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Kubo conductivity tensor for two- and three-dimensional magnetic nulls
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The complete Kubo conductivity tensor is computed in two- and three-dimensional linear magnetic null systems
using collisionless single-particle simulations. Regions of chaotic charged-particle dynamics are constructed for
each case. It is found that stochastic frequency mixing of particle bounce motion, as well as gyromotion, contribute
significantly to the conductivity. The conductivity curves are well approximated by power laws over a certain
frequency range and the ac conductivity is found to be an order of magnitude smaller than the dc value, leading
to enhanced resistivity, particularly near the cyclotron frequency. The ac conductivities must be accounted for in
computation of the total dissipation.
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I. INTRODUCTION

Magnetic reconnection is the process in which magnetic
field lines from two or more distinct fields cross-connect and
reassemble themselves in a plasma to form new magnetic
configurations. This is driven by the release of stored mag-
netic energy through dissipative processes such as classical
collisions or anomalous resistivity. The consequence of recon-
necting magnetic fields is the possible formation of a magnetic
null (alternatively, a magnetic neutral point), which is the area
between distinct magnetic domains, providing the magnitude
of the field becomes zero.

Giovanelli [1] suggested that an electric field near a
magnetic null point has the ability to accelerate free electrons,
leading to a possible mechanism for solar flares. Neutral points
were soon applied to models of the magnetosphere by Hoyle
[2]. Dungey [3] developed the theory of magnetic reconnection
and its relation to magnetic neutral points. Electric fields near
null points can heat and accelerate particles towards areas of
stronger magnetic field, resulting in energy being carried away
from the magnetic field which drives magnetic reconnection;
this has been demonstrated in recent laboratory experiments,
e.g., Ref. [4]. The time scale of an average solar flare is on the
order of 102–103 s. To explain this rapid or explosive magnetic
energy release, a fast reconnection mechanism was formulated
by Petschek [5] and has been generalized by others [6,7]. While
this mechanism yields correct time scales, previous magne-
tohydrodynamics simulations have failed to reproduce these
results when applied to nulls with homogeneous resistivity
[8]. Recently, Baty et al. have been able to reproduce correct
time scales using Petschek reconnection with homogeneous
resistivity but with nonuniform viscosity profiles [9]. One of
the main difficulties in magnetic reconnection calculations
is establishing the dominant temporal and length scales of
the process. While collisional reconnection processes can be
modeled fairly well using uniform resistivities, systems with
nonuniform resistivity and three-dimensional effects are less
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understood. Also, the theory behind collisionless reconnection
is not very well developed.

One important aspect of magnetic reconnection is the
conductivity (or resistivity) around the region of reconnecting
field lines, where the magnitude of the conductivity can
determine the time scale of the process by calculating the
dissipation D = ∫

V
E · j dx, where E is the electric field, j is

the current, and V is over the entire space and time domain
of the dissipation region. To determine E, Ohm’s law can
be used for low-β magnetic fields, j = σE, where σ is the
conductivity tensor. There is no exact method of calculating
the conductivity tensor, therefore different methods must be
studied and compared.

Speiser showed that resistivity can exist without particle
collisions or wave interactions [10]. He derived two collision-
less resistivities, one based on the gyromotion of particles and
another based on nonadiabatic acceleration around regions
of magnetic diffusion. Another method for calculating the
conductivity is the Kubo formalism [11,12]. One advantage of
the Kubo conductivity is its ability to compute conductivities
over an entire spectrum of applied electric fields. Similar to
the Kubo conductivity is the linearized Vlasov conductivity,
which is derived by using a kinetic theory of plasmas. For
ergodic systems, the Kubo conductivity and linearized Vlasov
conductivity are equivalent [12]. Previous work on fluctuating
electric fields and electromagnetic disturbances in the vicinity
of magnetic field nulls have focused on energy redistribution
time scales and particle acceleration processes [13–16]. In
this work we consider the ac conductivity due to stochastic
frequency mixing of gyromotion and particle bounce motion.

Martin [17] studied the chaotic dynamics of the two-
dimensional X point using the method of Lyapunov exponents
for a variety of situations. It was found that even without
an applied electric field, dynamics around a null point are
generally chaotic. Numata and Yoshida [18,19] calculated the
conductivity of an expanded X point (known as a double-Y
point) by using a conductivity similar to that derived by Speiser
and calculated the reconnection dynamics by using Petschek’s
model. It was found that a single chaos zone, while enhancing
the resistivity of the system, cannot solely account for fast-type
reconnection.

In a series of papers Horton et al. investigated the colli-
sionless DC conductivity in a two-dimensional approximation
to the magnetic null in the geomagnetic tail by using the
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Vlasov conductivity [12,20,21]. It was found that stochastic
processes near the magnetic null resulted in power-law decays
of the correlation of velocities with an effective collision time,
proportional to the cyclotron period, being used to calculate
the energy dissipation of the system. Holland and Chen [22]
criticized the use of the Vlasov conductivity in a number of
ways, stating that it may not satisfy the necessary conditions
needed to render it valid near magnetic null points. It was also
found that the Vlasov conductivity was sensitive to the total
integration time of the simulation. For long simulation times,
particles would also spend most of their time in nonchaotic
regions, rendering a definition of conductivity based on chaotic
motion ambiguous. Afterwards, they proposed a method to
find the energy dissipation of particles based on a method by
Cowley [23], which is derived from the difference of ingoing
and outgoing particle pitch angles. Finally, they note that
their results contradict results found by Speiser [10], stating
that the simple relation j = σE may not be valid in plasmas.
Hernandez and Horton presented calculations demonstrating
that long-term correlated motion near regions of chaos lead to
important contributions to the conductivity, as well as arguing
that the necessary conditions are met in order to apply the
Vlasov conductivity [24].

