Eq. (7)
into the following form:

∂

∂χ

[
∂u

∂τ
− αkξ

2

∂u2

∂χ
+ βk3

ξ

∂3u

∂χ3
+ γ k2

η

kξ

∂u

∂χ
+ νu

]
= 
2u

kξ

√
2
,

(10)

where χ = kξ ξ + kηη, kξ and kη are the wave numbers such
that kη = kξ tan θ , and θ is the angle that the wave makes with
the x axis.

A. Perturbative approach: Decay of solitons

The 2D KdV Eq. (7) or Eq. (10) with 
 = 0 and ν = 0
represents a completely integrable Hamiltonian system that has
an infinite set of conservation laws (as in the case of 1D KdV
equation, having similar universality) [61]. Let us consider the
energy conservation law: Multiplying Eq. (10) (with 
= 0 and
ν = 0) by u(χ,τ ) and then integrating the resulting equation
with respect to χ within the interval (−∞,∞) subject to the
localized boundary conditions u(χ,τ ),∂χu(χ,τ ) and ∂2

χu(χ,τ )
(∂χ partial derivative with respect to χ ) all → 0 as |χ | → ∞,
the following energy equation is obtained:

∂E
∂τ

= 0, E = 1

2

∫ ∞

−∞
u2(χ,τ )dχ, (11)

where E is the soliton energy. This shows that, in the absence
of rotation (
 = 0) and collision (ν = 0), the soliton energy
E is conserved and thus possesses the planar single soliton
solution,

u (ξ,η,τ ) = −N sech 2
√

N φ, (12)

where φ = χ − Nωτ , N is the maximum amplitude of the
soliton, ω is the frequency, U = Nω is the soliton velocity,
and the width of the soliton is proportional to (1/

√
N ). The

parameters N and ω are related by the relation

Uf = U − γ
k2
η

kξ

= 4Nβk3
ξ , (13)

with k2
ξ = α/4β. The solution Eq. (12) clearly shows that,

for the existence of soliton (localized) solution, N > 0 as
both α > 0 and β > 0. Thus, the relation Eq. (13) gives us
a restriction that for the existence of localized solution, we
must have Uf > 0.

In the presence of 
 and ν, Eq. (7) [Eq. (10)] does not
possess a completely integrable Hamiltonian. In other words,
energy of the system is not conserved. To obtain the energy
equation, first Eq. (10) is integrated once with respect to χ ,
which gives

∂u

∂τ
− αkξ

2

∂u2

∂χ
+ βk3

ξ

∂3u

∂χ3
+ γ k2

η

kξ

∂u

∂χ
+ νu

= 
2

kξ

√
2

[∫ χ

−∞
udχ −

∫ ∞

−∞
udχ

]
, (14)

where the second term in the right-hand side appears as the
integration constant, which is determined from the boundary
conditions u,du/dχ → 0 as χ → ±∞. Then we apply the
energy conservation law, which yields

∂E
∂τ

= −2νE + 
2

kξ

√
2

[ ∫ ∞

−∞

(
u

∫ χ

−∞
udχ́

)
dχ

−
(∫ ∞

−∞
udχ

)2 ]
. (15)

This indicates that the gyration modified 2D damped KdV
Eq. (7) [Eq. (9)] is not exactly analytically solvable. However,
in the presence of rotation and collision, we can obtain an
approximate analytical solution by the soliton perturbation
analysis [62,63]. Here, we adopt this perturbation procedure
to find an approximate time evolution solution of Eq. (9)
with 
 � 1 and ν � 1 as the perturbed parameters. To apply
this perturbation, we assume a slow time-dependent form of
the soliton parameter N = N (τ ). In the perturbation analysis
[62,63], the leading order one-soliton solution of Eq. (9) can
be written as

u (χ,τ ) = −N (τ ) sech 2
√

N (τ ) φ(τ ), (16)

where φ(τ ) = χ − U (τ )τ . To explain the effects of distur-
bance (here, rotation and dust-neutral collision) on the initial
soliton (leading order), the judicial choice is the use of
conservation laws [64]. Accordingly [25,62,63], we apply the
energy conservation Eq. (15). Finally, substitution of Eq. (16)
in Eq. (15), yields the following expressions for soliton energy:

