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Modeling multiphase flow using fluctuating hydrodynamics
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Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can
have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics
of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a
compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat
interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms
developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured
structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium
examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of
the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition
following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both
cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.
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I. INTRODUCTION

At a molecular scale, the state of a fluid, as measured
by hydrodynamic variables, is constantly changing and is
stochastic in nature. Micro- and nanofluidic devices operate in
regimes in which these thermal fluctuations play an important
role in the overall dynamics but where molecular level
simulation is often computationally infeasible. Consequently,
it is becoming increasingly important to develop models that
can incorporate the effect of fluctuations in the continuum
equations. The effect of fluctuations is important in both
equilibrium [1] and nonequilibrium [2] systems. They also
become important in complex chemical and biological systems
where multiple time and length scales are involved, such as in
a colloidal suspension where time and length scales can span
over 15 orders of magnitude [3]. The effect of fluctuations
have been shown to be important in the breakup of nanojets
[4–6], Brownian molecular motors [7–10], Rayleigh-Bénard
convection [11,12], Kolmogorov flow [13–15], Rayleigh-
Taylor mixing [16,17], combustion and explosive detona-
tion [18,19], reaction fronts [20], capillary dynamics [21,22],
thin films [23–25], drop formation [26], fluid mixing [27,28],
and multispecies mixtures [29]. Fluctuations also need to be
incorporated in advanced multiscale methodologies such as
hybrid multiscale methods [30], where the use of deterministic
equations in the continuum leads to errors in the fluctuation
spectrum of a coupled particle simulation.

Thermal fluctuations were first incorporated into the deter-
ministic Navier-Stokes equations by Landau and Lifshitz [31].
The central idea in fluctuating hydrodynamics is to treat the
dissipative fluxes as stochastic variables and incorporate an
additional stochastic flux into the deterministic Navier-Stokes
equations. These fluxes are the macroscopic manifestation
of microscopic degrees of freedom in a thermodynamic
system. These microscopic degrees of freedom, which are
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not directly modeled, give rise to hydrodynamic fluctuations
and cause Brownian motion. This procedure is called coarse-
graining and can be done formally using projection operator
techniques [32–35] that give rise to transport equations for the
“relevant” (slow) conserved quantities. The “irrelevant” (fast)
variables are eliminated but affect the conserved variables
and cause them to fluctuate about their mean values. The
justification for the linearized hydrodynamic fluctuations using
Landau-Lifshitz, fluctuating Navier-Stokes (FNS) was given
initially by Fox [36,37] and independently by Bixon and
Zwanzig [38]. The nonlinear hydrodynamic fluctuations have
been justified based on derivation of the Fokker-Planck equa-
tion for the distribution function of coarse-grained densities of
conserved quantities [39,40] or the closely related stochastic
differential equations for the random fields [41].

Multiphase flows, such as gas-liquid and liquid-liquid mix-
tures, are not only of fundamental interest but also extremely
important in many engineering applications (e.g., refrigera-
tion, petroleum and chemical processing, electronics cooling,
power plants, and spacecraft technology). The phase-change
processes that occur are very complex since they involve
the interplay of multiple length and time scales, thermal
fluctuations, nonequilibrium effects, and other effects due to
dynamic interfaces. Hence developing new methodologies that
are capable of capturing fundamental phase-change behavior
along with the complex fluid flow and heat transfer in the
system are extremely important. Additional challenges arise
in the form of developing numerical methods to solve these
complex problems. Over the past few years, much progress has
been made in developing numerical schemes for fluctuating
hydrodynamics in single-phase fluids [42–45]. But multiphase
systems offer newer challenges not only due to variation of
properties from one phase to another but also due to the delicate
fluctuation-dissipation balance that has to be maintained in the
numerical schemes [42,46].

