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Effective potential and interdiffusion in binary ionic mixtures
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We calculate interdiffusion coefficients in a two-component, weakly or strongly coupled ion plasma (gas or
liquid, composed of two ion species immersed into a neutralizing electron background). We use an effective
potential method proposed recently by Baalrud and Daligaut [Phys. Rev. Lett. 110, 235001 (2013)]. It allows us
to extend the standard Chapman-Enskog procedure of calculating the interdiffusion coefficients to the case of
strong Coulomb coupling. We compute binary diffusion coefficients for several ionic mixtures and fit them by
convenient expressions in terms of the generalized Coulomb logarithm. These fits cover a wide range of plasma
parameters spanning from weak to strong Coulomb couplings. They can be used to simulate diffusion of ions in
ordinary stars as well as in white dwarfs and neutron stars.
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I. INTRODUCTION

The importance of Coulomb ionic mixtures cannot be
understated in many fields of physics and astrophysics. In
astrophysics, dense Coulomb plasmas are encountered in
neutron star crusts [1–4], in white dwarfs [5–10], and in giant
planets [11]. Similar properties possess also dusty plasmas [12]
with numerous applications in science and technology. The
properties of dense Coulomb plasmas are also important for
inertial confinement fusion [13], antimatter [14], and ultracold
plasmas [15]. Many applications of such plasmas involve
diffusion.

To describe ion diffusion in Coulomb plasmas one needs
the expressions for the diffusion currents and diffusion
coefficients. The first problem was addressed in our previous
work [16]. The second problem is discussed here.

There is comprehensive astrophysical literature devoted
to diffusion of ions in dense stellar matter. The specific
feature of this diffusion is the long-ranged Coulomb interaction
between ions. In this respect the diffusion of ions has much
in common with the diffusion of particles interacting via a
Yukawa potential with sufficiently large screening length. The
physics of diffusion has many aspects. One can study different
types of diffusion coefficients. Most often considered are
self-diffusion coefficients Dii and, somewhat less often, but
more important, interdiffusion coefficients Dij, which enter
the expressions for the diffusion currents. Here i,j = 1,2, . . .

enumerate ion species in a multicomponent plasma (MCP). In
a one-component plasma (OCP) of ions there is only one self-
diffusion coefficient D1. Note that a self-diffusion coefficient
Dii in MCP should not be confused with a self-diffusion
coefficient D1 in OCP. One can further consider weak or
strong Coulomb coupling, classical or quantum ion motion,
the presence of a magnetic field, degenerate or nondegenerate
electrons, etc. Diffusion is studied with different techniques
such as the Chapman-Enskog approach, Green-Kubo relations,
molecular dynamics (MD) simulations, and effective potential
method, as well as other methods and their combinations.
Some of these cases and methods are discussed below in more
detail.

We mainly focus on the interdiffusion of ions in binary
ionic mixtures (BIMs) which form either Boltzmann gas or a

strongly coupled Coulomb liquid. The ions are assumed to be
fully ionized and the electrons strongly degenerate (although
these restrictions are not very important). The diffusion in a gas
is a classical issue, well studied and described in well-known
monographs [17,18]; the diffusion in liquid is less elaborated.
Our aim will be to provide a unified treatment of the diffusion
coefficients in ion gas and liquid and to present the results
in a form convenient for using in numerical simulations of
ion diffusion and related phenomena. In a BIM, there is one
independent interdiffusion coefficient D12 = D21 and two self-
diffusion coefficients D11 and D22.

Weak Coulomb coupling means that the ions constitute
almost ideal gas. They are moving more or less freely
and diffuse due to relatively weak Coulomb collisions with
neighboring ions. The diffusion coefficients in this limit are
usually expressed through a Coulomb logarithm �, which can
be estimated as the logarithm of the large ratio of the maximum
to minimum impact parameters of colliding ions. Calculations
are done using the classical theory of diffusion in rarefied
gases [17,18]. In astrophysical literature, this theory is often
called the Chapman-Salpeter theory (meaning the application
of the general theory to diffusion due to Coulomb interaction).
Early astrophysical publications based on this theory are cited,
for instance, in Ref. [19]. One can further consider the classical
and quantum limits in ion-ion scattering (note that the motion
of ions is always classical at weak coupling, quantum effects
can emerge only in scattering events). In the classical limit,
the minimum impact parameter in the expression for � is
determined by the classical distance of the closest approach
of colliding ions. In the quantum limit the minimum impact
parameter is determined by the de Broglie wavelengths of
ions. One can also consider the cases of nondegenerate and
degenerate electrons. In the latter case the electrons produce
much weaker screening of the Coulomb interaction (i.e.,
contribute much less to the maximum impact parameter) than
in the former case. We will focus on the classical scattering
limit in the presence of strongly degenerate electrons.

When the coupling becomes stronger, the ratio of the max-
imum to minimum impact parameters decreases, reducing the
Coulomb logarithm. At intermediate couplings the Coulomb
logarithm becomes � ∼ 1, and the diffusion coefficients
D ∼ a2ωp, where a is a typical interion distance and ωp is
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the ion plasma frequency (see Sec. III). Characteristic ion-ion
collision frequencies become comparable to ∼ ωp, and typical
ion mean free paths are ∼ a.