In recent years, more attention has been given to the recon-
nection near three-dimensional null points. These null points
offer a large variety of different topological configurations.
Cowley [25] first studied the structure of a three-dimensional
potential null of the form B = (αx,βy,−(α + β)z), stating
that the neutral point consisted of a spine with field lines
expanding to a so-called fan plane. Fukao et al. [26] studied
more general neutral points, finding spiral structures. He
noted that, in general, the spine and the fan of the null are
not perpendicular. Parnell et al. performed a complete study
on all possible types of three-dimensional linear nulls, as
well as degenerate two-dimensional null cases [27]. Recently,
the European Space Agency Cluster satellites observed a
three-dimensional magnetic null in the Earth’s magnetosphere
[28]. The four separated spacecraft enabled a detailed analysis
of the field structure and indicated a spatial scale on the order
of the ion inertial length (c/ωpi).

The purpose of this study is to construct the complete
frequency-dependent conductivity tensor of the potential null
points described in Parnell’s study [27] by using the Kubo
conductivity formula, as well as to gain insight into the validity
of the equivalent Vlasov conductivity used by Horton et al.
In this paper the ac conductivity of the double-Y point in
Numata and Yoshida [18] has been computed using the Kubo
formalism and compared with the mean-drift method [18]
which only yields the dc value. Lyapunov exponents for all
systems are determined to better understand the underlying
chaotic dynamics. Finally, the energy dissipation has been
computed and compared to regular dynamics further away
from magnetic null points.

This paper is organized as follows: Section II describes
the procedure used in computing Lyapunov exponents
and the conductivities of interest, as well as the methodology
of the computer simulations. Section III deals with the study
of the two-dimensional system from Numata and Yoshida
[18], as well as the comparison of the Kubo and Speiser
conductivities. Section IV contains the study of the three-

dimensional potential null systems outlined in Parnell et al.
[27]. The discussion of the results as well as the summary are
presented in Sec. V.

II. SIMULATION APPROACH

The simulation of microscopic particle dynamics in the
vicinity of magnetic nulls is based on a system of noninteract-
ing particles in an electromagnetic field with the equations of
motion

m
dv
dt

= q[E(x) + v × B(x)], (1)

where q and m are the charge and mass of the particle, re-
spectively. In this simulation normalized units are used where
x̂ = x/L, b̂ = B/B0, t̂ = t/τA, v̂ = v/vA, ê = E/mAvAB0,
where vA = B0/

√
μ0nm is the Alfvén velocity, n is the plasma

density, B0 is the magnitude of the magnetic field, τA ≡ L/vA,
L is the scale-length of the experiment, and mA = E0/B0vA

is the Alfvén Mach number. The magnetic field in the Alfvén
velocity is taken as the asymptotic unit magnetic field. This
gives a normalized equation of motion,

λi

L

dv̂
dt̂

= mAê + v̂ × b̂,

where λi = c/ωp. Here c is the speed of light and ωp is the
plasma frequency for the specified particle species. We let
L = λi so τ−1

A = ωc. Although the results from this study
can be scaled for both electrons and ions, it is assumed
that since the ion Larmor radius is much greater than that
of the electron, most effects will be the result from ion
motion, as it will experience greater chaotic effects by being
closer to the magnetic null. The equations of motion are
integrated explicitly with particle positions being evaluated
at every integer step and the particle velocities, as well as the
electromagnetic fields, being evaluated at every half-integer
step. All simulations are run with a time step of �t̂ = 0.01
so cyclotron motion is accurately resolved. Particle velocities
are initialized using a Maxwellian distribution with v̂T =
vT /vA = 0.05.

Initial particle positions are uniformly distributed over the
region of chaos around the magnetic neutral point. This region
of chaos is determined by the growth rate of the unnormalized
maximal Lyapunov exponent (uMLE), which is the maximal
Lyapunov exponent λ1 [29,30] multiplied by the time step, i.e.,

λ1t = ln

√
�r(t) · �r(t)√
�r0 · �r0

, (2)

where t is the time of the simulation, �r is the difference
between the phase-space vectors of two trajectories which
are infinitesimally separated at t = 0, and the dot product(·)
denotes the inner product in a six-dimensional phase space.
When particles are close to the magnetic null, the uMLE grows
linearly, while particles far away from the null experience weak
growth. The region of chaos is determined by plotting points
along a particle trajectory where the time derivative of λ1t

is greater than a specified threshold value, which is unity for
these simulations. In practice, 100 particles are used in the
simulations lasting 100 000 time steps to determine the chaos
region.
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The μν component of the conductivity tensor is computed
using the Kubo conductivity formula [11]

σμν(ω) = nq2

mv2
T

∫ ∞

0
e−iωt 〈vν(0)vμ(t)〉dt, (3)

where ω is the frequency of the perturbation electric field,
vT is the initial thermal velocity, and 〈. . . 〉 denotes the
ensemble average. The Kubo conductivity is derived by using
the fluctuation-dissipation theorem [31] in a magnetic system.
The integrand of the Kubo conductivity deals with velocities
of the unperturbed equilibrium magnetic field, so in all of our
simulations, E = 0. When the system is ergodic, the ensemble
average can be replaced with a time-average, giving

σμν(ω) = nq2

mv2
T

1

N

∑
N

∫ ∞

0
lim

T →∞
1

T

×
∫ T

0
e−iωτ vν(t)vμ(t + τ )dtdτ, (4)

where the conductivity is averaged over N particles. This is
equivalent to the conductivity tensor derived from the Vlasov
equation. In normalized units this becomes

σ̂μν(ω̂) = 1

Nv̂2
T

∑
N

∫ ∞

0
lim

T̂ →∞
1

T̂

×
∫ T̂

0
e−iω̂τ̂ v̂ν(t̂)v̂μ(t̂ + τ̂ )dt̂dτ̂ . (5)

The systems considered in this paper were determined to be
ergodic by computing both Eqs. (3) and (4). This is explained
in detail for the two- and three-dimensional cases in Secs. III
and IV, respectively.