The hydrodynamic equations for a general multicompo-
nent, multiphase system have been derived systematically from
the underlying microscopic dynamics within the GENERIC
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framework [47]. This model was used to study diffusion
in binary fluid mixtures using a discrete model formulated
in a smoothed particle hydrodynamics framework [48–50].
Mesoscale multiphase simulations have also been performed
using Lattice-Boltzmann (LBM) techniques (see Ref. [51]
and references therein). While most of the models have
been limited to incompressible, isothermal systems without
fluctuations, significant progress is being made to extend
this to nonisothermal situations [52] and incorporate thermal
fluctuations [53–58]. Gross et al. [56] developed an LBM
model of an isothermal nonideal single-component liquid with
a simple equation of state (derived from a “double-well” form
for the free energy) similar in spirit to the more complex van
der Waals equation of state studied here. Similar LBM models
were recently used to confirm the importance of thermal
fluctuations on droplet spreading [59]. Previous work on sim-
ulating multiphase systems using finite-volume methods has
been limited to isothermal systems and employed a staggered
grid [22]. In particular, Shang et al. [22] used the fluctuating
hydrodynamics methodology along with the Ginzburg-Landau
free energy to model liquid-vapor and liquid-liquid interfaces.
They mapped fluctuations in density and height of the
interface from molecular dynamics simulations (MD) to the
hydrodynamic field variables and showed that the isothermal
compressibility, surface tension, and capillary wave spectrum
are well reproduced by the fluctuating hydrodynamics equa-
tions. The work here represents an extension of their work to
nonisothermal and nonequilibrium systems, employing a fully
cell-centered finite-volume scheme.

The methodology described here is based on a diffuse
interface model with an emphasis on capturing the correct
surface tension between the two phases and serves as an
extension of the FNS equations to a multiphase setting,
based on the single-phase algorithm discussed in Ref. [29].
Diffuse interface models have been developed and analyzed
for multiphase systems since the time of van der Waals [60,61]
for both single-component and binary fluids. For binary fluids,
there is an extensive body of literature [61,62] starting with
the work of Cahn and Hilliard [63–65]. For single-component,
multiphase systems, most of the analysis has focused on using
renormalization-group techniques to look at critical point
scaling laws for Model H, which describes the dynamics of
a fluid phase transition as well as a single-component fluid
near its critical point [66]. Numerical models have focused on
either the deterministic Navier-Stokes equations for isothermal
van der Waals fluids [67–69] or modified thermodynamic
behavior of fluids with artificially thickened interfaces [70].
To model the transport of energy or heat, Onuki introduced
a dynamic model that allows temperature gradients to exist
below the critical point or in a nonequilibrium setting that
accounts for the correct latent heat transport [71]. This model
has been developed further to analyze boiling in van der Waals
fluids [72].

In this paper we present a stochastic method of lines
discretization [42,73–75] for the compressible fluctuating
hydrodynamics equations with a van der Waals equation of
state. In Sec. II we present the theory for the diffuse interface
method that is used to model the order parameter (density) as
a smooth variation across the interface. The surface tension
effects give rise to Korteweg type stresses that appear as

additional terms in the momentum and energy equations.
Section III presents the finite-volume method used for the
spatial discretization and a three-stage explicit Runge-Kutta
scheme used for temporal integration. The selection of a good
value of the gradient energy coefficient (κ) is first discussed
in Sec. IV followed by validation of the numerical scheme by
comparing the two-dimensional (2D) and 3D structure factors
with theory and capturing the correct capillary wave spectrum
in fluctuating planar liquid-vapor interfaces. Two numerical
examples are selected to demonstrate the capabilities of the
model in Sec. V. In the first case, spinodal decomposition is
modeled in a near-critical argon system. Calculations of the
structure factor for density show that the growth of droplets (in
off-critical quenches) is enhanced when thermal fluctuations
are included, whereas no such conclusions can be drawn for
bubbles or for critical quenches (bicontinuous pattern). The
second example looks at adiabatic cooling in a square cavity,
induced by the piston effect [76,77], when the boundary
temperature is lowered to subcritical temperatures. In this
example, we also find that thermal fluctuations enhance droplet
growth. The paper concludes with a summary and a discussion
of future work.

II. FLUCTUATING HYDRODYNAMICS FOR A
VAN DER WAALS FLUID

For a single-component fluid, the order parameter is chosen
to be the average mass density of the fluid. This order parameter
is modeled by the continuity equation itself and does not
warrant an additional equation, such as in the Cahn-Hilliard
model, though Shang et al. [22] have developed a more general
set of equations where both the density and an order parameter
can vary. This section first describes the free-energy model
based on the van der Waals equation of state followed by
a description of the thermodynamics using the GENERIC
framework [35]. The FNS equations are then described for
the complete multiphase model.