At strong coupling the ions are mostly confined (caged)
in their local potential wells (within respective Wigner-Seitz
cells) and constitute either a Coulomb liquid or Coulomb
crystal. Thus, the ions mainly oscillate around (quasi-)
equilibrium positions and diffuse through thermally activated
jumps from one position to another (neighboring) one. The first
experimental observations of the caging effect in relaxation of
strongly coupled plasmas were made by Bannasch et al. [20].
Here one can distinguish the cases of classical (the temperature
T � Tp) and quantum (T � Tp) ion motion (where Tp =
�ωp/kB is the ion plasma temperature that is close to the
Debye temperature, with kB being the Boltzmann constant).
In the quantum case collective oscillations (plasmons) play
an important role. As for electrons, one can study the cases
of a rigid (incompressible) electron background or weakly
polarizable background. The latter case is similar to the case
of ions interacting via Yukawa potentials (with sufficiently
large screening length). We consider the diffusion in Coulomb
liquid neglecting quantum effects but taking into account both
cases of rigid and slightly polarizable electron background.
These cases give essentially the same results.

A semianalytic consideration of weak coupling was devel-
oped by Fontaine and Michaud [21] who provided the expres-
sions for Dij through a Coulomb logarithm and developed a
computer code for calculating Dij. The authors considered the
cases of quantum and classical minimum impact parameters
in the Coulomb logarithm and introduced the resistance
coefficients Kij (that determine the “friction forces” inversely
proportional to Dij). Their results were extended and used by
Iben and MacDonald [5] (in the case of weak coupling) who
simulated the evolution of 12C-16O white dwarfs.

Pquette et al. [19] calculated binary diffusion coefficients
at weak and moderate couplings using the Chapman-Enskog
(Chapman-Spitzer) formalism with a statically screened
Coulomb potential. The authors presented accurate analytic
fits of collision integrals (tabulated spline coefficients). Their
results are applicable as long as Coulomb coupling is not very
strong. They discussed also earlier MD calculations of the
self-diffusion coefficient at strong coupling.

Pioneering MD calculations of the self-diffusion coefficient
D1 in OCP were performed in 1975 by Hansen et al. [22]. For
the ion coupling parameter � > 1 (defined in Sec. II) they
proposed the fit

D∗
1 = D1/(ωpa2) ≈ 2.95 �−4/3. (1)

Hansen et al. [23] carried out MD calculations of D12, D11,
and D22 in BIMs in the regime of intermediate and strong
couplings. They presented the approximate relation [their
Eq. (23)] between the inter- and self-diffusion coefficients,

D12 ≈ x2D11 + x1D22. (2)

They tabulated D12, D11, and D22 for some coupling strengths
and relative fractions of ions (x1 and x2 = 1 − x1) in the 1H-
4He mixture.

Boercker and Pollock [24] performed MD and advanced
kinetic theory calculations of the interdiffusion coefficients
in BIMs for strong and weak couplings. The results were in

good agreement with previous studies. Robbins et al. [25]
considered self-diffusion in OCP using MD of Yukawa
systems. Rosenfeld et al. [26] performed MD calculations
of BIMs for wide ranges of m2/m1 and Z2/Z1 (ion mass
and charge ratios) at strong, moderate, and weak coupling
in Coulomb plasmas and in Yukawa systems; they studied
self-diffusion and interdiffusion and emphasized close relation
between these systems and the systems of hard spheres.

Ohta and Hamaguchi [27] did extensive MD calculations
of the self-diffusion coefficient in OCP Yukawa systems.
They used the Green-Kubo relation and the ordinary space
diffusion formula to determine D1 (and the results converge).
They tabulated the computed values of D∗

1 = D1/(ωpa2) and
approximated D∗

1 by the expression

D∗
1 = α(T ∗ − 1)β + γ, (3)

where T ∗ = T/Tm and Tm is the melting temperature. They
presented the fit parameters α, β, and γ as functions of the
screening parameter in the Yukawa potential and obtained
good agreement with the results for Coulomb systems in the
cases of large screening lengths in the Yukawa potentials.

Daligault and Murillo [28] performed MD calculations of
the self-diffusion coefficient in OCP using a semiempirical
potential and fitted the results by Eq. (3) with γ = 0.028,
α = 0.00525, and β = 1.154. As the next step Daligault [29]
analyzed liquid dynamics in a strongly coupled OCP and
concluded that although dynamical behavior of ions (with
long-range Coulomb interaction) at strong coupling changed
from almost free particle motion to the caging regime, the
universal laws or ordinary liquids with short-range interaction
remained valid there.

Hughto et al. [30] performed MD calculations of the self-
diffusion coefficient of 22Ne in a mixture of many ion species
at strong coupling. They presented an original fit [their Eq. (8)]
for Dii/D1 (a combination of exponents and powers of �).

In his next paper Daligault [31] performed MD simulations
of self-diffusion in OCP and BIMs at strong coupling and fitted
the results by [his Eq. (4)]

D∗ = D

ωpa2
= A

�
exp(−B�), (4)

which would be appropriate to the regime of caging and
thermally activated jumps (A and B being some fit parameters).
He considers previous fits at strong coupling [like Eq. (3)] as
less physical. In addition, he used standard Chapman-Spitzer
results at weak coupling and emphasized very good agreement
of MD and Chapman-Spitzer approaches at intermediate
coupling. Later Daligault [32] suggested similar ideas for
Yukawa OCP systems.

