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Kinetic theory molecular dynamics and hot dense matter: Theoretical foundations
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Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are
also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled.
In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of
transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons
but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical,
strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment
of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as “kinetic
theory molecular dynamics,” or KTMD. The purpose of this paper is to derive KTMD from first principles
and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in
the hot, dense regime is particularly useful since current computational methods are generally limited by their
inability to treat the dynamical quantum evolution of the electronic component. Using the N -body von Neumann
equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined
by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields
a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle
distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both
proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution
of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended
to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz.
This is the second variant of KTMD. The STLS contribution produces an effective electron-proton interaction
that involves the electron-proton structure factor, thereby extending the usual mean-field theory to correlated but
near equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons and their
correlations coupled to a MD description for the ions. A set of coupled equations for the one-particle electron
Wigner function and the electron-electron and electron-proton correlation functions are coupled to a classical
Liouville equation for the protons. This latter variation has both time and momentum dependent correlations.
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I. INTRODUCTION

The arrival of new high energy density (HED) physics
facilities, such as the National Ignition Facility (NIF) [1],
and next-generation light sources, such as the Linac Coherent
Light Source (LCLS) [2], has enabled experiments on matter
in the warm to hot dense regimes. The design and analysis of
these experiments have necessarily motivated the development
of new computational approaches [3]. Because of the short
time scale associated with the laser-matter interaction, the
materials are created in nonequilibrium states. While molec-
ular dynamics is a well-established computational method
for describing nonequilibrium dynamics of classical systems
[4–7], no quantum analog exists today. In this paper, we present
a formalism that provides a basis for such a method.

Hot dense matter (HDM) is characterized by temperatures
ranging from hundreds of eV to a few hundred keV and
densities ranging from tenths to hundreds of gm/cc [8–10]. Hot
dense matter conditions occur in stellar cores, Z-pinch, and
inertial confinement fusion experiments. These experiments
frequently involve nonequilibrium states where multi-ion
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species undergo thermonuclear burn, collisional, radiative,
and atomic processes [9,10]. Examining the plasma coupling
parameter � [11,12] and the degeneracy parameter �,

�ij = ZiZje
2

kT aij

, (1)

� = EF /kT , (2)

where Zi is the effective ionization of species “i”, “e” is
the electron charge, k is Boltzmann’s constant, T is the
temperature of the plasma, and aij is the multispecies ion
sphere radius of species “i” and “j”,

aij = (ai + aj )/2. (3)

Low-Z species in multi-ionic HDM tend to be weakly
coupled (� � 1) while higher Z species can be strongly
coupled (� � 1). Electron degeneracy is not a concern for the
density and temperature conditions we consider. This means
that, for densities of 10 gm/cc, temperatures must be higher
than 120 eV, and for densities on the order of 100 gm/cc,
temperatures must be in excess of 560 eV.

Although degeneracy is not an issue, electrons in HDM
do exhibit a quantum characteristic: diffraction. At large
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distances, Debye screening occurs as a result of classical
collective effects. At small distances, the relevant scale that
characterizes close encounter Coulomb collisions between
electrons and protons and electrons and electrons is the thermal
de Broglie wavelength. We will refer to the fact that the
electrons in HDM exhibit both classical and quantum behavior
as the classical-quantum dichotomy. Additional quantum
effects such as atomic transitions and thermonuclear burn can
also be present.

HED experiments are challenging because of the extreme
nature of the conditions (hundreds of eV to tens of keV
in temperature, densities of many gm/cc, and pressures
in the megabar to gigabar regime) and the complicated
diagnostics and experiments required to obtain high-quality
data [2,13,14]. Radiation-hydrodynamic codes are used to
model the experiments [13,14] and are an essential tool in
the design process. The codes themselves rely on theoretical
models that have rarely been experimentally validated in
HDM regimes. Recently, researchers have turned to molec-
ular dynamics (MD) to validate by simulation a variety of
radiation-hydrodynamic code models [3]. MD has turned out
to be a useful and very powerful approach to validating
models in radiation-hydrodynamic codes. The most recent
examples include electron-ion coupling [15–20], stopping
power [21], screening of thermonuclear burn [22], and
diffusivity [23].

MD methods rely on classical equations of motion to
describe the evolution of a many-body system. Given a set of
interparticle potentials, particle positions and momenta evolve
in time according to Newton’s equations of motion. When
applied to HDM, MD maps the quantum many-body system
onto a classical many-body system by using an effective force
between particles. Depending on the application, MD can
employ Born-Oppenheimer methods [24,25] (e.g., ionic dif-
fusivity) or it may include dynamic electrons explicitly [3,15–
19,26,27] (e.g., electron-ion coupling). The emphasis of this
paper is on the latter approach where dynamical electrons are
important. Currently, all classical MD methods with explicit
electrons use quantum statistical potentials (QSP) [28–38]
to capture the classical-quantum dichotomy and to model
electron and ion dynamics and their interactions. The wave
packet MD methods (WPMD) are the exception [39–43].
However, they suffer from wave packet spreading and are less
popular than traditional MD methods that use QSP and we
do not consider them further. QSPs capture the short-distance
diffraction and interference properties while at the same time
retaining the long-distance classical behavior of Coulomb
potentials. Hence, QSPs have been and continue to be the
workhorse of MD simulations for HDM. However, the use
of these potentials is proven only for MD simulations of
equilibrium phenomena like equation-of-state while many of
the applications of interest for HDM are nonequilibrium (e.g.,
electron-ion coupling and ion stopping). Some investigations
into HDM nonequilibrium processes have recognized this
difficulty and attempted to avoid the problem by running
simulations with like charge electrons and ions [16]. A great
deal of progress in the theoretical understanding of hot dense
plasmas has been gained by this approach. Unfortunately, a
like charge plasma will not tell us about the quantum behavior
at small length scales that characterizes HDM. Even though

MD with explicit dynamical electrons continues to be applied
to HDM, the classical-quantum dichotomy described above
continues to be an unsolved problem. The purpose of the
work presented in this paper is to propose an alternative
approach.

To overcome the classical-quantum dichotomy and the
reliance of MD on QSP, Murillo suggested a quantum kinetic
theory-molecular dynamics hybrid which we call kinetic the-
ory molecular dynamics (KTMD) [3]. KTMD uses quantum
kinetic theory to describe the electron dynamics and MD
to describe the classical ion dynamics. Why use quantum
kinetic theory to describe the electron dynamics? First, kinetic
theory is the simplest way to represent the many electron
system with a time-dependent equation in phase space. Second,
quantum kinetic theory automatically accounts for quantum
diffraction at small length scales. Third, kinetic theory is
flexible in that many variants exist for specific scenarios (e.g.,
quantum Vlasov for collisionless versus quantum Landau for
weakly collisional). Fourth, we retain the possibility for fully
nonequilibrium distributions. Finally, the KTMD equations
are meant to be used in a computer code. There exists a
vast resource of methods developed for numerically solving
plasma, radiation, charged-particle, and neutron transport
kinetic equations. Numerically solving the KTMD equation
leverages the existing numerical solution methods from the
MD and transport communities.