A. van der Waals free-energy model

To model an inhomogeneous fluid such as a liquid-vapor
system with a finite surface tension and interfacial width, it
is first necessary to establish the statistical mechanical basis
of such a model [60,78,79]. An inhomogeneous fluid is best
understood by the theory of density-functional methods that
are based on the idea of expressing the free energy of the
inhomogeneous fluid as a functional of the mass density
ρ(r). Once this free-energy functional is known, all relevant
thermodynamic properties of the system can be calculated
and, in particular, the surface tension can be computed for
the interface. The Helmholtz free energy, F (or, equivalently,
the grand potential) can be expressed in terms of density,
its gradient, and temperature T [80]. Using symmetries and
truncating the gradient expansion at the gradient square term,

F (ρ(r),∇ρ(r),T (r))

=
∫

dr
[
f (ρ(r),T (r)) + 1

2
κ(ρ(r),T (r))|∇ρ(r)|2

]
. (2.1)

The first term f (ρ(r),T (r)) contains all the local con-
tributions to the free energy, which includes the hard-core
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repulsions as well as the short-range attractions. The square
gradient term models the interfacial energy that is necessary to
have liquid-vapor separation. Although written in continuum
notation, the physical meaning of (2.1) in the theory of coarse-
graining is of a bare free-energy function that corresponds to
coarse-graining the particles into cells of size sufficiently large
to contain many particles (and thus justify a local free-energy
functional and separation of time scales). Importantly, the cell
size also needs to be substantially smaller than the long-range
tail of the intermolecular potential so the attractive part of
the internal potential can be written as an integral. Last, the
variation of the density needs to be slow so a Taylor-series
approximation can be made to obtain the square gradient term,
which can be justified for slowly varying density profiles that
occur close to the liquid-vapor critical point.

The square gradient term is also a useful approximation
for modeling fluid-fluid interfaces even far from the critical
point, as has been demonstrated through direct comparisons
with molecular dynamics data [22]. The gradient energy
coefficient, κ(ρ(r),T (r)), models the strength of the interfacial
free energy and can be directly related to the surface tension. In
general, this gradient energy coefficient is a function of density
and temperature; taking it as a constant reduces the above
formalism to the van der Waals square gradient model. The
van der Waals model can be justified by considering a liquid in
which the intermolecular potential has a short-ranged repulsive
core (excluded volume), as well as a weak but long-ranged
attractive tail that is responsible for the square-gradient term
in the free-energy functional [81,82].

The GENERIC framework provides a framework for
nonequilibrium thermodynamics of multiphase systems [35].
In this two-generator framework, one specifies the total energy
and the entropy as functionals of the conserved hydrodynamic
fields. For a system described by the local mass, momentum,
and internal energy density fields ρ(r),g(r),u(r), the total
energy U and entropy S can be defined by [82]

U =
∫

dr
[

1

2

|g(r)|2
ρ(r)

+ u(r) + 1

2
κ|∇ρ(r)|2

]
, (2.2)

S =
∫

dr s[ρ(r),u(r) − uatt(r)], (2.3)

where κ is assumed to be a constant, u = ρe where e is the
specific internal energy, and s is the local entropy density of
a system at thermodynamic equilibrium at a given mass and
internal energy density. It is important to note that u(r) is the
local internal energy density, which contains interactions from
the hard-core potential as well as the short-range attractive
interactions uatt(r) [=−a′n2 given in Eq. (2.7) below]. The
entropy, on the other hand, is defined by the “intrinsic” internal
energy u(r) − uatt(r), which contains interactions only from
the hard-core potential [82]. The local free-energy density
f = u − T s contains interactions from the hard-core as well
as the attractive potential. Note that it is possible to also
include square gradient terms in the entropy density [83];
here we include only the dominant energetic contribution of
the inhomogeneity of the fluid [82]. For a thermodynamically
admissible model using the above definitions for total energy
and entropy, the single-component multiphase model can be
formulated within the GENERIC framework [35,84,85] and

the appropriate equations can be written down [82,83], as given
in the next section.