As the next step Khrapak [33] considered the self-diffusion
coefficient in OCP. He used the standard Chapman-Spitzer
theory at weak coupling and results of MD calculations by
different authors at strong coupling. Based on those results
he suggested a simple and convenient analytic approximation,
which reproduced the cases of weak and strong couplings, by
introducing a generalized Coulomb logarithm �eff .

Finally, quite recently Baalrud and Daligault [34] put
forward the idea that the cases of weak and strong coupling
can be described within the same formalism of the effective
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binary interaction potential and traditional Chapman-Enskog
theory (even at strong Coulomb coupling!). They constructed
some examples of the effective potential inferred from radial
distribution functions of ions g(r); these functions were com-
puted via the hypernetted chain (HNC) approach. The effective
potential allows one not only to account for the screening
effects (this can be done by employing the screened Coulomb
potential) but also take into account even strong correlations
between the ions. This method treats the screening and
correlation effects self-consistently; no “external” screening
lengths are involved. The authors compared the self-diffusion
coefficients in OCP calculated by different methods (their
Fig. 2) and emphasized the importance of expressing the dif-
fusion coefficients through generalized Coulomb logarithms.
We will follow this approach extending it to BIMs.

For the completeness of our consideration let us mention
some others methods which have also been used to calculate
diffusion coefficients in simulations of some phenomena in
dense stars.

Bildsten and Hall [7] proposed to employ the self-diffusion
coefficient D1 to study 22Ne settling in white dwarfs (at strong
coupling). They tried two forms of D1. First, they took D1

using the Stokes-Einstein relation for a particle of radius ap

(taken to be the radius of the ion sphere for 22Ne) moving in a
fluid with viscosity η obtained from fits to the results of MD
simulations. This method is suitable for interdiffusion of trace
ions of one species in BIMs. Second, the authors used D1 ob-
tained in Ref. [22]. They found that the values of D1 estimated
in these two ways were close and led to the same results.

Deloye and Bildsten [8] compared the same two different
forms of self-diffusion coefficients at strong coupling to study
the 22Ne settling in white dwarfs. In addition, they took into ac-
count computational uncertainties of η and obtained that these
uncertainties did not affect noticeably D1. They suggested
using D1 taken from Ref. [22] in modeling diffusion processes.

Peng et al. [35] simulated sedimentation and x-ray bursts
in neutron stars. In their Appendix they described the resis-
tance coefficients and associated diffusion coefficients. They
proposed piecelike interpolation of weak coupling and strong
coupling cases. They considered weak coupling following
Fontaine and Michaud [36] and strong coupling following
Ref. [22].

Although we do not study diffusion in Coulomb crystals
let us mention that the problem was investigated by Hughto
et al. [37] using MD with the natural result that this diffusion
is strongly suppressed in comparison with that in Coulomb
liquid.

It is also worth to mention some papers devoted to diffusion
in magnetized Coulomb plasmas. For instance, Bernu [38]
calculated the self-diffusion coefficient in OCP with a constant
uniform magnetic field B. Much later Ranganathan et al. [39]
repeated MD calculations of self-diffusion in OCP in a
magnetic field. They obtained two self-diffusion coefficients,
D‖ and D⊥, along and across B. Both coefficients decrease
with increasing B, and D⊥ < D‖.

II. HNC CALCULATION OF EFFECTIVE POTENTIAL

Consider a classical (quantum effects neglected) non-
magnetized binary ionic mixture (BIM), which consists of two

ion species and neutralizing rigid electron background [40].
An assumption of the rigid electron background allows us
to factorize out the electrons while calculating interionic
diffusion [16]. Let nj , Aj , and Zj be, respectively, the number
density, mass, and charge numbers of ion species j = 1 and
2. For certainty, we set Z1 < Z2. Let n = n1 + n2 denote
the overall ion number density and xj = nj/n the fractional
number of ions j (with x1 + x2 = 1). Then we can define the
mean value f of any quantity fj in a BIM as f = x1f1 + x2f2.
In the following (unless the contrary is indicated) lengths are
measured in the units of the ion-sphere radius,

a =
(

3

4πn

) 1
3

, (5)

and all potentials in units of kBT /e (e being the elementary
charge).

A state of the BIM is defined by ion charge and mass
numbers and by two dimensionless parameters, the fractional
number x ≡ x1 of ions 1, and the Coulomb coupling parameter
�0 [23,40],

�0 = e2

akBT
. (6)

We can also introduce the Coulomb coupling parameter for
each ion species [41],

�j = Z2
j e

2

ajkBT
= Z

5
3
j e2

aekBT
, (7)

where ae = (3/4πne)1/3 is the electron-sphere radius, aj =
aeZ

1/3
j is the ion sphere radius of species j , and ne = Z1n1 +

Z2n2 = Zn is the electron number density.
Furthermore, it is convenient to introduce the mean ion

coupling parameter � = x1�1 + x2�2, which can be expressed
as

� = �0Z
5
3 Z

1
3 , (8)

and which reduces to � = �0Z
2 in the case of OCP.