E = E(0) exp (−2ντ )

{
1 + 3
2

2
√

2N (0) νkξ

×
[

1 − exp

(
2

3
ντ

)] }3

(17)

and amplitude

N (τ ) = N (0) exp

(
−4

3
ντ

) {
1 + 3
2

2
√

2N (0) νkξ

×
[

1 − exp

(
2

3
ντ

)]}2

, (18)

where E(0) and N (0) are the initial soliton energy and
amplitude.
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Let us define a quantity

D = soliton amplitude × soliton width2,

which determines one of the characteristics of a soliton. The
above perturbation analysis shows that in the presence of
both rotation and dust-neutral collision, D remains constant
as soliton propagates.

In the limit of vanishing magnetic field effect, i.e., rotational
effect (
 → 0), we recover the usual exponential decay of
soliton energy and amplitude due to the dust-neutral collision
(neutral drag force) [19,20]:

E = E(0) exp (−2ντ ) and
(19)

N (τ ) = N (0) exp
(− 4

3ντ
)
.

These solutions clearly show that the dust-neutral collision
effect causes the soliton amplitude, soliton energy, and
consequently soliton velocity to decay exponentially in time.
But, the soliton width increases with time. However, D
→0

remains constant and the solitons are weakly dissipative in
nature as observed in the experiment of Ref. [19].

In the collisionless limit (ν → 0), we obtain the following
expressions for soliton energy,

E = E(0)

[
1 − 
2τ√

2N (0) kξ

]3

, (20)

and amplitude

N (τ ) = N (0)

[
1 − 
2τ√

2N (0) kξ

]2

, (21)

under the influence of Lorentz force only. It should be noted
that for a soliton solution to exist one must have (soliton width
must be real) N > 0 and soliton energy E > 0; therefore,
the above solutions Eqs. (20) and (21) are physically valid
only for τ � τcr. Otherwise, both soliton width and energy
become negative and no soliton solution exists. Actually, both
the soliton amplitude and energy completely vanish at a finite
time:

τcr =
√

2N (0) kξ


2
= 1


2

√
αN (0)

2β
. (22)

However, the value of τcr provides a good estimation of
a characteristic lifetime of a soliton in a strongly coupled
complex (dusty) plasma in presence of weak rotational effect
(weak magnetic field). Thus, the solitonic structures exist for
0 � τ < τcr.

The above solution Eqs. (20) and (21) reveal that the
Coriolis force and or Lorentz force on dust particles causes
the soliton amplitude, soliton energy, and consequently soliton
velocity to decay algebraically with time, whereas, the soliton
width increases with time for τ < τcr. But, Dν→0 remains
constant as before. In terms of the actual parameter, the critical
time is written as

tcr =
√

2


r

(ρsd

W
)

, (23)

where ρsd(∝CDL/
r ) is the dust-acoustic gyroradius and
W{∝[2β/αN (0)]1/2} is the spatial width of the soliton. Thus,

the lifetime of a soliton increases with the decreases of the
strength of the external magnetic field.

Note that the above solution Eqs. (17)–(21) are derived
from the approximated (leading order) soliton solution, but
holds fairly well for dissipative perturbations [62–64]. The
higher-order terms in the perturbation analysis introduce
only corrections (the change in amplitude, velocity, and
width remain the same as obtained in the leading order
approximation) [62,63].