The purpose of this paper is to derive KTMD from first
principles and place it on a firm theoretical foundation.
Recently, Michta, Graziani, and Surh [44] used reduction
operators to derive a classical version of mean-field KTMD
from the Liouville equation. The electronic structure in
classical KTMD was computed numerically for a given proton
configuration and was shown to compare favorably with the
results taken from an MD code where the electrons were
explicitly treated.

In this paper, we derive KTMD from a fundamental
nonrelativistic quantum mechanical description of the many-
body problem using the N -body von Neumann equation
for the electron-proton plasma, where N = ne + np is the
sum of the electron and proton numbers and N is the total
number of particles in the plasma. The simplification to an
electron-proton plasma is merely to make the presentation
easier to follow. The derivation presented in this paper
can be easily extended to multiple ion species. We show
how the N -body von Neumann equation can be mapped
to an np classical Liouville equation with both classical
proton-proton Coulomb interactions and an effective electron-
proton interaction and a one-particle quantum electron kinetic
equation. The effective electron-proton interaction includes
both the mean-field contribution and a contribution resulting
from correlations. Ludwig and collaborators [45] have recently
considered a similar approach where they treat the ions exactly
with MD and an effective ion-ion potential that is dynamically
screened by the electrons. A consequence of the derivation
of KTMD presented here is that the method does not rely
on assumed interparticle potentials such as QSP. Instead,
interparticle potentials in KTMD are a derived quantity,
fully consistent with the dynamics. Assumptions regarding
the equilibrium nature of the plasma are not needed within
KTMD.
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II. KINETIC THEORY MOLECULAR DYNAMICS AND
TRADITIONAL MOLECULAR DYNAMICS METHODS

Molecular dynamics methods can be categorized as either
all-particle-MD (APMD) or ion-only-MD (IOMD). APMD
treats all particles, electrons and ions, as classical point
particles [6] (again, WPMD being the exception). When dy-
namical electrons need to be simulated, for example, electron-
ion coupling, ion stopping in a two component plasma, or
ionization processes, APMD is used [3,19,26,46,47]. APMD
offers the benefits of robustness and the ease of implementation
since it relies only on solving Newton’s equations of motion
with a fairly simple two-body QSP for all electrons and
ions. APMD maps the quantum many-body problem onto
a classical many body problem using QSPs. Unfortunately,
the mapping is only proven for equilibrium many body
systems [28,30–32,38].

IOMD methods treat only the ion dynamics with MD.
Electronic structure is computed by another method. A
commonly used IOMD is Yukawa MD [48–50] where the
ions interact with each through an imposed screened potential.
Quantum molecular dynamics (QMD) is a more advanced
IOMD that is also commonly used. In QMD the electronic
structure is typically computed using density functional theory
(DFT) [51,52]. Both Yukawa-MD and QMD are examples
of IOMD where the Born-Oppenheimer approximation is
invoked. Viscosity [49,50] and conductivity [53,54] are phys-
ical processes that are commonly computed using Yukawa-
MD and QMD. Recent efforts extending IOMD beyond the
Born-Oppenheimer approximation have been made [55,56].
However, as a general rule the current implementations
of IOMD use the Born-Oppenheimer approximation. QMD
methods for computing electronic structure are applicable
to warm dense matter where the electrons are degenerate
and strongly coupled, temperatures are in the eV range, and
densities vary from 0.1 to 10.0 times solid density. Yukawa-
MD methods have been applied to both warm and hot dense
matter.

KTMD is an example of an IOMD. Like Yukawa-MD and
QMD, the electronic structure is computed using a technique
other than MD. However, KTMD is different from Yukawa-
MD and QMD. The Born-Oppenheimer approximation is not
used. Instead, KTMD computes the time-evolving electronic
structure for electrons self-consistently using a quantum
kinetic equation. Unlike Yukawa-MD, where a Yukawa poten-
tial is imposed, KTMD specifies the nature of the electron-ion
interaction through a self-consistent description of the high
temperature many-body dynamics. For example, in the
mean-field approximation, KTMD computes a self-consistent
screening potential through which the ions interact. The self-
consistent screening potential depends on the time-evolving
local electron density. In addition, quantum diffraction is
included.

Unlike QMD, KTMD is designed for high temperatures
where the electrons are dynamical, weakly coupled, and where
kinetic theory is an accurate description of the electronic
structure. At high temperatures where the electrons exhibit a
classical-quantum dichotomy, KTMD uses a quantum kinetic
equation that includes classical collective effects that give rise
to screening in addition to quantum diffraction.

III. PLASMA VON NEUMANN EQUATIONS

The von Neumann equation [57,58] is the quantum analog
of the Liouville equation. It describes the evolution of the
Wigner transform of the density operator and it represents a
full description of the many-particle dynamics of the quantum
system. The KTMD method is based on being able to map
the N -particle von Neumann equation to a classical np proton
Liouville equation with proton-proton and effective proton-
electron interparticle potentials, and a set of quantum kinetic
equations for the electrons. In the paper, we demonstrate that
such a mapping can be done. We begin with the von Neumann
equation for the Wigner transform of the s-particle density
operator, which exhibits a BBGKY hierarchy. A set of simple
scaling laws along with an expansion in powers of the electron
to proton mass ratio allows us to transform the np-proton von
Neumann equation into a form that looks like the classical
np-proton Liouville equation.

A few assumptions are made in the derivation presented
here. First, we are considering only an electron-proton
plasma. The formalism can be easily generalized to include
any number of ion species. Second, we consider all particles
to be fermions. In reality, for a multispecies plasma, the ions
may be bosons, in which case, the equal-time anticommutator
relations need to be replaced by equal-time commutator
relations. Finally, for simplicity and ease of presentation, we
have dropped the spin variables.