Let gij(r), hij(r), and cij(r) (i,j = 1,2) be the radial
distribution functions (RDFs), the total and direct correlation
functions, respectively (as detailed, e.g., in Ref. [42]). All
these functions are symmetric [i.e. gij(r) = gji(r)], and hij(r) =
gij(r) − 1. The effective potential 
(r) in OCP is introduced
by the relation g(r) = exp [−
(r)] [34,42]. The extension of
this relation to the BIM case is straightforward:

gij(r) = exp[−
ij(r)]. (9)

One primarily needs 
12(r) for calculating the interdiffusion
coefficient.

Generally all these functions cannot be calculated analyti-
cally. We calculate them by the HNC method, which is known
to be sufficiently accurate (as detailed in Sec. IV) and relatively
simple [40,43,44]. Let us outline this method to simplify
the reading of this paper. It consists in solving together the
equations of two types, the Ornstein-Zernike equations relating
direct and total correlation functions and the HNC closure
relations. Since the equations are used in Fourier space, we
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define the dimensionless Fourier transform as

f̂ (k) = 4π

k

∫ +∞

0
f (r)r sin (kr) dr (10)

(wave number k is measured in units of 1/a) and its inverse as

f (r) = 1

2π2r

∫ +∞

0
f̂ (k)k sin (kr) dk. (11)

Then the Ornstein-Zernike relations are readily written as [40]

ĥij(k) = ĉij(k) + 3

4π

2∑
q=1

xqĥiq(k)ĉqj(k), (12)

and the HNC closure is

gij(r) = hij(r) + 1 = exp[hij(r) − cij(r) − φij(r)], (13)

φij(r) being the bare Coulomb interaction,

φij(r) = ZiZj�0

r
. (14)

Equations (12) and (13) form a closed set of six equations
for hij and cij, but they cannot be solved directly due to the long-
range nature of the Coulomb potential. For OCP this problem
was circumvented by Springer et al. [43] and Ng [44] by
introducing short-ranged potentials and correlation functions.
A similar method was used by Hansen et al. [40] for BIMs.
Let us outline this method here for the sake of completeness.

In our case the total correlation functions hij(r) are
short-ranged, and the direct correlation functions have the
asymptotes [40,43,44]

lim
r→∞ cij(r) = −φij(r). (15)

Let us introduce a quantity

γij(r) = hij(r) − cij(r) (16)

which has the asymptotic property

lim
r→∞ γij(r) = φij(r). (17)

Then we define the short-range (s) correlation functions and
potentials,

γ
(s)
ij (r) = γij(r) − φ

(l)
ij (r), (18)

c
(s)
ij (r) = cij (r) + φ

(l)
ij (r), (19)

φ
(s)
ij (r) = φij(r) − φ

(l)
ij (r). (20)

The long-range (l) functions φ
(l)
ij (r) have to satisfy two

conditions: (1) possess the same asymptotes as φij(r) at r → ∞
and (2) be regular at r = 0. Otherwise, they are arbitrary.
Following Ng [44], we choose

φ
(l)
ij (r) = ZiZj�0

r
erf(αr), (21)

with α = 1.1; its Fourier transform in Eq. (12) is

φ̂
(l)
ij (k) = 4πZiZj�0

k2
exp

(
− k2

4α2

)
. (22)

Now we rewrite Eqs. (12) and (13) in terms of short-ranged
correlation functions and potentials,

γ̂
(s)
ij (k) + φ̂

(l)
ij (k) = 3

4π

2∑
q=1

xq

[
γ̂ (s)

iq (k) + ĉ(s)
iq (k)

]
× [

ĉ
(s)
qj (k) − φ̂

(l)
qj (k)

]
, (23)

gij(r) = exp
[
γ

(s)
ij (r) − φ

(s)
ij (r)

]
, (24)

c
(s)
ij (r) = gij(r) − γ

(s)
ij (r) − 1. (25)

This system can be solved iteratively starting with a guess for
c

(s)
ij (r). Before that the functions γ̂

(s)
ij (k) should be explicitly

expressed from Eqs. (23). As Eqs. (23) are linear with respect
to γ̂

(s)
ij (k), they can be solved analytically once and for all.

We will not write here the resulting formulas because they are
inconveniently large and their derivation is obvious. Points k =
0 and r = 0 require special consideration because these values
cannot be substituted in Eqs. (23) and (24) due to singularities
in φ̂

(l)
ij (k) and φ

(s)
ij (r), respectively. The problem is dealt with as

following. First, the values of γ̂
(s)
ij (0) and gij(0) are calculated

separately,

gij(0) = 0, γ̂
(s)
11 (0) = − 4π

3x1
− ĉ

(s)
11 (0),

γ̂
(s)
12 (0) = −ĉ

(s)
12 (0), γ̂

(s)
22 (0) = − 4π

3x2
− ĉ

(s)
22 (0) (26)

[γ̂ (s)
ij (0) being a k → 0 limit of the solutions of Eqs. (23)].