B. Oscillating tail formation

In the preceding section, we have derived the analytical
solution of Eq. (7) [Eq. (10)] perturbatively with the help of
dissipative perturbation technique. However, here, we present
an exact analysis of stationary localized solutions of Eq. (7)
[Eq. (10)]. Therefore, to investigate the possible localized
(soliton-like) solution of Eq. (10), we transform this equation
to the stationary frame φ = χ − Uτ and obtain the following
nonlinear ordinary differential equation:

βk3
ξ

d4u

dφ4
− αkξ

2

d2u2

dφ2
− Uf

d2u

dφ2
+ ν

du

dφ
= 
2u√

2kξ

. (24)

Now we start to analyze this equation by finding decaying
asymptotics of its localized solutions in the limit φ → ∞
(χ → ∞), as we are interested only in the soliton-like
solutions. In this limit, the nonlinear term is negligible so
that we can analyze asymptotics of the exponentially decaying
solutions of the following linear differential equation:

βk3
ξ

d4u

dφ4
− Uf

d2u

dφ2
+ ν

du

dφ
= 
2u√

2kξ

. (25)

The general form of the solutions to Eq. (25) is u = Aeλφ ,
where λ is the root (eigen value) of the corresponding fourth-
order algebraic equation given by

βk3
ξ λ

4 − Uf λ2 + νλ − 
2

√
2kξ

= 0. (26)

Note that we have already seen that for localized solution
Uf > 0. Now for decaying solutions, we must have Re λ <

0. Absence of collision (ν = 0) leaves us the following two
possibilities of the decaying solutions:

λ = − 1√
2βk3

ξ

[
Uf ±

√
U 2

f + 4
β
2k2

ξ√
2

] 1
2

. (27)

Every localized solution of Eq. (25) must have one of the
asymptotics, Eq. (27). The above expression clearly shows
that the parameter λ has a purely imaginary value. Thus,
the corresponding localized solutions of Eq. (25) must have
oscillating tails.

On the other hand, in the absence of rotation (
 = 0),
Eq. (26) reveals that the parameter λ has imaginary part only
if

ν2 >
4

27

U 3
f

βk3
ξ

.

However, this inequality is hardly satisfied for the laboratory
plasma condition [13,19], where ν = O(10−1 − 10−3). Thus,
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there is no oscillating tail of the localized solutions only for
the collision that can be easily seen from our simulation result.

It is important to note that the existence of decaying solution
of the linear Eq. (25) is not a sufficient condition for the
existence of the corresponding localized (soliton-like) solution
of the nonlinear Eq. (10). However, it assures the existence of
oscillating tails of the localized solutions (if they exist). In the
next section, the numerical simulation of Eq. (10) confirms
this tail formation of the soliton, in the presence of rotation
(Coriolis force and/or Lorentz force).

IV. NUMERICAL SIMULATION

We are interested to find the solution of Eq.(7) [Eq. (10)]
with its full generality. We have already seen that in the
presence of rotation (
 �= 0) and dust-neutral collision (ν �=
0), Eq.(7) [Eq. (10)] is not an exactly integrable Hamiltonian
system. Therefore, to investigate the effect of (magnetic
field) Lorentz force-induced gyration and dust-neutral col-
lisions on solitons in a quasi-two-dimensional crystal, we
simulate the nonlinear Eq. (10) numerically with the help
of a MATHEMATICA-based finite difference scheme. The
numerical simulations are carried out for the following typical
laboratory complex plasma parameters: Te = 3 eV, Ti =
0.03 eV, mi = 6.69 × 10−26 kg, ni = 3 × 1014 m−3, and
B0 = 1 T. The dust-particle (melamine formaldehyde) mass
density 1.5 × 103 kg m−3, a = 2.4 μm (so that md = 8.7 ×
10−14 kg) and Td = 0.03 eV. These parameters estimate,
λD 
 λDi = 75 μm, ωpi = 3.6 × 106 rad s−1, ωci = 2.4 ×
106 rad s−1 (so that