A. Preliminaries

The position ket of every electron and proton in the plasma
is defined by

|r1 : rne
; R1 : Rnp

〉 = (1/
√

ne!np!)�̂†
e (r1,t) . . . �̂†

ne
(rne

,t)�̂†
p

× (R1,t) . . . �̂†
np

(Rnp
,t)|0e; 0p〉, (4)

where |0e; 0p〉 is the vacuum state and �̂
†
a(r,t) and �̂a(r,t) are

the creation and annihilation operators for a charged particle
of species type at a position and time (r,t). The species
index “a” is equal to “e” or “p” for electrons and protons,
respectively. The annihilation and creation operators obey a set
of equal-time canonical anticommutation relations appropriate
for fermions,

{�̂a(x,t),�̂†
b(y,t)} = δabδ

3(x − y), (5)

{�̂a(x,t),�̂b(y,t)} = 0, (6)

{�̂†
a(x,t),�̂†

b(y,t)} = 0. (7)

The many-body Hamiltonian operator for the plasma
interacting via Coulombic forces is described by

Ĥplasma =
∑

a

∫
d3ra�̂

†
a(ra,t)

[−�
2

2ma

∇2
ra

]
�̂a(ra,t)

+ 1

2

∑
a

∑
b

∫ ∫
d3rad

3sbVab(ra − sb)�̂†
a(ra,t)�̂

†
b

× (sb,t)�̂b(sb,t)�̂a(ra,t), (8)
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where a,b are the species index and can equal e or p.
The electron and proton coordinates are defined by a =
e,re = r and if a = p,rp = R. We have not included either
electromagnetic or external fields in the Hamiltonian (8). The
dynamics of the many-body plasma are fully described by
Eq. (8) along with the Heisenberg equations of motion,

∂�̂
†
a(r,t)

∂t
= i

�
[Ĥplasma,�̂

†
a(r,t)]. (9)

Equations (5)–(9) constitute a complete description of the
many-body quantum plasma. They form the basis for the
electron and proton von Neumann equations described in the
following sections.

B. Operator quantum dynamics

Define the one-particle electron and np proton density
operators by

�̂e(r + x/2,r − x/2) = �̂†
e (r + x/2)�̂e(r − x/2), (10)

�̂np
= �̂†

p

(
R1 + y1

2

)
. . . �̂†

p

(
Rnp

+ ynp

2

)
�̂p

(
Rnp

− ynp

2

)
. . . �̂p

(
R1 − y1

2

)
. (11)

Define the one-particle electron and np proton phase space density operators as Wigner transforms of the corresponding density
operators,

F̂e(r,p) =
∫

d3x

(2π�)3
eipx/��̂e(r + x/2,r − x/2), (12)

F̂np
(R1, . . . ,Rn,P1, . . . ,Pn) = 1

np!

∫
d3y1

(2π�)3
. . .

d3ynp

(2π�)3
eiP1y1/� . . . eiPnyn/�

× �̂np

(
R1 + y1

2
: Rnp

+ ynp

2
; R1 − y1

2
: Rnp

− ynp

2

)
. (13)

The one-particle electron and np proton phase space density operators are normalized so that the quantum averages, denoted by
〈. . .〉, are defined by ∫

d3rd3p〈F̂e(r,p)〉 = ne, (14)

∫
d3R1 . . . d3Rnp

d3P1 . . . d3Pnp
〈F̂np

(R1, . . . ,Rn,P1, . . . ,Pn)〉 = np. (15)

Differentiating both sides of Eq. (12) with respect to time and using the Hamiltonian and operator Heisenberg equations given
by Eqs. (8) and (9), we obtain the one-electron von Neumann equation,

∂F̂e(r,p)

∂t
+ p

me

· ∇re
F̂e(r,p) = i

�

∑
a

∫
d3x

(2π�)3
d3q d3ra d3sa ei(p−q)x/�

×
[
Vea

(
r − ra + x

2

)
− Vea

(
r − ra − x

2

)]
F̂a(ra,sa)F̂e(r,q). (16)

We have ignored exchange terms by making use of the fact that the electrons are nondegenerate. This assumption is made
manifest by making the following approximation in the last term of the right hand side of Eq. (16):

1
2 {F̂a(ra,sa),F̂e(r,q)} ≈ F̂a(ra,sa)F̂e(r,q). (17)

If we had retained the anticommutator, Eq. (16) would be the von Neumann equation valid for degenerate electrons. We stress
that Eq. (16) is still in operator form and hence electron correlations are still present.

Similarly, differentiating both sides of Eq. (13) with respect to time and using the Hamiltonian and operator Heisenberg
equations given by Eqs. (8) and (9), we obtain the np proton von Neumann equation,(

∂

∂t
+

np∑
i=1

Pi

mp

· ∇Ri

)
F̂np

= 2
i

�

np∑
i<j

∫
d3yi

(2π�)3

d3yj

(2π�)3
d3P̃i d3P̃j ei(Pi−P̃i )yi/�ei(Pj −P̃j )yj /�

×
[
Vpp

(
Ri − Rj + yi − yj

2

)
− Vpp

(
Ri − Rj − yi − yj

2

)]

× F̂np
(R1, . . . ,Rnp

,P1, . . . ,P̃i , . . . P̃j , . . . Pnp
) + 2

i

�

np∑
i

∫
d3yi

(2π�)3
d3p d3P̃i ei(Pi−P̃i )yi/�

×
[
Vep

(
r − Ri + yi

2

)
− Vep

(
r − Ri − yi

2

)]
F̂e(r,p)F̂np

(R1, . . . ,Rnp
,P1, . . . ,P̃i , . . . Pnp

). (18)
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A more compact form of Eq. (18) is(
∂

∂t
+

np∑
i=1

Pi

mp

· ∇Ri

)
F̂np

= 2
i

�

np∑
i<j

Vpp(Ri − Rj ) sin

{
�

2
{←−∇ Ri

· −→∇ Pi
+ ←−∇ Rj

· −→∇ Pj
}
}

F̂np

+ 2
i

�

np∑
i

∫
d3pd3rVep(r − Ri) sin

{
�

2
←−∇ Ri

· −→∇ Pi

}
F̂e(r,p)F̂np

. (19)

To make Eqs. (18) and (19) more compact, we have used the
notation

F̂np
≡ F̂np

(R1, . . . ,Rnp
,P1, . . . ,Pnp

). (20)

Equations (16) and (19) are the von Neumann equations
for the electron-proton plasma. They constitute a complete
description of the quantum dynamics of the system. If we
were able to solve Eq. (16), and then substitute it into Eq. (19),
we would have a complete description of the proton dynamics.
The one-particle electron equation (16) is well known in
various forms [57–64]. It still retains the presence of quan-
tum diffraction effects through the nonlocality of the right
hand side. A manifestation of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy is seen in the product
of the one-particle phase space density operators on the right
hand side of Eq. (16).

The np proton von Neumann equation is an operator form
generalization of the equation derived by Ludwig, Bonitz,
Kahlert, and Dufty [45]. It is the quantum operator analog
of the proton Liouville equation. The first term on the right
hand side of Eq. (18) is typical of the Liouville equation for
a proton-only system. The second term is a manifestation
of BBGKY and couples the np and one-particle electron
phase space density operators. This term will be responsible
for the coupling of the MD description of the protons to

the continuum description of the electrons based on kinetic
theory.