Second, Fourier and inverse Fourier transforms are rewritten
to handle

f̂ (0) = 4π

∫ +∞

0
f (r)r2 dr,

f (0) = 1

2π2

∫ +∞

0
f̂ (k)k2 dk. (27)

Numerical calculations were performed on a mesh of Np =
2049 points running from 0 to rmax and from 0 to kmax; rmax

was taken to be 80 (other values for Np and rmax were also
taken to check the stability of numerical procedures); kmax was
computed from the standard relation

�r = rmax

Np − 1
, �k = π

(Np − 1)�r
,

kmax = (Np − 1)�k. (28)

Fourier integrals were discretized on a mesh using Simpson’s
rule (intermediate points were calculated via cubic spline inter-
polation) and processed by means of appropriate fast Fourier
transform. A convergence criterion for iterative process was
taken to be√∫ rmax

0

[
g

(q)
22 (r) − g

(q−1)
22 (r)

]2
dr < 10−7, (29)

because g22 converges slower than g12 or g11 (here q is the
iteration number).

After the computations have been completed, the accuracy
of our results has been checked by comparing the excess
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FIG. 1. (Color online) Radial distribution functions for a mix-
ture composed of 30% 1H and 70% 12C (by numbers), with
�0 = 5 (� ≈ 117).

(Coulomb) potential energy with the results of Ref. [40]. The
agreement has been found to be quite satisfactory (energies
have been reproduced up to five to six significant digits).

The examples of HNC results for a mixture of 1H and 12C
(x1 = 0.3, x2 = 0.7) are presented in Figs. 1 and 2.

III. DIFFUSION COEFFICIENTS

The standard Chapman-Enskog procedure gives the fol-
lowing leading order approximation to the interdiffusion
coefficient in a binary mixture [17,18] (here in ordinary CGS
units):

D12 = 3

16

kBT

μn

1


̃
(1,1)
12

, (30)

10
-7

10
-5

10
-3

10
-1

10

10
3

10
5

0 2 4 6 8 10 12 14 16 18 20

|Φ
|

r

Φ11

10Φ12

100 Φ22

FIG. 2. (Color online) Absolute values of effective potentials for
the same mixture of 1H and 12C as in Fig. 1. For a better visualization,

12 is multiplied by 10 and 
22 by 100.

where μ = m1m2/(m1 + m2) is a reduced mass of colliding
ions, and 
̃ is a collisional integral defined below. The second-
order approximation to D12 will be outlined in the next section.

Let us introduce “hydrodynamic” plasma frequency for a
mixture [23]:

ωp =
√

4πnZ
2
e2

Am0
, (31)

m0 being the atomic mass unit. Let us express the interdiffusion
coefficient in units of ωpa2 through a dimensionless collisional
integral,

D∗
12 = D12

ωpa2
= π

3
2

2
√

6

1√
�0

√
A(A1 + A2)

Z
2
A1A2

1



(1,1)
12

. (32)

Dimensionless collisional integrals are defined as (see, e.g.,
Refs. [19] and [45])



(ξ,ζ )
12 =

∫ ∞

0
exp(−y2) y2ζ+3Q

(ξ )
12 (y) dy, (33)

Q
(ξ )
12 (u) = 2π

∫ ∞

0
{1 − cosξ [χ12(b,u)]}b db, (34)

χ12(b,u) =
∣∣∣∣π − 2b

∫ ∞

rmin
12

dr

r2
√

1 − b2

r2 − φ12

u2

∣∣∣∣, (35)

where χ12 is the classical scattering angle, b is the impact
parameter, φ12 the interaction potential between particles 1
and 2, u is the dimensionless relative velocity (at infinity; in
units of

√
2kBT /μ), rmin

12 is the distance of the closest approach
[i.e., maximum root of the denominator in the integrand (35)].

For a weakly coupled (WC) BIM (� � 1), the diffusion
coefficient (32) can be calculated analytically [17,18]:

D
∗(WC)
12 =

√
π

6

1

�
5
2
0

√
A(A1 + A2)

Z
2
A1A2

1

Z2
1Z

2
2�

(WC)
, (36)

where �(WC) is a “classical” Coulomb logarithm for a weakly
coupled plasma,

�(WC) = ln

⎛⎝ 1
√

3�
3
2
0 Z1Z2

√
Z2

⎞⎠. (37)

Now the algorithm for computing D∗
12 at arbitrary coupling

is straightforward. First, we calculate RDFs using HNC
method described in Sec. II. Second, we find effective potential

12 from Eq. (9) and substitute it instead of φ12 in the
integral (35). Then we calculate D∗

12 from Eqs. (32), (33),
and (34).

We have performed such calculations of the interdiffusion
coefficients for 1H-4He, 1H-12C, 4He-12C, 12C-16O, and 16O-
79Se mixtures for a variety of values of �0 and x1. We could
have easily considered other BIMs if necessary. The easiest
way to present these data is to fit the effective Coulomb
logarithm by an analytic expression. We have calculated D∗

12
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FIG. 3. (Color online) Effective Coulomb logarithm �eff calcu-
lated from Eq. (38) for the 1H-12C mixture. Regions of weak and
strong couplings can be clearly seen as well as a transition region
between them.

and then �eff using the expression

�eff =
√

π

6

1

D∗
12Z

2
1Z

2
2�

5
2
0

√
A(A1 + A2)

Z
2
A1A2

. (38)

Thus, �eff coincides with �(WC) [Eq. (36)] in the weak
coupling limit. The examples of �eff for 1H-12C mixture are
presented in Fig. 3.