A useful theorem to note here is the cross-correlation
theorem,∫ ∞

−∞
Ā(t)B(t + τ )dt = 1

2π

∫ ∞

−∞
Ā(ω)B(ω)e−iωtdω, (6)

which states that the correlation of variables A and B is
simply the inverse Fourier transform of the power spectrum
between variables A and B, where the overbar signifies the
complex conjugate. When A = B, this theorem reduces
to the Wiener-Khinchin theorem. Therefore, it follows that
the Vlasov conductivity is simply proportional to the power
spectrum of velocity vμ and vν . As a corollary, when the Vlasov
conductivity is integrated over all frequencies,∫ ∞

0
dωRe σ (ω) = nq2

m

π

2
, (7)

which can be seen by taking the inverse Fourier transform of
the power spectrum with t = 0.

Numata and Yoshida [18] derived a dc conductivity (ω = 0)
based on the dissipative equation in normalized form,

ρ̂
d ˆ̄v

dt̂
= mAêz − ν̂eff ˆ̄v, (8)

with the following analytical solution for the mean-drift ( ˆ̄v):

ˆ̄v = mAêz

ν̂eff

[
1 − exp

(
− ν̂eff

ρ̂
t̂

)]
. (9)

Here ρ̂ is the effective test particle mass (normalized by the ion
mass), ν̂eff is an effective collision frequency, and êz is the z

component of the normalized electric field. Using Ohm’s law,
we define an effective resistivity ηeff ,

Ez = ηeffjz = ηeffnqv̄sat, (10)

where n is the density and v̄sat is defined as the asymptotic
limit of the average z velocity for large times given by ˆ̄vsat =
mAêz/ν̂eff in normalized form. From this, one can show that
the resistivity is

ηeff

μ0
= λ2

i ωcν̂eff, (11)

where λi = c/ωpi is the ion skin depth and ωpi the ion plasma
frequency. The conductivity is simply the reciprocal of the
resistivity. This Kubo conductivity can also be expressed as an
effective collision time through

ν̂−1
eff = σzz(0)μ0λ

2
i ωci

= 1

Nv̂2
T

N∑
i=1

∫ ∞

0
lim

T̂ →∞
1

T̂

∫ T̂

0
v̂z(t̂)v̂z(t̂ − τ̂ )dt̂dτ̂ . (12)

It is important to note that the mean-drift method gives an
enhanced local conductivity near the region of chaotic motion.
Furthermore, the collision time based on this method and the
Vlasov (or Kubo) conductivity may greatly differ, as will be
discussed later.

III. 2D MAGNETIC NULL CONDUCTIVITY

Before applying the Kubo conductivity to the three-
dimensional magnetic null, we construct the conductivity ten-
sor for a previously studied two-dimensional null. Numata and
Yoshida [18] proposed an extension to the two-dimensional
X-type null using the magnetic field model

B =
{

[B0(y ∓ ly)/lx,B0x/lx,0] (±y > ly),

(0,B0x/lx,0) (|y| � ly),
(13)

where lx = ly = 1 is taken for simplicity. This magnetic field
is associated with the current

j = 1

μ0
∇ × B =

{
0 (±y > ly),

(μ0lx)−1B0ẑ (|y| � ly).
(14)

Sharp peaks in the frequency-dependent Kubo conductivity
correspond to regular orbits in the given magnetic field and
these are analyzed first. Regular orbits in the two-dimensional
null are those with a constant adiabatic invariant μ (or magnetic
moment) throughout the entire simulation. They are typically
the orbits far from the magnetic null. Two motions characterize
these orbits, the first being the bounce motion around the
hyperbolic field lines of B [32], which are given by

x =
√

y2 + C2

outside the ly region, where C is a constant and ly = 0. Field
lines in the region |y| < ly are simply straight lines that travel
from −ly to ly with constant x. As a particle travels along a
field line, it experiences the mirror force

F = −μ∇B = −μB0

lx

xx̂ + yŷ√
x2 + y2

, (15)
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FIG. 1. Conductivity for a typical regular orbit for the two-
dimensional magnetic null. Dashed line denotes the theoretical
location of the conductivity peak.

where B0 = |B0| is the magnitude of the unit magnetic field.
In order to simplify the bounce frequency calculation we set
ly = 0. Far along the field lines, the mirror force causes
particles to move back toward the null in parabolic orbits.
This results in a bounce motion with period and frequency

TB = 2π

ωB

= 4
∫ ym

0

ds

v‖

= 4

v0

∫ ym

0

√
2y2 + C2

√
y2 + C2

√
1 − sin2 θ0

√
2y2+C2√
y2

0 +C2

dy,

(16)

where ds is an element of arc length along a field line, ym is the
mirroring point with v‖ = 0, and θ0 is the initial pitch angle of
the particle. For orbits that pass through the region |y| < ly , an
extra term 4ly/v‖0 is added, where v‖0 is the parallel velocity
within the region proper. To test Eq. (16), we use a particle with
initial conditions v0 = 0.086, ly = 1, C = 10, sin θ0 = 0.581,
and y0 = 0. This gives ym ≈ 19.7 and ωB/2π = 3.94 × 10−4,
which should lead to a sharp peak at ωB = 2.47 × 10−3 in the
σyy(ω) conductivity and a sharp peak at ω = 2ωB in the σxx(ω)
conductivity. This agrees with simulation results to within 10%
error and the result for σyy(ω) is presented in Fig. 1.