Equations (18) or (19) can be simplified even further if
we make use of the observation that the plasma properties
of hot dense matter relevant to burning ICF targets are such
that the ions behave classically and the electrons exhibit
both quantum and classical behavior. In order to capture the
hybrid quantum-classical dynamics, we adopt the methods
of Kapral and Cicotti [65]. They derived classical-quantum
hybrid equations of motion for a quantum subsystem of light
particles coupled to a classical bath of heavy particles. They
performed a partial Wigner transform of the evolution equation
of the density matrix for the whole system with respect to
the classical system consisting of heavy particles. Scaling
variables were then applied to the resulting equation followed
by an expansion in the parameter μ = √

m/M which is the
square root of the ratio of the light (m) to heavy (M) mass
particles. We do not simply perform an � expansion of Eqs. (18)
or (19) to extract the classical behavior since for Coulomb
potentials each succeeding term in � becomes more singular.

We apply the scaling variables used in Kapral and Ci-
cotti [65] to the proton von Neumann equation. If we define ε

as some energy scale, then a thermal De Broglie length scale λ,
time scale τ , electron momentum �e, and proton momentum
�p can be defined by

λ = �/
√

(meε), τ = �

ε
, �e = λme

τ
, �p = √

meε ⇔ �e =
√

me

mp

�p ≡ μ�p, (21)

(r̃ ,p̃) =
(

r

λ
,

p

�e

)
,

(
R̃,P̃

) =
(

R

λ
,

P

�p

)
, t̃ = t

τ
, ˜Vab = Vab

ε
, ̂n = �

3nF̂n. (22)

We obtain a transformed von Neumann equation given by

∂̂np

∂t̃
+ μ

np∑
i=1

P̃i · ∇R̃i
̂np

= 2
np∑
i<j

Vpp(R̃i − R̃j ) sin

{
μ

2
{←−∇ R̃i

· −→∇ P̃i
+ ←−∇ R̃j

· −→∇ P̃j
}
}
̂np

+ 2
np∑
i

∫
d3p̃d3r̃ Ṽep(r̃ − R̃j ) sin

{
μ

2
←−∇ R̃i

· −→∇ P̃i

}
̂e(r,p)̂np

. (23)

Transforming back to the original variables and expanding in powers of μ, we obtain

∂F̂np

∂t
+

np∑
i=1

Pi

mp

· ∇Ri
F̂np

=
np∑
i<j

Vpp(Ri − Rj ){←−∇ Ri
· −→∇ Pi

+ ←−∇ Rj
· −→∇ Pj

}F̂np

+
np∑
i

∫
d3pd3rVep(r − Rj )

←−∇ Ri
· −→∇ Pi

F̂e(r,p)F̂np

≡ L̂CLF̂np
, (24)
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where L̂CL is defined as the right hand side operator of
Eq. (24).

Upon expansion in the ratio of electron to proton mass, the
np proton von Neumann equation takes on the classical form
of the Liouville equation. There is a significant difference
however, in that this equation is still in operator form with
the “classical” Liouville operator L̂CL a functional of the
electron phase space density operator. Equations (16) and (24)
are in the desired form that will allow us to describe the
plasma by coupling quantum kinetic and molecular dynamics
descriptions.

IV. WIGNER EQUATIONS AND CORRELATION
FUNCTIONS

Based on the weak coupling approximation of the electron-
electron and electron-proton interactions, expectation values
of the electron and proton von Neumann equations can be writ-
ten in closed form. In this section, we show how the BBGKY
hierarchy can be reduced to a set of equations involving the
one-particle electron distribution function, electron-electron
and electron-proton two-particle correlation functions, and the
proton Liouville equation.

We begin by defining the quantum expectation value of an
arbitrary n-particle operator An(t) in the usual way,

〈Ân(t)〉 = Tr[Ân(t)ρN ], (25)

where N = np + ne, ρN is the density operator for the plasma,
and n in Eq. (25) can take take on any value from 1 to N .

The expectation value of the phase space density operator
is the Wigner distribution function. The one-particle electron
and proton Wigner distribution functions fe(r,p) and fp(R,P )
are defined as

〈F̂e(r,p)〉 = fe(r,p), 〈F̂p(R,P )〉 = fp(R,P ), (26)〈
F̂np

(R1 : Rnp
,P1 : Pnp

)
〉 = fnp

(R1 : Rnp
,P1 : Pnp

) ≡ fnp
,

(27)∫
d3P Fp(R,P ) = NP (R),

∫
d3R d3P FP (R,P ) = np,

(28)∫
d3pfe(r,p) = Ne(r),

∫
d3rd3pfe(r,p) = ne. (29)

Applying the expectation values to the one-electron and
np-proton von Neumann equations, we obtain the set of Wigner
equations for the one-particle electron and the np proton
distribution functions, viz.

∂fe(r,p)

∂t
+ p

me

· ∇rfe(r,p)

= i

�

∑
a

∫
d3x

(2π�)3
d3qd3rad

3sae
i(p−q)x/�

×
[
Vea

(
r − ra + x

2

)
− Vea

(
r − ra − x

2

)]

×〈F̂a(ra,sa)F̂e(r,q)〉 (30)

∂fnp

∂t
+

np∑
i=1

Pi

mp

· ∇Ri
fnp

=
np∑
i<j

Vpp(Ri − Rj ){←−∇ Ri
· −→∇ Pi

+ ←−∇ Rj
· −→∇ Pj

}fnp

+
np∑
i

∫
d3pd3rVep(r − Ri)

←−∇ Ri
· −→∇ Pi

〈
F̂e(r,p)F̂np

〉
.

(31)

We now recast the right hand side of Eqs. (30) and (31)
into a more illustrative form by defining a set of correlation
functions gee, gep, and genp

given by

〈F̂e(r1,p1)F̂e(r2,p2)〉 = fe(r1,p1)fe(r2,p2)

+ gee(r1,p1; r2,p2), (32)

〈F̂e(r,p)F̂p(R,P )〉 = fe(r,p)fp(R,P ) + gep(r,p; R,P ),

(33)〈
F̂e(r,p)F̂np

(R,P )
〉 = fe(r,p)fnp

(
R1 : Rnp

,P1 : Pnp

)
+ genp

(
r,p; R1 : Rnp

,P1,Pnp

)
. (34)

We will also have use later for the dimensionless correlation
functions hab(r1,p1; r2,p2), defined as

gab(r1,p1; r2,p2) = fa(r1,p1)fb(r2,p2)hab(r1,p1; r2,p2).