Fitting �eff instead of D∗
12 is more convenient because

�eff is expected to be relatively weakly dependent on plasma
parameters (particularly on relative number density x1). We
propose the fit

�eff(�0,x1) = ln

(
1 + p1x

2
1 + p2x

2
2 + p3

�
p4x1+p5
0

)
, (39)

which contains five parameters p1, . . . p5. These parameters
are presented in Table I along with the root mean square
(rms) relative deviation, δrms, and the maximum relative fit
errors, δmax. The x1 mesh points have been taken as x1 =
0.01,0.1,0.2,0.3, . . . ,0.9,0.99. The �0 mesh points have been
selected differently for each BIM (Table II). For each BIM,
the mesh points have been distributed over three ranges of �0

labeled as I, II, and III in Table II. These ranges refer to weak,
intermediate, and strong Coulomb pairing, respectively (note
that the actual strength of Coulomb coupling is determined by

�, not by �0). In range I the points have been taken equidistant
(any next point being larger than the previous one by �+)
whereas in ranges II and III logarithmically equidistant (any
next point was �× times higher than the previous one).

IV. DISCUSSION

Before discussing the results let us make a few remarks.
(1) There is no strict proof for the existence of an effective

pair interaction potential which would entirely incorporate
all many-body effects (correlations) between particles in
a strongly coupled Coulomb plasma. Moreover, it seems
highly unlikely that such a potential could exist in principle.
Nevertheless, the effective potential method seems to be a
promising tool for obtaining reasonably accurate solutions of
some problems of strongly coupled dense plasmas (see the
original work by Baalrud and Daligault [34]).

(2) We use a standard HNC procedure to calculate RDFs.
Although some improved HNC techniques have been devel-
oped [46], we consider the accuracy of the standard HNC
method sufficient for our purpose. As seen from Fig. 2 of
Ref. [34], even using the “exact” RDFs computed via MD
simulations makes almost negligible changes to the resulting
Chapman-Enskog diffusion coefficient compared to using
RDFs obtained via standard HNC method.

(3) Second-order Chapman-Enskog approximation to the
interdiffusion coefficient in a BIM can be written as [17,18]

[D∗
12]2 = D∗

12

1 − �
, (40)

where

� = 5(C − 1)2
P1

x1
x2

+ P2
x2
x1

+ P12

Q1
x1
x2

+ Q2
x2
x1

+ Q12
, (41)

P1 =
(

A1

A1 + A2

)3

E1, P2 =
(

A2

A1 + A2

)3

E2, (42)

P12 = 3(A1 − A2)2 + 4A1A2A

(A1 + A2)2
, (43)

Q1 = A1E1
6A2

2 + 5A2
1 − 4A2

1B + 8A1A2A

(A1 + A2)3
, (44)

Q12 = 3(A1 − A2)2(5 − 4B) + 4A1A2A(11 − 4B)

(A1 + A2)2

+ 2E1E2A1A2

(A1 + A2)2
, (45)

TABLE I. Fit parameters in Eq. (39) as well as rms and maximum fit errors. The last column contains values of x1 and �0 at which maximum
fit error is achieved.

Mixture p1 p2 p3 p4 p5 δrms, % δmax, % (x1,�0)max

1H-4He 7.43×10−2 −1.13×10−2 1.72×10−1 8.57×10−2 1.45 3.1 10 (0.7,0.4)
1H-12C 3.80×10−2 6.57×10−3 2.52×10−2 1.39×10−1 1.34 5.6 18 (0.99,0.729)
4He-12C 7.01×10−3 9.08×10−4 1.09×10−2 1.17×10−1 1.41 4.0 13 (0.9,5.785)
12C-16O 9.95×10−5 −6.35×10−6 1.61×10−3 3.96×10−2 1.48 2.6 10 (0.9,0.015)
16O-79Se 7.22×10−5 5.00×10−5 1.14×10−4 1.33×10−1 1.38 4.1 16 (0.9,0.187)
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TABLE II. �0 mesh points used for computing and fitting �eff . For each BIM the points have been distributed within three ranges I, II,
and III; �+ and �× determine the distances between neighboring points as described in the text. Lower bounds of each range are exact, upper
bounds are rounded up.

Mixture �0 range I �0 range II �0 range III

1H-4He [10−4,0.05],�+ = 0.002 [0.4,1.6],�× = 1.25 [1.7,52],�× = 1.3
1H-12C [10−4,0.01],�+ = 0.001 [0.15,0.4],�× = 1.2 [0.4,6],�× = 1.35
4He-12C [10−4,0.005],�+ = 3.5 × 10−4 [0.06,0.2],�× = 1.25 [0.2,5.8],�× = 1.4
12C-16O [10−4,0.003],�+ = 10−4 [0.015,0.05],�× = 1.35 [0.055,3.2],�× = 1.4
16O-79Se [10−5,2.5 × 10−4],�+ = 10−5 [0.003,0.01],�× = 1.22 [0.01,0.2],�× = 1.34

A = 

(2,2)
12

5

(1,1)
12

, B = 5

(1,2)
12 − 


(1,3)
12

5

(1,1)
12

, C = 2

(1,2)
12

5

(1,1)
12

, (46)

Ej = 

(2,2)
jj

5

(1,1)
12

(A1 + A2)2

A1A2

√
2A1A2

Aj (A1 + A2)
, j = 1,2; (47)

Q2 is obtained from Q1 by interchanging indices 1 and 2.
Integrals 


(2,2)
jj are defined in exactly the same way as 


(ξ,ζ )
12 but

with 
jj instead of 
12. We have performed calculations of the
second-order corrections and found that they do not exceed 5%
for the 1H-12C mixture. For mixtures of more similar ions these
corrections are even smaller. Consequently we have neglected
them as the accuracy of the results is limited by the fit errors
and by the effective potential method itself.