The second motion that characterizes regular orbits in this
magnetic geometry is the ∇B drift,

μ

q

B × ∇B

B2
=

{
μB3

0
qB3l3

x
[(y ∓ ly)2 − x2]ẑ (±y > ly),

μq−1x−1ẑ (|y| � ly),

(17)

This results in a δ-function peak in the dc (ω = 0) component
of the σzz conductivity. Since v∇B is inversely proportional
to the xy coordinates at large distances from the magnetic
neutral point, the z-drift velocity is negligible for regular
orbits. Apart from the two motions mentioned above, peaks
are also expected around the cyclotron frequency (defined
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FIG. 2. Typical particle orbit (solid line) in the Y-shaped mag-
netic field (dotted line) with lx = ly and vs = 0.05vA.

using a mean B-field value due to magnetic inhomogeneity)
for all diagonal components of the conductivity tensor,
corresponding to cyclotron-resonant dissipation. For regular
orbits the particles stay in the vicinity of the magnetic null
and the cyclotron frequency varies within a small range,
resulting in a sharp peak. Conversely, chaotic orbits may
have orbits that travel much further away from the null region
and the frequency can vary by about an order of magnitude.
This produces a broadened cyclotron frequency peak in the
frequency-dependent conductivity.

In Fig. 2 typical orbit for a particle near the chaos region
is displayed. Particles that leave the chaos region eventually
return due to the mirror force along the field lines. As the
mirror force on the particle is directly proportional to the
magnetic moment μ, the bounce times may vary considerably
as the value of μ will not be conserved once the particle
re-enters the chaos region. The violation of the invariance
of μ is the signature of these chaotic orbits. The conductivity
tensor components for these trajectories contain a spectrum of
frequencies that vary depending on the initial conditions and
thus reflects the sensitivity of chaotic motion.

Figure 3 illustrates the results of determining the chaos re-
gion using the maximal Lyapunov exponent for the lx = ly = 1
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(b) mA = 0.001
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FIG. 3. Chaotic particle trajectories which define the chaos region
for the two-dimensional null with mA = 0.001, lx = 1, ly = 2 (a)
and ly = 1 (b). Dashed lines indicate the zone of chaos defined in
Ref. [18].
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FIG. 4. Typical evolution of the Lyapunov spectrum containing
six exponents for an average of 10 particles.

null system as shown in Fig. 3(a) and the lx = 1,ly = 2 null
system given in Fig. 3(b). These were computed by tracking
the trajectories of 100 particles over 2 × 106 time steps using
a time-step value �t̂ = 0.01. These results agree with the
chaos region defined in Numata and Yoshida [18] that is best
described as a stadium-shaped domain; a rectangle centered
around the origin with major length 2ly on the y axis, minor
length lx on the x axis, and two half-circles of radius lx on
either side.

The typical evolution of the Lyapunov spectrum for an
average of 10 particles over two million time steps is displayed
in Fig. 4. All six exponents converge to a definite value for large
t , with λi = −λ6−i , i = 1,2,3. From the computation of the
Lyapunov spectrum, averaged over 100 particles, we obtain
three positive Lyapunov exponents with the following values:
λ1 ≈ 0.02, λ2 ≈ 0.001, and λ3 = 0, thus indicating chaotic
motion.

To test the ergodicity of the system, both Eqs. (3) and
(4) were computed and compared. Conductivity computations
using Eq. (4) were carried out using an ensemble of 30 000
particles over 221 time steps. The time-step number in base
2 optimizes the computation of the fast Fourier transform
(FFT) and is large enough to ensure resolution of the regular
and chaotic motion. Particles were initially spread uniformly
throughout the chaos region. For the computation of Eq. (3)
an initial particle distribution more representative of the
entire phase space was needed. This was achieved by taking
the Maxwellian particle distribution of five million particles
uniformly spread throughout the chaos region and evolving
it over 200 000 simulation steps. This created a distribution
with particles both inside and outside of the chaos region. The
results of these simulations are shown in Fig. 5 and confirmed
the ergodicity of the two-dimensional system.

In addition to verifying the ergodicity assumption, the time-
averaged Lagrangian velocity autocorrelation was computed
in order to check for long-range correlations and anomalous
statistics. From the temporal behavior of the velocity autocor-
relation presented in Fig. 6 we find that while particles stay
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FIG. 5. Comparison between Kubo and Vlasov conductivities
computed for the 2D magnetic null. The Vlasov data set has been
multiplied by 10 for clarity.

in the chaos region their Lagrangian-velocity autocorrelations
experience power-law decay with exponents of ∼−0.1. Once
particles begin leaving the chaos region, they experience
magnetic moment mixing and the decay becomes exponential.
However, as integration time is increased the region over which
the power law holds similarly increases, reflecting the fact
that particles continuously re-enter the chaos region. If this
trend holds for arbitrarily long simulation time, then the dc
component of the Kubo conductivity tensor may not converge.

For further conductivity calculations the Vlasov conduc-
tivity was chosen over the Kubo conductivity since it has the
advantage of generating a greater number of correlations in a
smaller amount of time. Three cases of initial positions were
used where particles are initially placed at specific points in the
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FIG. 6. Lagrangian velocity autocorrelation in the x direction for
the 2D magnetic null on a lin-log scale (a) and a log-log scale (b).
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FIG. 7. The conductivity tensor component σxx(ω). ω and σxx are
in normalized units. Case IV follows the curve of Case I. Power-law
fits are shown for Cases III and IV.

chaos region. These positions are x̂ = (0,0,0),(0,0.5,0), and
(0.5,0.5,0) denoted by Cases I, II, and III, respectively. Case
IV denotes the initial particle ensemble distributed uniformily
over the chaos region. All cases were run five times with a
different random seed to provide statistics for error analysis.
Care must be taken to determine which points in the frequency
range represent sufficiently sampled frequencies. A range of
frequencies, defined by a minimum and a maximum frequency,
can be determined by both the time step and the maximum
integration time. The maximum frequency is given by the
Nyquist frequency ωmax = π/�t ≈ 300, while the minimum
frequency is given by ωmin ≈ π/N�t = 2 × 10−4. In practice,
frequencies that fall within a factor of 4 of these cutoffs are
also considered to be undersampled. These simulations focus
on the case where lx = ly = 1.