(35)

Upon substitution of Eqs. (32)–(34) into Eqs. (30) and (31),
the one-particle electron Wigner and np proton Wigner
equations can be written

∂fe(r,p)

∂t
+ p

me

· ∇rfe(r,p)

= i

�

∑
b

∫
d12�ei(p−α)x/�[Veb(r + x/2 − s)

−Veb(r − x/2 − s)]fe(r,α)fb(s,β)

+ i

�

∑
b

∫
d12�ei(p−α)x/�[Veb(r + x/2 − s)

−Veb(r − x/2 − s)]geb(r,α; s,β), (36)

∂fnp

∂t
+

np∑
i=1

Pi

mp

· ∇Ri
fnp

=
np∑
i<j

Vpp(Ri − Rj ){←−∇ Ri
· −→∇ Pi

+ ←−∇ Rj
· −→∇ Pj

}fnp

+
np∑
i

∫
d3rVep(r − Ri)Ne(r)

←−∇ Ri
· −→∇ Pi

fnp

+
np∑
i

∫
d3rVep(r − Ri)Ne(r)

←−∇ Ri
· −→∇ Pi

× genp
(r,p; R1 : Rnp

,P1 : Pnp
). (37)
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We have simplified the notation by writing∫
d12� (. . .) =

∫
d3x

(2π�)3
d3sd3αd3β (. . .). (38)

As a consequence of BBGKY, these compact forms of
the electron and many-particle proton Wigner equations
demonstrate a need for the electron-electron, electron-proton,
and electron-np proton correlation functions. We will show
in the next section how the electron-np proton correlation
function can be written as a function of two-particle correlation
functions. In this way, the coupled set of electron and
proton Wigner equations (36) and (37) can be reduced to
a description of the plasma based solely on single-particle
distribution functions, two-particle correlation functions, and
an np proton distribution function. The result is Eqs. (46)
and (47).

A. Reduction of the electron-many proton correlation function

Equation (37) requires further simplification due to the
unwieldy correlation function genp

(r,p; R1 : Rnp
,P1 : Pnp

). In
this form, the coupled set of equations is useless since it
requires knowledge of how every proton correlates to a given
electron. Guernsey has shown that if the pair-wise correlations
are small, the expectation value of a product of the one-particle
electron phase space density operator with the np proton phase
space density operator can be decomposed into a function of
one-electron and one-proton distribution functions and their
pair-wise correlations,〈
F̂e(r,p)F̂np

〉 = 〈F̂e(r,p)〉〈F̂p(R1,P1)〉 . . . 〈F̂p(Rnp
,Pnp

)〉

+
np∑
i<j

np∑
j=2

gpp(Ri,Pi ; Rj ,Pj )〈F̂e(r,p)〉

×
np∏

k=1,k �=i,j

〈F̂p(Rk,Pk)〉

+
np∑
i=1

gep(r,p; Ri,Pi) ×
np∏

k=1,k �=i

〈F̂p(Rk,Pk)〉.

(39)

This form is still not yet particularly useful as written, since
it decomposes the left hand side into a function of one-particle
functions. We would like the right hand side of equation (39)
to contain the terms F̂np

since it preserves the Liouville form
for the protons. The first two terms on the right hand side
of Eq. (39) can be summed to obtain 〈F̂e(r,p)〉〈F̂np

(R,P )〉.
Therefore,〈
F̂e(r,p)F̂np

〉 = fe(r,p)fnp

+
np∑
i=1

gep(r,p; Ri,Pi) ×
np∏

k=1,k �=i

〈F̂p(Rk,Pk)〉.

(40)

The final step in writing the expectation value of the product
of the one-electron and np phase space density operators as a
function of the expectation value of the n-proton phase space

density operator is to note that to lowest order

〈
F̂e(r,p)F̂np

〉 = 〈F̂e(r,p)〉〈F̂np

〉
+

np∑
i=1

gep(r,p; Ri,Pi)
np∏

k=1,k �=i

〈
F̂p(Rk,Pk)

〉
= 〈F̂e(r,p)〉〈F̂np

〉
+〈F̂e(r,p)〉

np∑
i=1

gep(r,p; Ri,Pi)

〈F̂e(r,p)〉〈F̂np

〉 〈
F̂np

〉

×
np∏

k=1,k �=i

〈F̂p(Rk,Pk)〉

≈ fe(r,p)fnp
+ fe(r,p)fnp

np∑
i=1

hep(r,p; Ri,Pi).

(41)

Upon substituting Eq. (41) into Eq. (37), we
obtain

∂fnp

∂t
+

np∑
i=1

Pi

mp

· ∇Ri
fnp

=
np∑
i<j

Vpp(Ri − Rj ){←−∇ Ri
· −→∇ Pi

+ ←−∇ Rj
· −→∇ Pj

}fnp

+
np∑
i

∫
d3rVep(r − Ri)Ne(r)

←−∇ Ri
· −→∇ Pi

fnp

+
np∑
i

∫
d3pd3rVep(r − Ri)fe(r,p)

←−∇ Ri
· −→∇ Pi

×
⎡
⎣ np∑

j=1

hep(r,p; Rj ; Pj )

⎤
⎦ fnp

(42)

We will now simplify the last term in Eq. (42) by transform-
ing the discrete sum over the various hep contributions into an
integral form. We begin by Fourier transforming the sum of
the dimensionless correlation function hep,

(r,p) =
np∑

j=1

hep(r,p; Rj ; Pj )

=
np∑

j=1

∫
d3K

(2π )3

d3Q

(2π )3
eiKRj eiQPj h̃ep(r,p; K,Q).

(43)

If we switch the order of integration and summation in Eq. (43)
and note that

f̃p(K,Q) =
np∑

j=1

eiKRj eiQPj (44)
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is the Fourier transform of the one-particle proton distribution
function fp(R,P ), Eq. (43) can be written

(r,p) =
∫

d3R′d3P ′fp(R′,P ′)hep(r,p; R′,P ′). (45)

B. KTMD equations and two-particle correlation functions

Using the results from the previous section, we are now in
a position to describe the coupled electron-proton dynamics
through a set of coupled Liouville and electron kinetic
equations. Each equation will contain a term involving the
electron-electron and electron-proton correlation functions.
For now, we will leave the question as to how to treat the
correlation functions to Sec. IV. Substituting Eq. (45) into
Eq. (42), and using the definition of hep in Eq. (35), we obtain
a simple form of the proton Liouville equation in terms of
one-particle distribution and correlation functions,

∂fnp

∂t
+

np∑
i=1

Pi

mp

· ∇Ri
fnp

=
np∑
i<j

Vpp(Ri − Rj ){←−∇ Ri
· −→∇ Pi

+ ←−∇ Rj
· −→∇ Pj

}fnp

+
np∑
i

∫
d3rVep(r − Ri)Ne(r)

←−∇ Ri
· −→∇ Pi

fnp

+
np∑
i

∫
d3pd3rd3R′d3P ′gep(r,p; R′,P ′)

×Vep(r − Ri)
←−∇ Ri

· −→∇ Pi
fnp

. (46)

The electron dynamics are described by

∂fe(r,p)

∂t
+ p

me

· ∇rfe(r,p)