For the system to exhibit phase separation the equation of
state should have a van der Waals loop [86]. The standard
model is the van der Waals equation of state,

P (ρ,T ) = nkBT

1 − b′n
− a′n2, (2.4)

where P is the pressure, kB is the Boltzmann constant, and
n = ρ/m is the number density, with m being the molecular
mass. The van der Waals parameters, a′ and b′, indicate the
strength of the long-ranged attractive forces and the excluded
volume due to the short-ranged repulsive forces, respectively.
From this equation of state, the number density, pressure, and
temperature at the critical point are

nc = 1

3b′ , Pc = a′

27(b′)2
, Tc = 8a′

27b′kB

, (2.5)

so Pc/nckBTc = 3/8.
Using basic thermodynamic definitions and some simple

manipulations, the free energy density f and the internal
energy density, u, can be written as

f = nkBT ln

(
ρ

1 − b′n

)
− a′n2 (2.6)

and

u = 3
2nkBT − a′n2. (2.7)

For this model, the adiabatic speed of sound is

cs =
√

Ks

ρ
, (2.8)

where

Ks = n

(
∂P

∂n

)
s

= 5

3

nkBT

(1 − b′n)2
− 2a′n2 (2.9)

is the bulk modulus. The speed of sound at the critical point
is cs,c = √

3kBTc/2m. Note that the isothermal (not adiabatic)
compressibility diverges at the critical point.

B. Hydrodynamic equations

In order to model fluids at the mesoscopic scales, thermal
fluctuations have to be incorporated into the continuum Navier-
Stokes equations. In fluctuating hydrodynamics this is accom-
plished by including stochastic fluxes in the equations [31].
The full set of compressible fluctuating hydrodynamic equa-
tions can be written as [82]

∂tρ + ∇ · (ρv) = 0, (2.10)

∂t (ρv) + ∇ · (ρvvT ) + ∇ · � = ∇ · (τ + τ̃ ), (2.11)

∂t (ρE) + ∇ · (ρEv) + ∇ · (� · v)

= ∇ · (Q + Q̃) + ∇ · ((τ + τ̃ ) · v), (2.12)

where the superscript T indicates transpose. The momentum
density is g = ρv and ρE = 1

2ρv2 + ρe is the total local
energy density. Note that since ρE is the local energy density
rather than the total energy U [from (2.2)], there is no
interstitial working contribution in the energy flux [61,87].
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The deterministic stress tensor has a reversible part, �, and
an irreversible part, τ ; the former can be written as

� = P I − (�K + �C), (2.13)

where the first term is the pressure, I is the identity tensor, and

�K = [(κρ∇2ρ + 1
2κ|∇ρ|2)I]− (κ∇ρ ⊗ ∇ρ) (2.14)

is the Korteweg stress that arises from the gradient energy
contribution to the energy. The Korteweg stress terms can
be derived using variational methods [22,88] or from the
GENERIC formulation [82] by applying the standard re-
versible generator for a single-component fluid [cf. Eq. (2.60)
in Ref. [35]] to (2.2). These terms apply in both isothermal
and nonisothermal systems and are widely agreed on in the
literature. The additional cross-coupling term �C arises in
the presence of temperature gradients, and there is no widely
agreed-on form of these terms. In this work we employ the
form suggested by Onuki [71]:

�C = Tρ∇ρ · ∇
(

κ

T

)
I. (2.15)

A cross-coupling term is also present in the work by
Dunn and Serrin [87]; however, the term they introduce has a
different form, �C = ρ(∂κ/∂T )(∇ρ · ∇T ). If κ is assumed to
be a constant, as we do in this work, the cross-coupling term
proposed by Dunn and Serrin would vanish. But using Onuki’s
formulation, the term is still present for constant κ . Here we
chose Onuki’s formulation for the cross-coupling term since it
is believed to be important in nonequilibrium situations with
high temperature gradients [71].

For isothermal systems and a constant κ the divergence of
the Korteweg stresses, which is the new term in the momentum
equation arising from the surface tension, can be written in the
succinct form [47,56,82]

∇ · �K = κρ∇∇2ρ, (2.16)

which is, however, not in conservative form and therefore not
suitable for conservative finite-volume discretizations.

The deterministic irreversible stress tensor is taken to be
that of a Newtonian fluid,

τ = η[∇v + (∇v)T ] + (ζ − 2
3η
)
(∇ · v)I, (2.17)

where η and ζ are the shear and bulk viscosities of the fluid,
respectively. The deterministic heat flux is given by the Fourier
law as Q = λ∇T , where λ is the thermal conductivity.