√
f = ωpi/ωci = 1.5), ρi = 111 μm,

and ρe = 4.2 μm, implying βBi
= 0.02 and βBe

= 0.6. This
shows that the curvature effect of the ion (electron) will
not significantly modify the dust-charging characteristics.
Thus, the OML theory for dust-charging yields Qeff(= Q) =
−5 × 103 e (z = 1) and this yields, nd = 5.3 × 1010 m−3,
� = 165 μm, κ = 2.2, ωL = 102 rad s−1, and � = 7273. The
screened coupling parameter �∗ = 806, the modified screen-
ing parameter κ̄ = 1.5, and the modified coupling parameter
�̄∗ = 721. Thus, the presence of an external magnetic field
reduces the strength of the screened Coulomb potential.
However, the estimated values (�∗ and �̄∗) are large enough
to predict a crystalline state in SCCP in the presence of
an external magnetic field. The estimated dust-cyclotron
frequency ωcd = 0.01 rad s−1, whereas, the observed [39]
rotational frequency ω ∼ 1 rad s−1 for B0 = 1 T (much larger
than the dust-cyclotron frequency). Thus, the rotation is mainly
due to the Coriolis force on the dust particles. The angle of
propagation is taken as θ = 10◦.

In the absence of rotation (
 = 0) and collision (ν = 0),
the 2D KdV Eq. (7) [Eq. (10)] possesses a single-soliton
solution. Therefore, for the time-dependent numerical simula-
tion, we use the single-soliton solution as the initial wave-
form: u(χ,0) = −N sech2

√
N χ, χ ∈ [−L,L], where L is

the spatial length. The boundary conditions are u(±L,τ ) =
−N sech2(±√

N L) and uχ (−L,τ ) = 0 = uχ (L,τ ). To ob-
tain adequate results for the computation, we take L = 30 and
N = 1.

At first we solve the 2D KdV equation [Eq. (10), with

 = 0 and ν = 0], which is shown in Fig. 2 [left figure]. This
is the usual single-soliton solution. Then we introduce the

2 4
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FIG. 2. (Color online) Time evaluation of quasilongitudinal soli-
tons in 2D complex plasma. The numerical solution of Eq. (10). The
left figure is drawn for ν = 0 and 
 = 0, which is the usual dust lattice
soliton. The right figure is drawn for 
 = 0 and ν = 0.1. The curves
in this figure show the neutral drag force induced weakly dissipative
quasilongitudinal solitons in 2D complex plasma.

dust-neutral collisional effect with ν = 0.1 in our numerical
simulation. The results are shown in Fig. 2 [right figure].
These figures show that the amplitude of the soliton (width
of the soliton) decreases (increases) with time due to the
dust-neutral collision. The comparative study between the
curves in the left and right figures demonstrate that the
soliton velocity also decreases in the presence of collision.
Actually, these figures show the weakly dissipative nature
of the quasilongitudinal solitons in 2D dusty plasma crystal
as observed in the experiment [19]. However, no soliton tail
formation is observed, which is consistent with the analytical
result of the previous section.

Next, we investigate the effect of rotation in the formation
of soliton. We take ν = 0 and 
 = 0.1 in the numerical
simulation and the results are plotted in Fig. 3. The curves
in these figures show that the soliton amplitude decreases
and the spatial width widens accordingly due to the effect
of rotation and, finally, oscillating tails are formed. Thus, the
time-dependent numerical simulation exhibits the same nature
of the decaying soliton with oscillating tails as predicted by
the analytical analysis.

Finally, we solve Eq. (10) with its full generality. The
simulation parameters are 
 = 0.1 and ν = 1. The simulation
results are shown in Fig. 4. The curves in these figures show
qualitatively the same nature as in Fig. 3. The only difference
is quantitative. In this case the amplitude of the solitons and
also tails become more damped in the presence of dust-neutral
collision.

The above discussions clearly demonstrate that the results
obtained by the numerical simulation of Eq. (10) with
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FIG. 3. (Color online) Time evaluation of quasilongitudinal soli-
tons in 2D complex plasma in the presence of rotation only. The
numerical solution of Eq. (10) with 
 = 0.1 and ν = 0. These figures
clearly demonstrate the formation of oscillating tails of solitons due
to rotation and also the algebraic decay of the amplitude.
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FIG. 4. (Color online) Time evaluation of quasilongitudinal soli-

tons in 2D complex plasma in the presence of both rotation and
dust-neutral collisions. The numerical solution of Eq. (10) with

 = 0.1 and ν = 1.

plasma parameters relevant to SCCP experiment are in good
agreement with the analytical results derived in the previous
section.