= i

�

∑
b

∫
d12�ei(p−α)(x/�)

× [Veb(r + x/2 − s) − Veb(r − x/2 − s)]

× fe(r,α)fb(s,β)

+ i

�

∑
b

∫
d12�ei(p−α)(x/�)

× [Veb(r + x/2 − s) − Veb(r − x/2 − s)]

× geb(r,α; s,β). (47)

We have repeated the electron kinetic equation for com-
pleteness. Assuming the electron-electron and electron-proton
correlation functions are known (see the next section for
three different variants), Eqs. (46) and (47) are a coupled
set of equations that describe the electron-proton plasma.
Equations (46) and (47) are the desired KTMD equations.
In the KTMD approach, the proton Liouville equation (46)
describes the forces acting on each proton. The forces acting on
the protons are dependent on classical Coulomb forces, one-
particle electron distribution functions, and the two-particle
correlation functions. The first term on the right hand side
of Eq. (46) describes the classical Coulomb interaction. The

second term describes a mean-field contribution coming from
the local electron density, and the third term is the contribution
to the proton motion caused by electron-proton density
fluctuations. Molecular dynamics provides the numerical
method for solving this equation. The electron information
comes from the kinetic equation described by Eq. (47). This
equation is a multidimensional partial differential equation
that can be solved by various techniques [66] depending on
the choice of correlation function and other approximations.
In the next section we describe three examples for the two-
particle correlation functions appearing on the right hand side
of equations and the physical situations in which they are
applicable.

V. PLASMA PROPERTIES AND THE CLOSED SET
OF KTMD EQUATIONS FOR AN ELECTRON

PROTON PLASMA

Based on the physical conditions of the plasma, con-
straints can be placed on the appropriate electron-proton and
proton-proton correlation functions. The various options for
the correlation functions will allow us to close the KTMD
equations.

The simplest KTMD variant is based on a mean-field
approximation that is appropriate for hot, diffuse, and weakly
coupled plasmas. In this regime, the electron plasma frequency
greatly exceeds all collision frequencies. In addition, the colli-
sional mean-free path is much larger than the relevant system
size. The mean-field approximation cannot describe scattering
processes and the potential energy of the system contains
only mean-field contributions. Relevant high-energy density
plasmas for which KTMD in the mean-field approximation
is applicable are Tokamak and some laser produced plasmas.
Applications where this approach would not be valid include
ion stopping in dense plasmas and collisional relaxation
of electron-ion systems. Both of these applications require
detailed knowledge of scattering processes. Ion diffusivity
in diffuse plasmas is a good application for the mean-field
approach.

The second KTMD variant is based on the Singwi-
Tosi-Land-Sjolander (STLS) ansatz [67] where the electron-
electron and electron-proton correlation functions are assumed
static, and equal to the radial distribution function. It is well
known that STLS is only valid near equilibrium. STLS extends
mean-field theory to include equilibrium correlations. Even
though STLS allows us to consider denser plasmas where
the electrons can be strongly correlated but not far from
equilibrium, our KTMD derivation assumes the electrons to
be weakly correlated [see Eq. (41)]. This variant is illustrative
of how nonzero correlations enter into the KTMD equations
and modify the forces acting on the protons.

The third KTMD variant is the most complex and represents
what we would call the full KTMD description of the plasma.
The correlation functions are dynamic, position, momentum,
and time dependent, small, and their evolution is described by
a set of quantum kinetic equations that arise from closing the
BBGKY hierarchy at the three particle correlation level. Both
the Landau and Lenard-Balescu equations are contained within
this third variant of KTMD. The regime of weakly coupled and
weakly collisional electrons is described by the full KTMD
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variant. Hence the relevant plasmas tend to be hot but more
dense than the mean-field approximation would allow. These
plasmas have their collision frequency comparable to or greater
than the plasma frequency and the collisional mean-free path
is smaller than the relevant system size. Inertial confinement
fusion plasmas tend to belong to this category. We note that
near equilibrium, the full KTMD variant is equivalent to STLS.
Ion stopping in dense plasmas is a good application for this
variant of KTMD.

A. KTMD in the mean-field limit

For hot and diffuse enough plasmas, the plasma frequency is
much larger than the collision frequency. Physically, collective
effects dominate over collisional processes and the plasma is
nearly collisionless and we may take gee = gep = genp

= 0.
We obtain a closed set of equations which define KTMD within
the mean-field approximation. Setting gee = gep = genp

= 0
in Eqs. (46) and (47) yields a closed set of equations for the
electron kinetic equation and the proton particle dynamics.
The picture is one where a continuous or fluidlike description
of the electrons is coupled to a particle description of the ions.
It is important to recognize that the proton-proton correlations
need not be small and proton-proton correlations are included
through the proton-proton Coulomb interaction in Eq. (35).
The mean-field KTMD equations are

∂fe(r,p)

∂t
+ p

me

· ∇rfe(r,p)

= i

�

∑
b

∫
d3�ei(p−α)x/�[Veb(r + x/2 − s)

−Veb(r − x/2 − s)]fe(r,α)fb(s,β), (48)

∂fnp

∂t
+

np∑
i=1

Pi

mp

· ∇Ri
fnp

=
np∑
i<j

Vpp(Ri − Rj )
{←−∇ Ri

· −→∇ Pi
+ ←−∇ Rj

· −→∇ Pj

}
fnp

+
np∑
i

∫
d3rVep(r − Ri)Ne(r)

←−∇ Ri
· −→∇ Pi

fnp
. (49)

This set of equations defines completely the time evolution
of the electron fluid and the classical point ions within
the mean-field approximation. The evolution of the electron
Wigner distribution function depends on two contributions.
One is from the electron-electron interactions and the other
is from the electron-proton interactions. The proton dynamics
are described by a classical Liouville equation whose solution
is obtained via MD. The forces acting on each proton can be
isolated in Eq. (49). There is the usual classical proton-proton
Coulomb force and an additional force due to the presence of
the electron fluid. This latter force is the gradient of a mean
potential defined by the convolution of the bare electron-proton
Coulomb potential with the local time dependent electron
density. The quantum nature of the electron-proton interaction
is contained in the electron distribution function, but is
classical otherwise (same as Vlasov). The effective potential

is defined as

V eff
ep =

∫
d3rVep(r − Rj )Ne(r). (50)

This effective potential includes nonlinear screening and is
responsive to the time evolving electron dynamics. Therefore,
it can be thought of as a generalization of the Yukawa
potential. We note that the effective potential depends not
on the six-dimensional distribution function but rather only
on the zeroth order moment: the electron number density
Ne(r). As we will see, this observation is still valid beyond
the mean-field approximation but only in the cases where the
correlation functions are independent of momenta. Therefore,
a quantum hydrodynamical description should be sufficient to
describe the electron dynamics for certain cases within KTMD.