As discussed in Refs. [31,41], the stochastic stress tensor
and heat flux can be written as

τ̃ =
√

2ηkBT W̃v +
(√

ζkBT

3
−

√
2ηkBT

3

)
Tr(W̃v)I,

(2.18)

Q̃ =
√

2λkBT 2 WE, (2.19)

where W̃v = (Wv + (Wv)T )/
√

2 is a symmetric Gaussian
random tensor field and WE is a Gaussian random vector
field. Here Wv and WE are mutually uncorrelated white noise
Gaussian fields so〈

Wv
ij (r,t) Wv

kl(r
′,t ′)
〉 = δikδjlδ(r − r ′)δ(t − t ′), (2.20)〈

WE
i (r,t) WE

j (r ′,t ′)
〉 = δij δ(r − r ′)δ(t − t ′), (2.21)

and 〈
Wv

ij (r,t) WE
k (r ′,t ′)

〉 = 0. (2.22)

It is important to note that as long as the square gradient term
is added to the energetic part of the free energy [82], as we do
in this work, the Korteweg stresses are generated from the re-
versible part of the dynamics. In this case only the irreversible
(dissipative) parts of the momentum and energy flux contribute
to the entropy production and thus, by fluctuation-dissipation,
there are no surface-tension contributions to the stochastic
fluxes.

III. SPATIOTEMPORAL DISCRETIZATION

The numerical integration of the governing equations
is based on an extension of the approach developed in
Refs. [29,42]. A finite-volume approach is used to discretize
the equations spatially. The resulting system of stochastic
ordinary differential equation is then integrated using a low-
storage, total-variation-diminishing, three-stage Runge-Kutta
(RK3) integrator. The principal issue in the extension of the
methodology in Ref. [29] is the treatment of the Korteweg
stress term. Here we briefly review the discretization used in
Ref. [29] and then discuss the discretization of �K in more
detail. We first write the FNS equations in a compact system
form as follows:

∂U
∂t

= −∇ · FH − ∇ · FK − ∇ · FD − ∇ · FS

≡ R(U,W), (3.1)

where U represents the set of conserved hydrodynamic fields,

U =
⎛⎝ ρ

ρv
ρE

⎞⎠ , (3.2)

and FH , FK , FD , and FS are the hyperbolic, Korteweg,
diffusive, and stochastic flux terms, respectively, and W(t)
denotes a collection of independent white-noise processes.
These fluxes may be written as

FH =

⎡⎢⎣ ρv

ρvvT + P I

v(ρE + P )

⎤⎥⎦; FK = −

⎡⎢⎣ 0

�K

�K · v

⎤⎥⎦;

(3.3)

FD = −
⎡⎣ 0

τ

Q + τ · v

⎤⎦; FS = −
⎡⎣ 0

τ̃

Q̃ + τ̃ · v

⎤⎦.

A. Spatial discretization

The spatial discretization uses finite-volume representation
with cell spacings in the x, y, and z directions given by 	x, 	y,
and 	z. Uijk denotes the average value of U on cell ijk. The
discretizations are based on centered approximations, designed
to ensure that the algorithm satisfies discrete fluctuation-
dissipation balance. See Ref. [29] for details.

To compute the hyperbolic fluxes, we first compute the
primitive variables Q = (ρ,v,P ,T ) at cell centers. The primi-
tive variables are then interpolated to faces. This interpolation
can be done using either a simple averaging or by using a
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cubic interpolation of Q from cell centers to the faces using
the fourth-order interpolation formula developed for Piecewise
Parabolic Method [89],

Qi+1/2,j,k = 7
12 (Qi,j,k + Qi+1,j,k) − 1

12 (Qi−1,j,k + Qi+2,j,k)

with similar formulas in the y and z directions. Numerical
tests indicate the choice of interpolation does not make any
significant difference to the results. The hyperbolic fluxes FH

at the faces are then calculated from these interpolants. A
key issue here is that the interpolation is based on primitive
variables instead of conserved variables. This is important
for multiphase flow because pressure and temperature are
smoother at gas-liquid interfaces than the energy density.
Using primitive variables thus eliminates the introduction of
artifacts from the interpolation process. These face fluxes are
differenced as

∇ · FH ≈ Df →c FH ,

where Df →c is a discrete divergence operator that computes the
cell-centered divergence of a tensor field from values defined
at cell faces.