Unfortunately there is not very much data available to
compare our interdiffusion coefficients with. As seen from
Fig. 4 and Table III, the diffusion coefficients D∗

12 obtained
via the effective potential are systematically larger than the
MD results D∗MD

12 of Hansen et al. [23], and the difference
increases with increasing �0. This is exactly the same behavior
as in the original work of Baalrud and Daligault [34] (their
Fig. 2) who proposed the effective potential method. We have
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FIG. 4. (Color online) Interdiffusion coefficient D∗
12 for 1H-4He

mixture (x1 = 0.5) and its comparison with MD data of Ref. [23].
Weak, strong, and intermediate coupling regions are distinguishable
(cf. Fig. 3). Exact values of D∗

12 are given in Table III.

also compared our data to MD data of Refs. [24,26] and
obtained similar results. This seems to be the consequence of
the approximate nature of the effective potential method itself.
Since MD data are obtained from first principles, they should
have been considered as superior to HNC ones. Nevertheless,
the disagreement between the MD and HNC results appears
at strong Coulomb coupling where quantum effects in ion
motion become important. Unfortunately the quantum effects
are included neither in the MD nor in the HNC schemes we
refer to. In this situation, we see no way to check our results
with really exact solutions. Therefore, we propose to use the
HNC results, which can be obtained quickly. We do not expect
that the exact solution, if available, would lead to very different
diffusion of ions in liquid BIMs.

Using our (effective potential) D12, we have also tried to
derive an approximate relation similar to (2). Our best attempt
gives D12 ≈ DS

12, with

DS
12(n,T ) ≈ x2D1(̃n1,T ) + x1D2(̃n2,T ), (48)

where D1 and D2 are self-diffusion coefficients in “equivalent”
OCPs and

ñj = Z2

Z2
j

n. (49)

Such a choice of ñj forces the Debye screening length in
“equivalent” OCPs to be the same as in the BIM. This
resembles the linear mixing rule [40], where “equivalent”
OCPs are taken in such a way that they retain the same
electron number density as in a BIM [i.e., ñj = (Z/Zj )n].
Equation (48) was initially obtained semiempirically for
weakly coupled plasma but is not greatly violated in the strong
coupling regime, despite the fact that the concept of the Debye

TABLE III. Comparison of D∗
12 calculated here with MD data

and verification of Eq. (48) for 1H-4He and 1H-12C mixtures. The
values of D∗MD

12 are taken from MD simulations of Hansen et al. [23].
The values D∗S

12 are obtained from Eq. (48) with the self-diffusion
coefficients calculated by the effective potential method.

1H-4He 1H-12C

x1 �0 D∗
12 D∗S

12 D∗MD
12 x1 �0 D∗

12 D∗S
12

0.5 0.397 4.20 3.73 3.00 0.2 5.75 0.0572 0.0322
0.5 3.992 0.268 0.230 0.142 0.5 5.75 0.0635 0.0354
0.5 39.738 0.0290 0.0242 0.0109 0.8 5.75 0.0688 0.0445
0.75 40.831 0.0279 0.0235 0.0122
0.25 40.610 0.0277 0.0237 0.0076
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ion screening length does not apply to strongly coupled plasma.
Examples of DS

12 are presented in Table III.

V. CONCLUSIONS

We have considered interdiffusion coefficients D12 of ions
(of two species, 1 and 2) in BIMs under the assumption that the
ions consititute either a Boltzmann gas or Coulomb liquid, and
the electrons form a nearly uniform background. The problem
has been studied for a long time in a number of publications
(Sec. I), but a unified practical procedure of calculating many
diffusion coefficients important for applications has been ab-
sent. The main obstacle consisted in substantial computational
difficulties of calculating D12 by rigorous methods like MD in
the regime of strong Coulomb coupling.

We have used the method of effective interion potential
suggested recently by Baalrud and Daligault [34]. They
proposed to determine the effective potential by a reasonably
simple HNC scheme and use this potential to evaluate
the diffusion coefficient by the standard Chapman-Enskog
method. The latter method is known to be strictly valid
for rarefied, weakly coupled plasmas, whereas Baalrud and
Daligault suggested to apply it in both regimes (gas and
liquid). They proved that the method is reasonably accurate
for calculating the self-diffusion coefficient of ions in OCP.
We have extended their consideration to BIMs and show
that the method remains sufficiently accurate for calculating
interdiffusion coefficients in BIMs. The combination of two
well-elaborated schemes (the HNC scheme for finding the
effective potential and the Chapman-Enskog scheme for
evaluating kinetic coefficients) makes this method feasible
for determining many interdiffusion coefficients of practical
importance in BIMs over wide ranges of temperatures and
densities.