B. KTMD and the Singwi-Tosi-Land-Sjolander (STLS) ansatz

Equation (46) describes the many particle dynamics of
the protons as they interact with the electron fluid and each
other. In this section, we show that the last force term in
Eq. (46) can be evaluated and takes on a simple form if
the STLS [67–69] ansatz is invoked. We assume that the
two-particle correlation function is independent of momentum
and it is only a function of the coordinate difference. As noted
in the introduction to this section, the STLS ansatz extends the
mean-field approximation by including equilibrium electron-
electron and electron-proton correlations. The STLS ansatz is
in general valid for large correlations but where the system is
near equilibrium. However, our KTMD derivation assumed the
electrons to be weakly correlated [see Eq. (41)]. Therefore, the
STLS variation of KTMD presented here is valid for weakly
correlated electrons only. In spite of this, the STLS variant of
KTMD allows one to move beyond mean field,

〈F̂e(r,p)F̂p(R,P )〉 = fe(r,p)fp(R,P )[1 + hep(r,p; R,P )]

≈ fe(r,p)fp(R,P )ξep(r − R). (51)

The quantity ξep(r − R) is the radial distribution function
which describes the likelihood that there is an electron at
position r given that there is a proton at position R. The radial
distribution function is related to the static structure factor
S̃ep(k) in the usual way [70],

S̃ep(k) = √
nenp

∫
d3reikr [ξep(r) − 1]. (52)

In the STLS ansatz, the relationship between the radial
distribution function, static structure factor, and dielectric
function provide a set of equations that can be solved self-
consistently [67,71]. From Eqs. (51) and (52) we can write

h̃ep(k) = ξ̃ep(k) − (2π )3δ3(k) = Sep(k)/
√

nenp. (53)

To simplify the last term in Eq. (42), we write

(r) =
np∑
i=1

hep(r,p; Ri ; Pi) ≈
np∑
i=1

hep(r − Ri)

=
np∑
i=1

∫
d3k

(2π )3
eik(r−Ri )h̃ep(k). (54)
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If we switch the order of the integration and summation in
Eq. (54) and use the fact that the proton density Np(r) and its
Fourier transform Ñp(k) can be written

Np(r) =
np∑
i=1

δ3(R − Ri) ⇔ Ñp(k) =
np∑
i=1

e−ikRi . (55)

Using Eq. (55), Eq. (54) can be written

(r) =
∫

d3k

(2π )3
eikr Ñp(k)h̃ep(k)

=
∫

d3k

(2π )3
eikr Ñp(k)

S̃ep(k)√
nenp

=
∫

d3s
Sep(r − s)√

nenp

Np(s). (56)

Substituting Eq. (56) into the proton Liouville equation (42)
we obtain a form amenable to a molecular dynamics code,

∂fnp

∂t
+

np∑
i=1

Pi

mp

· ∇Ri
fnp

=
np∑
i<j

Vpp(Ri − Rj )
{←−∇ Ri

· −→∇ Pi
+ ←−∇ Rj

· −→∇ Pj

}
fnp

+
np∑
i

∫
d3rVep(r − Ri)Ne(r)

←−∇ Ri
· −→∇ Pi

fnp

+
np∑
i

∫
d3pd3r(r)Vep(r − Ri)fe(r,p)

×←−∇ Ri
· −→∇ Pi

fnp
. (57)

From Eq. (57), it is clear that there are three force terms
acting on each proton. The first is the pure Coulomb force, the
second the mean-field force, and the third is a consequence
of the equilibrium density fluctuations within the STLS
ansatz,

Fi = −→∇ Ri

[∫
d3rd3s

Sep(r − s)√
nenp

Np(s)Ne(r)Vep(r − Ri)

]
.

(58)

The electron kinetic equation that couples to Eq. (57) using
the STLS approximation is

∂fe(r,p)

∂t
+ p

me

· ∇rfe(r,p)

= i

�

∑
b

∫
d12�ei(p−α)x/�

× [Veb(r + x/2 − s) − Veb(r − x/2 − s)]

× fe(r,α)fb(s,β)ξeb(r − s). (59)

As mentioned at the beginning of this section, self-
consistency requirements between the dielectric functions,
static structure factor, and radial distribution function de-
termines the form of Sep in Eq. (57). The STLS ansatz
allows for correlated electrons that are near equilibrium.
Hence, it is another extension of Yukawa to correlated but

near equilibrium systems. Whereas the mean-field variant of
KTMD would not be applicable to electron-ion relaxation
where the electron temperature is changing, KTMD with the
STLS ansatz for the correlation functions would be applicable
to systems where the ions are relaxing to a fixed electron
temperature.

C. Particle collisions and weak correlations

The mean-field approximation is a useful illustration of the
KTMD approach but for many applications in HDM, such as
electron-ion relaxation and ion stopping, scattering processes
are important. Therefore, the effects from nonzero correlations
is needed. The STLS approach includes correlations but relies
on the equilibrium approximation. In this section, we describe
a version of KTMD that fully realizes the concept of a quantum
kinetic equation for the electrons and MD for the protons
that was described in the Introduction. The quantum kinetic
equations consist of a set of coupled kinetic equations for
the one-particle distribution function and the two-particle
electron-electron and electron-proton correlation functions.
For example, Eqs. (46) and (47) require a description of
the electron and proton two-particle correlation functions.
In particular, we need a time evolution equation for gee and
gep. The set of closed equations for fe(r,p),gee and gep has
been written down by Guernsey [60], Klimontovich [57],
Balescu [62], Bonitz [58], and many others. We summarize
the main steps of the derivation to arrive at a form that is
amenable to computation.

In order to derive an equation for the correlation functions
gee and gep, we start with the expectation value of a product of
one-particle density operators defined by Eq. (12),

Gea(u,v; w,x) = 〈�̂e(u,v)�̂a(w,x)〉 − 〈�̂e(u,v)〉〈�̂a(w,x)〉.
(60)

The index a can be “e” or “p.” We have introduced a
transformed correlation function Gea which is related to the
correlation functions defined in Eqs. (32) and (33),

gea(r,p; ra,pa) =
∫

d3x

(2π�)3

∫
d3y

(2π�)3
eipxeipay

× Gea(r + x/2,r − x/2; ra + y/2,ra − y/2).

(61)

For HDM, the electron-electron and electron-proton corre-
lations are weak. We therefore truncate the triple product of
one-particle density operators as [64]

〈�a(u,v)�b(w,x)�c(s,t)〉 = 〈�a(u,v)〉〈�b(w,x)〉〈�c(s,t)〉
+ 〈�a(u,v)〉Gbc(w,x; s,t)

+〈�b(w,x)〉Gac(u,v; s,t)

+〈�a(s,t)〉Gab(u,v; w,x).