The heat flux is defined similarly as

∇ · Q = ∇ · (λ∇T ) ≈ Df →c(λ Gc→f T ),

where Gc→f (which is the adjoint of Df →c) computes normal
components of the gradient at cell faces from cell-centered data
and λ at cell faces is computed by averaging values evaluated
at cell centers.

The discretization of the viscous stress terms presents a
complication. Standard discretizations of the stress tensor do
not satisfy fluctuation dissipation balance. Here we follow the
approach described in Ref. [29] and rewrite the stress tensor
as

∇ · τ = ∇ · (η∇v) + ∇ · [(ζ + 1
3η
)
I (∇ · v)

]
− [∇(η (∇ · v)) − ∇ · (η(∇v)T )]. (3.4)

We note that the last term in Eq. (3.4) satisfies

[∇(η (∇ · v)) − ∇ · (η(∇v)T )]

= [(∇η)(∇ · v) − (∇η) · (∇v)T ],

showing that this term vanishes when η is constant. We will
use this alternate form for the discretization, using different
approximations for the different terms in Eq. (3.4). For the
first term, we approximate

∇ · (η∇v) ≈ Df →c(η Gc→f v). (3.5)

Here we average adjacent cell-centered values of η to faces.
For the remaining terms we use a nodal- (corner) based
discretization. For example, we approximate

∇[(ζ + 1
3η
)

(∇ · v)
] ≈ Gn→c

[(
ζ + 1

3η
)

Dc→nv
]
, (3.6)

where Dc→n uses values of a vector field at cell centers
to compute the divergence at nodes (corners) and Gn→c

(which is the adjoint of Dc→n) computes gradients at cell
centers from values at nodes. Again, the discretizations
are standard second-order difference approximations. Here
coefficients are computed by averaging cell-centered values
to the corresponding node.

We also use a nodal discretization for the last terms in
Eq. (3.4),

[∇(η (∇ · v)) − ∇ · (η(∇v)T )]

≈ Gn→c(η Dc→nv) + Dn→c(η (Gc→nv)T ), (3.7)

where Dn→c computes divergence at cell centers from nodal
values and Gc→n computes nodal gradients from cell-centered
values. We note that the second-order derivative terms cancel at
the discrete level just as they do in the continuum formulation,
leaving only first-order differences when the two terms are
combined.

The divergence of the Korteweg stresses with constant
gradient energy coefficient can be written as

∇ · �K = ∇ ·
[(

κρ∇2ρ + 1

2
κ|∇ρ|2 − ρκ

T
∇ρ · ∇T

)
I

]
−∇ · (κ∇ρ ⊗ ∇ρ). (3.8)

The four terms in this expression are discretized using a com-
bination of face-centered and nodal discretizations using the
discrete operators defined above. The first term ∇ · (κρ∇2ρI)
can be discretized as Df →c[(κρLρ)I], where L is the standard
seven-point Laplacian (though higher-order or more isotropic
discretizations can be used as well),

(Lρ)i,j,k = (ρi+1,j,k − 2ρi,j,k + ρi−1,j,k)

(	x)2

+ (ρi,j+1,k − 2ρi,j,k + ρi,j−1,k)

(	y)2

+ (ρi,j,k+1 − 2ρi,j,k + ρi,j,k−1)

(	z)2
.

To compute the first term in Eq. (3.8) we first average ρLρ to
faces using

(ρLρ)i+1/2,j,k = 1
2 [ρi,j,k(Lρ)i,j + ρi+1,j,k(Lρ)i+1,j,k].

The discrete divergence operator Df →c is then used to compute
the divergence of the quantity κρLρ I at cell centers from
values at cell faces. The second term in Eq. (3.8) is discretized
using nodal-based operators as follows:

∇ · [( 1
2κ|∇ρ|2)I] ≈ Dn→c

[(
1
2κ(Gc→nρ) · (Gc→nρ)

)
I
]
.

The third term in Eq. (3.8) is also discretized using nodal-based
operators (for constant κ) as

−∇ ·
[(

ρ

T
κ∇ρ · ∇T

)
I

]
≈ −Dn→c

[(
ρ

T
κGc→nρ · Gc→nT

)
I

]
.

The last term in Eq. (3.8) can similarly be discretized using
the same nodal operators as follows:

∇ · (κ∇ρ ⊗ ∇ρ) ≈ Dn→cκ(Gc→nρ ⊗ Gc→nρ).