Figure 7 shows the conductivity tensor component σxx(ω)
on a log-log scale in normalized units using one run for each
case. The curve for frequencies below the cyclotron frequency
ωc ≈ 1 converges to a power law with a unique exponent
for all cases and additional peaks appear in the cyclotron
frequency range, 0.1 < ωc < 5. The location of these peaks
change depending on the initial position of the particles. Power
laws of the form aωb are used to fit the conductivity curves
in all cases, where a and b are parameters. These functions
are fitted using the method of nonlinear least squares [33]. The
range over which fitting is performed is determined by running
the simulation for varying time intervals and comparing how
the curves converge to the power law. In general, the parameter
a is of order 10−4, while the exponent b generally falls within
the range −1 < b < −0.5. Case II exhibits a prefactor (a) that
differs from that of the other cases.

Figures 8 and 9 display the conductivity tensor components
σyy(ω) and σzz(ω), respectively. As with σxx(ω), simulations
show the curve for frequencies below the cyclotron frequency
converge to a power law, with additional peaks appearing
in the cyclotron frequency range. In all cases, σzz(ω) dis-
plays a jaggedness for small frequencies ω  ωc. This is
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FIG. 8. The conductivity tensor component σyy(ω). ω and σyy are
in normalized units. Case IV follows the curve of Case I. Power-law
fits are shown for Cases III and IV.

characteristic of a numeric δ function v̂2
z δ(ω), where v̂2

z is
the average squared velocity in the z direction. This δ function
is a consequence of taking the Fourier transform of a constant
function (the average velocity of a single particle in the
z direction). Nondiagonal components of the conductivity
tensor σμν are characterized by a noise for small values of ω

which eventually disappears for larger frequency values. Since
all values on these curves are smaller than their calculated
errors, the off-diagonal elements of the conductivity tensor
are considered to be zero. The parameters for all power laws
σμν(ω) = aμνω

bμν are tabulated in Table I. Power-law fits
for Cases III and IV are plotted in Figs. 7–9 for illustrative
purposes.
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FIG. 9. The conductivity tensor component σ̂zz(ω̂). Case IV
follows the curve of Case I. Power-law fits are shown for Cases
III and IV.
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TABLE I. Parameters for the diagonal component power laws of
the conductivity tensor in reduced units.

Case I Case II

axx (1.126 ± 0.005) × 10−1 (1.143 ± 0.08) × 10−1

bxx (−9.233 ± 0.004) × 10−1 (−9.208 ± 0.0013) × 10−1

ayy (3.16 ± 0.03) × 10−1 (3.22 ± 0.05) × 10−1

byy (−7.794 ± 0.014) × 10−1 (−7.77 ± 0.02) × 10−1

azz (1.000 ± 0.008) × 10−1 (1.013 ± 0.010) × 10−1

bzz (−7.370 ± 0.013) × 10−1 (−7.357 ± 0.0012) × 10−1

Case III Case IV
axx (4.23 ± 0.08) × 10−1 (1.56 ± 0.03) × 10−1

bxx (−9.293 ± 0.004) × 10−1 (−8.51 ± 0.03) × 10−1

ayy (1.060 ± 0.015) × 10−1 (4.7 ± 0.2) × 10−1

byy (−8.02 ± 0.02) × 10−1 (−7.07 ± 0.06) × 10−1

azz (5.91 ± 0.09) × 10−2 (2.58 ± 0.03) × 10−2

bzz (−8.63 ± 0.03) × 10−1 (−8.051 ± 0.0008) × 10−1

IV. 3D MAGNETIC NULL MODEL AND CONDUCTIVITY

The most general form of a linear magnetic field around a
three-dimensional neutral point at the origin can be described
using the form proposed in Ref. [27],

B = M · r,

where r is the position vector and M is a 3 × 3 matrix of the
form

M =

⎡
⎢⎣

1 1
2 (q − j‖) 0

1
2 (q + j‖) p 0

0 j⊥ −(p + 1)

⎤
⎥⎦ .

Here p and q are potential parameters and j‖ and j⊥ are the
current parallel and perpendicular to the spine, respectively.
In this model, the spine is set along the z axis. We only
consider the potential null cases in this paper, therefore we set
j⊥ = j‖ = q = 0, where a rotation of the matrix M has been

performed to eliminate q. This results in the magnetic field

B = [x,py,−(p + 1)z]. (18)

This potential magnetic null has the fan axis in the xy plane
and a spine along the z axis. p must be greater than zero to
ensure that the spine remains on the z axis. It is useful to note
that when p > 1, the magnetic null is identical to the case p−1

where the x and y axes have been interchanged, therefore it
is only necessary to study the cases where 0 � p � 1. When
p = 0, the three-dimensional neutral point devolves into a
two-dimensional null line lying on the y axis. The case p = ∞
is identical to the p = 0, with the null line now lying on the
x axis. Field lines for the potential nulls are easily solved and
can be expressed as

y = c1x
p, z = c2x

−(1+p), (19)

where c1 and c2 are constants. The element of arc length along
a field line is then

ds2 = dx2 + dy2 + dz2

= dx2
[
1 + c2

1p
2x2(p−1) + c2

2(1 + p)2x−2(2+p)
]
. (20)

As with the two-dimensional null case, regular orbits of
the three-dimensional null are those for which the adiabatic
invariant μ is conserved. Typically these orbits occur at great
distances away from the magnetic null. Regular dynamics for
the three-dimensional potential null (j⊥ = j‖ = 0, p �= 0) is
characterized by two periodic motions around the null point,
a bounce motion which oscillates between the spine and the
fan plane and a periodic ∇B motion that oscillates around
the spine above the fan plane. The bounce motion can be
calculated in a procedure similar to the two-dimensional case
by integrating an element of arc length of the field line over
the parallel velocity at that point, giving the bounce frequency

2π

ωB

= 2
∫ x2

x1

ds

v‖
= 2

v

∫ x2

x1

√
1 + c2

1p
2x2(p−1) + c2

2(1 + p)2x−2(2+p)√
1 − sin2 θ0B

−1
0

√
x2 + c2

1p
2x2p + c2

2(p + 1)2x−2(p+1)

dx, (21)

where B0 is the initial magnetic field and x1, x2 are the mirror
points.