V. DISCUSSIONS

In this paper, we investigate the effects of neutral drag force
due to dust-neutral collision and Coriolis force and/or Lorentz
force due to the external magnetic field on the formation
of quasilongitudinal solitons in 2D strongly correlated dusty
plasma. The dynamics of the quasilongitudinal nonlinear
wave is governed by a novel equation, namely, a gyration
modified damped 2D KdV equation. The equation is analyzed
analytically with the help of the dissipative perturbation
technique. This equation is also numerically simulated with the
typical experimental plasma parameters. The numerical results
agree well with the analytical results. Both results reveal that
the solitons are compressive in nature. This can easily be seen
from the fact that the velocity of the particles moving in the
wave is given by

Ux = ∂dl

∂t
= −εCDLMu > 0,

as the Mach number M = U/CDL > 0 and u < 0. Thus,
the particles move forward in the direction of the soliton
propagation. As a consequence, the dust number density
perturbation nd (normalized in units of equilibrium dust
density nd0), given by [65]

nd 
 −u (⇒ Ux 
 εCDLMnd > 0) ,

corresponds to the increase in the dust-particle number
density as the soliton propagates. This is in agreement with
the experimental observations [13,15,16]. Also, the derived
quasilongitudinal compressional solitons are always stable
against longitudinal perturbations as solitons are supersonic

M > 1. However, the stability conditions against transverse
perturbations [59], not studied here, have to be studied
separately.

In the absence of external magnetic field, Eq. (7) reduces
to the damped 2D KdV equation that governs the dynamics of
the weakly nonlinear quasilongitudinal DLW. The analytical
and numerical results [Eq. (19) and Fig. 2] demonstrate that, in
this case, due to the neutral drag force, the soliton energy, am-
plitude, and velocity decays exponentially with time, whereas,
the spatial width of the soliton increases with time accordingly.
However, the parameter D
→0 remains constant throughout
the motion. In the experiment in Ref. [19], it was found
that the soliton parameters (amplitude and velocity) decrease
with time, whereas, width of the soliton increases accordingly
and D
→0 approximately remains constant as the soliton
propagates. Thus, the results of the present investigation are in
qualitative agreement with the experimental observations [19].
Moreover, recently, dissipative dark solitons are observed in
a three-dimensional strongly coupled complex plasma [23].
This experimental observation also confirms the dissipation of
solitons in complex plasma due to the neutral drag.

In the absence of neutral drag force, Eq. (7) reduces to
the rotation-modified 2D KdV equation for the dynamics of
the weakly nonlinear quasilongitudinal DLW. Contrary to the
dynamics of the soliton in the presence of collision, in this
case the soliton amplitude, energy, and velocity decays al-
gebraically with time τ < τcr and width increases accordingly
[Eqs. (20) and (21)] so that the quantity Dν→0 is constant. This
critical time τcr ∝ 
−2 = (ωL/
r )2 [Eq. (22)] determines the
lifetime of a soliton in a dusty plasma crystal in the presence
of Coriolis force and/or Lorentz force. The lifetime of a
soliton decreases (increases) with the increase (decrease) of
the strength of the external magnetic field. The analytical
result and numerical simulation also predict the oscillating tail
formation of the quasilongitudinal solitons in a 2D strongly
coupled complex plasma due to the rotation [Eq. (27) and
Figs. 3 and 4]. In connection with the complex plasma
experiment, we must mention that we have not encountered any
experimental observations of the quasilongitudinal solitons in
2D strongly coupled complex plasma in the presence of a
magnetic field. It would be very interesting to look at this
situation in a laboratory. We hope that in the future, such a
type of dissipative quasilongitudinal soliton in the presence
of an external magnetic field could be observed in SCCP
experiments.
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