The term ∇ · (�K · v) is computed by averaging nodal values
to faces and forming �K · v at faces and using Df →c to
difference the face values to cell centers. The term ∇ · (τ · v)
is treated in a similar fashion.

For the noise terms in the energy equation, (2.12),
the contribution is formed by averaging over the adjacent
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cells as

Q̃i+ 1
2 ,j,k ≈

√
2kB(λT 2)i+ 1

2 ,j,kSW (E,x),

where

(λT 2)i+ 1
2 ,j,k = 1

2 [(λT 2)i,j,k + (λT 2)i+1,j,k]. (3.9)

In addition, W (E,x) are normally distributed random numbers
and S = 1/

√
	x	y	z	t to discretize the δ function corre-

lation in space and time.
The discretization of the noise term in the momentum

equation needs to match that of the deterministic stress
tensor so the discretization satisfies fluctuation dissipation
balance. For that reason, we generate noise terms for the first
two terms in Eq. (3.4) separately. No stochastic terms are
added for the last two terms because they only involve first
derivatives of v. The stochastic stress tensor is expressed as
τ̃ = τ̃ (f ) + τ̃ (n). The term τ̃ (f ) corresponds to the ∇ · (η∇v)
contribution to the viscous flux; at a face we form it as

τ̃
(f )
i+ 1

2 ,j,k
=
√

2kB(ηT )i+ 1
2 ,j,kSW (v,x),

where W (v,x) are three-component, independent face-centered
standard Gaussian random variables. Other faces are treated
analogously and the resulting stochastic momentum fluxes are
differenced using the discrete divergence Df →c.

The stochastic flux corresponding to the contribution
∇[(ζ + 1

3η) (∇ · v)] in the dissipative flux is generated at
nodes. Namely,

τ̃
(n)
i+ 1

2 ,j+ 1
2 ,k+ 1

2
=
√

2kB

[(
ζ + 1

3η
)
T
]
i+ 1

2 ,j+ 1
2 ,k+ 1

2
SW (v,n),

where W (v,n) are three-component, independent node-centered
standard Gaussian random variables.

Note that the coefficients at the nodes are averages over the
cells adjacent to the node, analogously to (3.9). The divergence
of these nodal fluxes is computed using the discrete divergence
operator Dn→c. The viscous heating in the energy equation
arising from the stochastic stress is computed analogously to
the deterministic contribution described above.

B. Temporal discretization

Following Refs. [29,42], the temporal discretization
is based on the three-stage, low-storage total-variation-
diminishing Runge-Kutta (RK3) scheme of Gottlieb and
Shu [90]. The three stages of the scheme can be summarized
as

Un+1/3 = Un + 	tR
(
Un,Wn

1

)
,

Un+2/3 = 3
4 Un + 1

4

[
Un+1/3 + 	tR

(
Un+1/3,Wn

2

)]
(3.10)

Un+1 = 1
3 Un + 2

3

[
Un+2/3 + 	tR

(
Un+2/3,Wn

3

)]
,

where Wi are vectors of Gaussian random variables used in
each stage of the integration. To compute these weights, at each
time step we generate two vectors of independent normally
distributed random variables, WA and WB , and set

W1 = WA + β1WB ;

W2 = WA + β2WB ;

W3 = WA + β3WB,

where β1 = (2
√

2 + √
3)/5, β2 = (−4

√
2 + 3

√
3)/5, and

β3 = (
√

2 − 2
√

3)/10. With this choice of weights the tem-
poral integration is weakly second-order accurate for additive
noise, third-order accurate for equilibrium covariances (static
structure factors) [44], and third-order deterministically.

C. Stability

The numerical scheme described above is fully explicit and
is stable only provided 	t is sufficiently small. We can estimate
bounds on the time step by substituting Fourier modes into
the linearized equations. The resulting amplification matrix
includes real and imaginary components. The imaginary
component corresponds to the reversible component of the
dynamics given by the hyperbolic fluxes and the Korteweg
stress. The viscous stress tensor and the heat flux correspond
to the real component.