The precession frequency ωpre can also be calculated from
the average azimuthal velocity vθ around the z axis caused
by the grad-B drift, as well as the curvature drift. Here we
consider the potential null case. The combined grad-B and
curvature drift is

vR+∇B = m

q

(
v2

‖ + 1

2
v2

⊥

)
Rc × B
R2

cB
2

= mv2

2q

(
2 − sin2 θ0B

−1
0 B

)Rc × B
R2

cB
2

, (22)

where sin θ0 is the particle’s initial pitch angle, B = |B|, and
Rc is the radius of curvature vector with magnitude

Rc =
[
1 + (

df (x)
dx

)2]3/2∣∣ d2f (x)
dx2

∣∣ (23)

and lies in the direction of curvature. Here f (x) is the function
that defines a field line in terms of the variable x. The
precession frequency ωpre is calculated using

ωpre = 〈vθ 〉 =
(

1

s2 − s1

∫ s2

s1

vθds

)
, (24)
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FIG. 10. Conductivity for a typical regular orbit for the three-
dimensional magnetic null. Inset illustrated the precession peak
around the spine axis.

where s1 and s2 are the mirror points of the given field line and

vθ = vR+∇B√
x2 + y2

.

If the simplest case is considered, using a particle confined to
the xz plane with p = 1, this becomes

ωpre = 1

x2 − x1

∫ x2

x1

m

q

(
v2 − 1

2
v2

⊥

)
6c2x

−5(
1 + 4c2

2x
−6

)3/2 dx

= 1

x2 − x1

∫ x1

x2

mv2

2qB

(
2 − sin2

0 θB−1
0 B

)

× 6c2x
−5(

1 + 4c2
2x

−6
)3/2 dx, (25)

where B =
√

x2 + 4c2
2x

−4.
To verify the above equations, solutions are obtained

using a particle with initial parameters c1 = 0, c2 = 421.9,
B0 = 16.8, sin θ0 = 0.679, and v = 3.055. From this sim-
ulation, the mirror points are determined to be x1 = 4.95
and x2 = 35.6, which gives a bounce frequency ωB = 0.101
and precession frequency ωpre = 1.34 × 10−3, in normalized
units. Since these two motions form a product of cosines the
bounce frequency peak actually splits into two peaks with
upper and lower frequencies ωB,± = ωB ± ωpre. The bounce
frequency agrees with simulation results to within an error of
approximately 5%, while Eq. (25) somewhat overestimates the
simulation results by approximately 30% . The conductivity
frequency spectrum results are shown in Fig. 10.

Figure 11 illustrates the chaos region for potential nulls
for p values 1,0.75,0.5,0.25, and 0 calculated using the
maximal Lyapunov exponent. As in Sec. III, these plots were
generated by tracking the trajectories of 100 particles over
2 × 106 steps using time step �t̂ = 0.01. The initial velocities
of the particles are drawn from a Maxwellian distribution with
normalized thermal velocity v̂T = 0.05 and placed uniformly
over a prolate ellipsoid that has unit semiminor axes and a
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FIG. 11. Chaotic particle trajectories for systems with varying
values of p, q = j‖ = j⊥ = 0. Dashed lines indicate magnetic field
lines. Panels (a) and (b) are the x-y and x-z projections for p = 1,
respectively. Panels (c)–(f) show the elongation of the chaos region
in the y direction for p = 0.75,0.5,0.25, and 0, respectively.

semimajor axis equal to 1/p for the results in Figs. 11(a)–11(e)
and over a uniform unit disk in Fig. 11(f). Figures 11(a)
and 11(b) show the x-y and x-z projections for the p = 1
case, respectively. The eigenvectors for potential nulls are the
x, y, and z unit vectors, where the z unit vector corresponds to
the spine and the x, y unit vectors correspond to the major and
minor axes of the fan, respectively. The chaos region for this
case is best described as a sphere of unit radius, which reflects
the azimuthal symmetry of the p = 1 system. This symmetry is
broken for other values of p, as can be seen in Figs. 11(c)–11(f).
For systems having 0 < p < 1 the sphere becomes an ellipsoid
with a unit minor radius and a major radius equal to p−1. Here
the minor axis of the ellipsoid lies along the major axis of
the fan, while the major axis of the ellipsoid lies along the
minor axis of the fan. The x-z projections of these systems
are similar to that of the p = 1 case and therefore are not
shown in this diagram. For p = 0 the chaos region is an
infinitely long cylinder of unit radius since the y direction
is spatially symmetric. The Lyapunov spectra for all systems
were computed using 221 steps, averaged over 100 particles.
The first (maximal) Lyapunov exponents are of the order
10−2 while the second exponents are approximately 10−4. The
two-dimensional p = 0 system has the largest MLE, while the
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FIG. 12. Normalized conductivity tensor component σyy(ω) for
cases dealing with the potential magnetic null. Data sets for p > 0
have been multiplied by increasing powers of 10 for clarity.

p = 0.5 system has the largest MLE for the three-dimensional
nulls.

To test the ergodicity of the three-dimensional system,
Eqs. (3) and (4) were computed for the p = 1 system and
verified to be the same. Initial particle distributions were
prepared using the same procedure described in Sec. III.
The p = 0 is also ergodic as it is topologically similar to
the two-dimensional magnetic null system described in the
previous section. It is assumed that the other cases studied
here, which are topologically similar to the p = 1 case, are
also ergodic. For the remainder of the paper, Eq. (4) is used to
compute the conductivity.