To demonstrate the efficiency of this method we have
calculated D12 for five BIMs (1H–4He, 1H-12C, 4He-12C,
12C-16O, 16O-79Se). In analogy with the results of Ref. [33], the
diffusion coefficients D12 have been expressed (38) through a
generalized Coulomb logarithm �eff . We have approximated
all calculated values of �eff by a unified fit formula (39)
which contains five fit parameters for each BIM (listed in
Table I). In this way we have obtained a unified description of
the interdiffusion coefficients for these BIMs. We may easily
consider other BIMs if necessary.

Let us stress once more that in the strongly coupled
plasma the employed effective potential approach [34] is
phenomenological. We expect that our results can be less
accurate in this limit than in the limits of weak and intermediate
Coulomb couplings. However, when the temperature decreases
to the melting temperature Tm, quantum effects in ion motion
can become important for various properties of the matter [41].
In particular, they can affect diffusion, and the effect has
not been studied at all, to the best of our knowledge. In
this situation (the quantum effects are neglected anyway)

our approach seems reasonable (although the incorporation
of quantum effects would be desirable).

Although we have not focused on self-diffusion coefficients
in BIMs, we remark that they are most probably calculated
by the effective potential method less accurately than the
self-diffusion coefficients in OCP [34]. The nature of this
phenomenon is not entirely clear. It be may because the
calculation of self-diffusion coefficients Dii for one component
in a BIM requires not only 
ii, but also 
ij, whereas, according
to Sec. IV, the computation of the interdiffusion coefficient
Dij primarily requires only 
ij. This problem remains to be
solved along the basic problem of why the effective potential
is reasonably successful in the regime of strong coupling.

Our results (combined with those of Ref. [16]) can be used
to study various diffusion processes of ions in the crust of neu-
tron stars and in the cores of white dwarfs [1–10] as well as in
dense Coulomb plasmas of giant and supergiant stars and giant
planets. Such diffusion processes can affect thermodynamics
and kinetics of dense matter, thermal and chemical evolution of
these stars, and their vibrational properties (seismology). The
diffusion properties of Coulomb plasmas are also important
for dusty plasmas, inertial confinement fusion, etc. (Sec. I).

Numerically, our diffusion coefficients are in reasonable
agreement with those obtained by other authors and with
different techniques (Sec. I). The main advantage of our
results is in simplicity, uniformity, and convenient approximate
expressions. Another important advantage is that the effective
potential method can be easily generalized for calculating other
kinetic properties of strongly coupled Coulomb plasmas, for
instance, the diffusion and thermal diffusion coefficients in
multicomponent ion mixtures which are needed for applica-
tions but which are almost not considered in the literature.
However, we should warn the reader once more that the method
of an effective potential at strong Coulomb coupling is phe-
nomenological in its essence. It would be important to justify
this method and understand the conditions at which it is most
accurate. It would be even more important to study diffusion
in strongly coupled Coulomb plasmas taking into account
quantum effects in ion motions. However, all these difficult
issues seem to be beyond the scope of the present investigation.

Although we have considered a rigid (almost incompress-
ible) electron background, the results can be easily generalized
to the case of compressible background produced by electrons
of any degeneracy and relativity.

ACKNOWLEDGMENTS

The authors are grateful for the partial support by the State
Program “Leading Scientific Schools of Russian Federation”
(Grant NSh 294.2014.2). The work of M.B. has also been
partly supported by the Dynasty Foundation, and the work of
D.Y. by Russian Foundation for Basic Research (Grants Nos.
14-02-00868-a and 13-02-12017-ofi-M) and by “NewComp-
Star,” COST Action MP1304.

[1] A. Y. Potekhin, G. Chabrier, and D. G. Yakovlev, Astron.
Astrophys. 323, 415 (1997).

[2] P. Chang and L. Bildsten, Astrophys. J. 585, 464 (2003).

[3] P. Chang and L. Bildsten, Astrophys. J. 605, 830 (2004).
[4] P. Chang, L. Bildsten, and P. Arras, Astrophys. J. 723, 719

(2010).

033102-8

http://dx.doi.org/10.1086/345551
http://dx.doi.org/10.1086/345551
http://dx.doi.org/10.1086/345551
http://dx.doi.org/10.1086/345551
http://dx.doi.org/10.1086/382271
http://dx.doi.org/10.1086/382271
http://dx.doi.org/10.1086/382271
http://dx.doi.org/10.1086/382271
http://dx.doi.org/10.1088/0004-637X/723/1/719
http://dx.doi.org/10.1088/0004-637X/723/1/719
http://dx.doi.org/10.1088/0004-637X/723/1/719
http://dx.doi.org/10.1088/0004-637X/723/1/719


EFFECTIVE POTENTIAL AND INTERDIFFUSION IN . . . PHYSICAL REVIEW E 90, 033102 (2014)

[5] I. Iben, Jr. and J. MacDonald, Astrophys. J. 296, 540 (1985).
[6] J. Isern, M. Hernanz, R. Mochkovitch, and E. Garcia-Berro,

Astron. Astrophys. 241, L29 (1991).
[7] L. Bildsten and D. M. Hall, Astrophys. J. Lett. 549, L219

(2001).
[8] C. J. Deloye and L. Bildsten, Astrophys. J. 580, 1077 (2002).
[9] L. G. Althaus, E. Garcı́a-Berro, I. Renedo, J. Isern,
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