(62)

In order to obtain a kinetic equation for the Gea correlation
functions, we differentiate Eq. (60) with respect to time and
use Eqs. (5)–(9) along with the truncation equation (62) to
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obtain

∂

∂t
Gea(u,v; w,x) = −i�

(
1

2me

[∇u
2 − ∇v

2
] + 1

2ma

[∇w
2 − ∇x

2
])

Gea(u,v; w,x)

+ i

�

∑
b

∫
d3s[Veb(u − s) − Veb(v − s) + Veb(w − s) − Veb(x − s)]�b(s,s)Gea(u,v; w,x)

+ i

�

∑
b

∫
d3s[Veb(u − s) − Veb(v − s)]�e(u,v)Gba(s,s; w,x)

+ i

�

∑
b

∫
d3s[Veb(w − s) − Veb(x − s)]�a(w,x)Geb(u,v; s,s). (63)

Applying the Wigner transform, and again using the notation∫
d12� =

∫
d3x

(2π�)3
d3sd3αd3β. (64)

The required equations for gee and gep are obtained,

∂

∂t
gea(r,p; ra,pa) =

[
p

2me

· ∇r + pa

2ma

· ∇ra

]
gea(r,p; ra,pa)

+ i

�

∑
b

∫
d12�e(p−α)x/�[Veb(r + x/2 − s) − Veb(r − x/2 − s)]fb(rb,β)gea(r,α; ra,pa)

+ i

�

∑
b

∫
d12�e(pa−α)x/�[Veb(ra + x/2 − s) − Veb(ra − x/2 − s)]fb(rb,β)gea(r,p; ra,α)

+ i

�

∑
b

∫
d12�e(p−β)x/�[Veb(r + x/2 − s) − Veb(r − x/2 − s)]fe(r,β)geb(re,α; ra,pa)

+ i

�

∑
b

∫
d12�e(pa−β)x/�[Veb(ra + x/2 − s) − Veb(ra − x/2 − s)]fa(ra,β)geb(r,p; ra,α). (65)

Equation (65) represents a pair of equations, a,b equals “e” or “p”. For a,b = e, rb = r ′ and pb = p′, while for a,b = p, rb = R

and pb = P . The pair of equations (65) requires knowledge of the one-particle electron and proton distribution functions. The
former comes from Eq. (47) while the latter comes from the proton MD simulation. Equations (47) and (65) are the most general
description of the nondegenerate electron dynamics, assuming weak electron-electron and electron-proton correlations [58,60,64].
Given the one-particle proton distribution function which comes from the MD simulation, it describes an inhomogeneous, time
dependent, nonlocal (due to quantum diffraction), non-Markovian, dynamically screened electron plasma. No assumption is made
concerning the relative time scales of correlations versus one-particle distributions functions (Bogoliubov hypothesis). In the limit
of spatial homogeneity and assuming the Bogoliubov hypothesis, this set of equations becomes the quantum Lenard-Balescu
equation for nondegenerate electrons [60]. If a further simplification is invoked, namely static screening, then this equation
becomes the quantum Landau equation. Thus KTMD allows flexibility in that, given an MD calculation of the one-particle
proton distribution function, the electron dynamics can be described by any number of approximations (including static) to the
full electron kinetic equation.

In summary, with Eq. (65), the closed set of KTMD equations are

∂fe(re,pe)

∂t
+ pe

me

· ∇re
fe(re,pe) = i

�

∑
b

∫
d12�b ei(pe−α)xe/�[Veb(re + xe/2 − sb) − Veb(re − xe/2 − sb)]fe(re,α)fb(sb,βb)

+ i

�

∑
b

∫
d12�b ei(pe−α)xe/�[Veb(re + xe/2 − sb) − Veb(re − xe/2 − sb)]geb(re,α; sb,βb),

(66)

∂fnp

∂t
+

np∑
i=1

Pi

mp

· ∇Ri
fnp

=
np∑
i<j

Vpp(Ri − Rj )
{←−∇ Ri

· −→∇ Pi
+ ←−∇ Rj

· −→∇ Pj

}
fnp

+
np∑
i

∫
d3rVep(r − Ri)Ne(r)

←−∇ Ri
· −→∇ Pi

fnp

+
np∑
i

∫
d3p d3r d3R′ d3P ′gep(r,p; R′,P ′)Vep(r − Ri)

←−∇ Ri
· −→∇ Pi

fnp
. (67)

033104-11



F. R. GRAZIANI, J. D. BAUER, AND M. S. MURILLO PHYSICAL REVIEW E 90, 033104 (2014)

In this full realization of KTMD, we first note that all
quantum effects associated with the electron-electron and
electron-proton interactions are contained in the one-particle
electron distribution function and the electron-electron and
electron-proton correlation functions. Second, beyond the
classical proton-proton Coulomb forces, the proton dynamics
are modified by a dynamical mean-field force and a force term
due to the correlations. The force term due to correlations in-
troduces a momentum dependence into the effective potential
between ions.

VI. CONCLUSION

A hybrid method based on coupling a continuum treatment
of electrons using quantum kinetic theory with a molecular
dynamics treatment of the ions has been derived from a first
principles approach based on the many-body von Neumann
equations. Even though the derivation has been done for a
fully ionized electron-proton plasma, the remarks given here
will refer to the more general case of electrons and ions in
a fully ionized plasma. KTMD is flexible in its treatment of
the electrons. It has the advantage that the quantum kinetic
equation describing the electron dynamics can take on a variety
of forms based on the electron plasma physical conditions
and the approximations one wants to invoke. At the basic
level, the quantum kinetic equation for the electrons (43) is
the typical Wigner equation first derived by Balescu [59] and
Guernsey [60]. However, depending on the application, this
kinetic equation can be approximated by the quantum Lenard-
Balescu [59,60,64] or quantum Landau equations [72].

In the Introduction, the classical-quantum dual nature of
electrons and their treatment with QSP was discussed. The
electrons in KTMD are treated as a continuous medium or
fluid, which interacts with the ions. The electron plasma
spatial and temporal evolution is described by a set of coupled

quantum kinetic equations for the one-particle and two-particle
correlation functions. Within KTMD, the ions are classical
point particles modeled with MD. The ions evolve according
to the classical Newton equations but with a set of effective
ion-ion potentials dependent on the local electron density and
electron-proton correlations. Unlike QSP, the effective ion-ion
interaction is fully consistent with the dynamics of the system.

Finally, it should be noted that both the mean-field and
STLS variations of KTMD involve only the electron density.
Another option that will be considered in the future is to solve
a set of moment equations derived from the electron quantum
kinetic equations. The moment equations are essentially a
quantum hydrodynamic description of the electron plasma.
The utility of this approach is that a coupled set of field
variables (density, momentum, and energy) obeying a set
of hydrodynamic equations should be easier to solve than a
coupled set of kinetic equations.
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