Since the y component of the magnetic field is the
most topologically dependent on the parameter p, the tensor
component σyy(ω) will be considered first. Figure 12 shows the

10-4

10-2

100

102

104

106

108

1010

10-4 10-3 10-2 10-1 100 101 102 103

σ x
x

ω

p = 1
p = 0.75

p = 0.5
p = 0.25

p = 0.1
p = 0

FIG. 13. Normalized conductivity tensor component σxx(ω) for
cases dealing with the potential magnetic null. Data sets for p > 0
have been multiplied by increasing powers of 10 for clarity.
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FIG. 14. Normalized conductivity tensor component σzz(ω) for
cases dealing with the potential magnetic null. Data sets for p > 0
have been multiplied by increasing powers of 10 for clarity.

yy component of the conductivity tensor for all potential cases.
Cyclotron motion produces peaks in all cases for frequencies
around unity, with the p = 1 case following a clear power law
[σμν(ω) = aμνω

bμν ] for the lower frequencies. In all cases,
the conductivity for frequencies above the cyclotron region
ω > 10 becomes negligible. The p = 0 conductivity below the
cyclotron frequency follows a power law with an additional
δ function which represents the average squared velocity in
the y direction and is of the order 10−5. For intermediate
cases where 0 < p < 1, a distinct peak around ω = 10−2 is
seen, with a decrease in conductivity for decreasing ω. As the
simulation time is increased, these peaks shift towards smaller

TABLE II. Parameters for the potential null power laws.

p axx byy

0 0.182 ± 0.002 −0.861 ± 0.002
0.1 0.342 ± 0.004 −0.661 ± 0.003
0.25 0.754 ± 0.008 −0.509 ± 0.004
0.5 0.377 ± 0.006 −0.637 ± 0.003
0.75 0.351 ± 0.06 −0.654 ± 0.003
1 0.173 ± 0.002 −0.774 ± 0.002

p ayy byy

0 (8.82 ± 0.05) × 10−3 −0.650 ± 0.003
0.1 (5.98 ± 0.15) × 10−3 −1.810 ± 0.009
0.25 (5.94 ± 0.10) × 10−3 −1.785 ± 0.005
0.5 (9.10 ± 0.11) × 10−3 −1.654 ± 0.003
0.75 (1.93 ± 0.10) × 10−2 −1.423 ± 0.003
1 0.173 ± 0.005 −0.775 ± 0.002

p azz bzz

0 0.181 ± 0.003 −0.861 ± 0.002
0.1 0.270 ± 0.013 −0.689 ± 0.009
0.25 0.754 ± 0.007 −0.509 ± 0.002
0.5 0.876 ± 0.004 −0.459 ± 0.002
0.75 0.829 ± 0.011 −0.479 ± 0.03
1 0.131 ± 0.003 −0.808 ± 0.005
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ω and decrease in width and the conductivity curves appear
to converge on a power law. Assuming this trend holds for
arbitrarily long simulation time, the power laws are computed
using the points taken from the frequency region between the
peak in question and the cyclotron frequency peak.

Figures 13 and 14 show the conductivity tensor components
σxx(ω) and σzz(ω) on a log-log scale in normalized units using
one run for each case, respectively. As with the σyy(ω) case,
as simulation time is increased the conductivity components
tend to converge to power laws below the cyclotron frequency
ωc ∼ 1. For σxx(ω), cases p = 0 and p = 1 follow an overall
similar shape, with the rest of the cases varying slightly.
These differences become more pronounced for the σzz(ω)
component. As with the two-dimensional case, off-diagonal
tensor components are negligible when compared to their
respective errors and are thus not considered here. Power-law
fits for all three-dimensional cases are tabulated in Table II.

V. DISCUSSION AND SUMMARY

Various methods can be used to compute the conductivity
for collisionless-type plasmas. In this paper, starting with 2D
and 3D magnetic null configurations, we have compared the
local dc conductivity (ω = 0) obtained from the mean-drift
method with the ac conductivity using the Kubo formalism.
At a microscopic level, both of these conductivities can be
related to the lifetime of the particles in the null region.

Speiser [10] defines a general conductivity of the form

σs = ne2

m
τs, (26)

where τs is some effective collision time of the system.
He demonstrates three different effective collision times,
one representing collisional conductivity while the other two
represent collisionless conductivities. The first collisionless
conductivity is based on the finite average lifetime of particles
inside the current sheet layer, where particles typically diffuse.
Here, the particles are freely accelerated by an applied electric
field. Once these particles leave the current sheet layer, they
resume regular motion and the acceleration ceases. The second
collisionless conductivity defined by Speiser is related to the
particle gyromotion and the E × B drift which leads to an ef-
fective collision time τg = m/qB⊥ = ω−1

c . This conductivity
is an off-diagonal element of the complete conductivity tensor.

The mean-drift method can be related to the conductivity
formula in Eq. (26). For the particular case of the 2D magnetic
null, Numata and Yoshida [18] found that, in normalized units,
the particle staying time is equal to the reciprocal of the Alfvén
Mach number (m−1

A , where mA ≡ E0/B0VA), provided that
ly/ lx � 10. This particle staying time becomes the effective
collision time in Eq. (26) and is not unlike the first collisionless
conductivity mentioned by Speiser. For chaotic motion, this
particle staying time must be sufficiently large compared to
the MLE, which requires that mA � 10−2.

Since the magnetic field for the two-dimensional magnetic
null is self-consistent, an approximate conductivity can be
derived by combining Ohm’s law with Ampère’s law,

σ = ∇ × B
μ0E

, (27)

which in normalized units gives

σ̂ =
{

0 (±y > ly),

m−1
A (|y| � ly),

(28)

where mA is the Alfvén Mach number. The computed conduc-
tivity of the system depends on how much time the particles
spend within the range |y| � ly . Self-consistent electric fields
become much more complicated in the three-dimensional
system (see Ref. [32]) and we do not consider these effects
in this work.

The two main contributions to the ac conductivity are
cyclotron motion, which manifests itself as peaks around
the cyclotron region (ω ∼ 1) and correlated bounce motion
from particles leaving from and returning to the magnetic
null region. For linear magnetic fields at distances far away
from the magnetic null, the mirror force is constant and is
proportional to the first adiabatic invariant μ, resulting in
parabolic trajectories along magnetic field lines. The violation
of the invariance of μ around the magnetic null causes bounce
frequency mixing which results in a broad power spectrum
in the conductivity. Conversely, regular orbits drawn from
a Maxwellian result in sharp peaks for both cyclotron and
bounce motion. This bounce frequency contribution is not
captured in the Speiser/Numata-Yoshida formulation of the
conductivity. It is important to compare the magnitude of the
ac conductivity to the dc conductivities mentioned above.
For the two-dimensional model, conductivities around the
cyclotron frequency region ω ∼ 1 are of the order of unity,
σ̂ac ∼ 1, which is an order of magnitude smaller than the
dc conductivity. The dissipation, while negligible for small
frequencies and dc values, can play a significant role when
the electric field frequency is close to the cyclotron frequency.
The diagonal elements of the Kubo conductivity tensor follow
power laws for electric field frequencies below the cyclotron
frequency. This reflects the fact that the Fourier transform of
a power law tα with exponent −1 < α < 0 is also a power
law with exponent −(1 + α). The velocity autocorrelations of
chaotic orbits usually obey these types of power laws. This
results in diverging values for the dc conductivity, though the
divergence in itself is not a problem as an infinite conductivity
simply implies zero resistivity.

It is clear that different formulations of the conductivity give
different results. The Kubo conductivity may not be well suited
for calculating the dc conductivity on systems where particles
are known to escape quickly. The time spent outside the chaos
region may also be problematic, as the bounce motion of a
particle can be greatly affected by the drift velocity introduced
by an applied electric field. In these situations the particle can
leave the chaos region and not return. For this, a finite-lifetime
model may be more appropriate. However, correlated motions
over the entire region inside and outside the zone of chaos can
become important for ac electric fields with frequencies on
the order of the cyclotron frequency. The Kubo conductivity
is able to properly account for these motions, which makes it
a powerful tool for computing ac conductivities.

Interesting features arose from the Kubo conductivity
when applied to three-dimensional magnetic nulls. As with
the two-dimensional cases, the conductivities are generally
well described by power laws. For the potential systems,
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the region around ω ∼ 0.2 shows a noticeable decrease in
conductivity. This inverted peak can be considered the region
that lies between the bounce frequency mixing and the
cyclotron motion regime. As with the two-dimensional cases,
the conductivity is of order unity when the ac frequency is
around the cyclotron region. Throughout the entire range of
frequencies, the magnitude of the potential null conductivities
are similar to that of the two-dimensional cases, though the
spectra differ substantially. This can be attributed to the total
area underneath the conductivity curve, given by Eq. (7).
Once again, the Kubo conductivity becomes significant when
dealing with ac perturbations when the frequency is around
the cyclotron region.

Simulations revealed that the yy component of the potential
conductivity tensor was greatly dependent on the value of the
parameter p. The regions of chaos for these potential nulls are
well defined as an ellipsoid with major radius on the y axis
with magnitude equal to p−1. As the symmetry of the magnetic
null breaks, so does the symmetry in xx and yy components
of the conductivity tensor. However, there appears to be a
disconnect between the conductivity curves of the potential
null cases p = 0.1 and p = 0, as well as the cases p = 1
and p = 0.75. These curves show that even without current,
complex behavior can arise from even simple linear potential
nulls.

The average dissipation 〈j · E〉 can be estimated, though
the Kubo conductivity does not enable direct computation.
Here we consider the current as a sum of equilibrium and
perturbation values,

j = j0 + δj = j0 + σδE. (29)

For either of the two-dimensional null systems, the average
equilibrium current in the z direction is governed by the
grad-B drift. However, this drift has opposite directions for
either side of the magnetic null line, which results in no
average current for the equilibrium system. To calculate the

perturbation dissipation D, we assume a periodic electric field,

D(ω) = 〈j · E0 cos(ωt)〉 =
∑

i

∑
j σij (ω)Ej0Ei0

2

=
∑

i

∑
j ρij (ω)jj ji

2
, (30)

where i,j = x,y,z, which is positive provided the conductivity
tensor is also positive, angular brackets denote the average
over the entire space and time domain, and ρij = 1/σij

is the resistivity. The above formula is valid for systems
with both regular and chaotic orbits. For regular systems,
cyclotron resonance is experienced only near the peaks around
the cyclotron frequency (ω ∼ ωc) and the bounce frequency
(ω ∼ ωB). For chaotic systems, irreversible dissipation will
take place over a broad spectrum of frequencies, with the
strongest dissipation occurring around and below the cyclotron
frequency (ω � ωc). In order to compute the total dissipation,
both the dc and ac conductivities must be taken into account.

To summarize, in this paper we found that while the Kubo
conductivity cannot be used to compute the dc conductivity
of potential linear magnetic nulls, it can be used to generate a
full spectrum of ac conductivities, which can become very
important in magnetic null systems found in collisionless
plasma environments. In order to properly handle both types
of conductivities, the domain of chaos must be determined on
a case-by-case basis for specific magnetic systems. The Kubo
conductivity is characterized by a power-law behavior with
frequency which reflects the decay of correlated motion in
chaotic systems. This behavior plays an important role when
determining the energy dissipation of the system.
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