For stability of the reversible dynamics, we require that

	tr
∑

α=x,y,z

|uα| +√c2
s + 2κρV

	α
� C, (3.11)

where

V = 2

	x2
+ 2

	y2
+ 2

	z2

is the absolute value of the diagonal element of the standard
discrete Laplacian and C is a constant characterizing stability
of the Runge-Kutta scheme (C 	 1.7).

For the irreversible dynamics given by the dissipative terms
we require that

	ti

(
4
3η + ζ

)
ρ

V � C and 	ti
2λm

3ρkB

V � C. (3.12)

To compute the maximum allowable time step we compute
the minimum stable values of 	tr and 	ti over all the cells
using the local properties and then multiply by a safety factor
less than unity. We also restrict the time step to be less than or
equal to a prescribed value set at run time. For the simulations
presented below, we typically take a time step of 10% of the
maximum in order to minimize temporal discretization errors
and thus focus our attention on the spatial discretization.

IV. NUMERICAL VALIDATION

The algorithm presented in the previous section has been ex-
tensively validated for the case of a single-phase fluid [29,42].
As such we focus on validation of the code with the addition
of Korteweg stresses. As a prelude to that discussion we first
consider the choice of the gradient energy coefficient, κ . All
other physical parameters used in the simulations are given
in Table I ; these parameters are treated as constants unless
otherwise stated.

A. Estimating the gradient energy coefficient

The theory by Rayleigh relates κ to the attractive part of
the intermolecular potential φa(r) [60], specifically,

κ = − 1

6m2

∫
r2φa(r)dr. (4.1)
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TABLE I. Physical parameters used in the simulations. The fluid
is similar to argon near its critical point [91]; the values of shear
viscosity and thermal conductivity are for argon at T = 145 K, P =
4.0 × 105 dynes/cm2 [92].

Parameter Value

van der Waals parameter, a′ 3.736 × 10−36 erg/cm3

van der Waals parameter, b′ 5.315 × 10−23 cm3

Critical density, ρc 0.415995 g/cc
Critical temperature, Tc 150.85 K
Critical pressure, Pc 0.4897835 ×108 dynes/cm2

Gradient energy coefficient, κ 1.24 × 10−5 cm7/(gs2)
Molecular mass, m NA 39.948 amu
Shear viscosity, η 5.347 × 10−4 g/(cm s)
Bulk viscosity, ζ 0 g/(cm s)
Thermal conductivity, λ 0.05463 × 105 erg/(cm s K)

From the statistical mechanics of liquids it is known that,
in general, the relation between κ and the potential is more
complicated as it depends on the direct correlation function of
the fluid [60,78,79]. The expression in Eq. (4.1) is obtained
from the Percus-Yevick approximation in the limit of a weak
attractive potential (φa 
 kT ) and a pair correlation function
of unity. To estimate κ and its relation to the van der Waals
parameters a′ and b′, we introduce the Sutherland model for
the intermolecular potential,

φ(r) =
{

∞ r < r0

φa(r) r � r0
, where φa(r) = −4ε

(
r0

r

)6

.

(4.2)

In the low-density approximation, b′ = (2/3)πr3
0 and a′ =

4εb′ [1]; from (4.1) we have

κHS = 8πεr5
0

3m2
. (4.3)

For the values of a′ and b′ used in our simulations
the corresponding well depth and radius for φa(r) are ε =
1.76 × 10−28 erg and r0 = 2.94 × 10−8 cm, which are very
close to the standard Lennard-Jones parameters for argon
(ε = 1.65 × 10−28 erg, r0 = 3.4 × 10−8 cm). From (4.3) the
corresponding value of the gradient energy coefficient is
κHS = 0.736 × 10−6 cm7/g s2, which may be considered as
a lower bound for κ given the approximations in the Rayleigh
theory.

Although this estimate provides a lower bound, we do not
know a priori whether it is an accurate estimate for κ . To
obtain an estimate of κ , we performed a series of calculations
to measure the relationship between κ and the surface tension,
σ , for a flat interface and compared σ with experimental
observations. The surface tension can be calculated from the
density gradient of a perfectly flat infinite interface as

σ = κ

∫ y�

yg

(
dρ

dy

)2

dy, (4.4)

where yg and y� are points in the pure gas and liquid regions,
respectively. For argon near the critical point, experimental

7x10-5 8x10-5
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FIG. 1. (Color online) Density variation across the liquid-vapor
interface for κHS = 0.736 × 10−6 cm7/g s2 (solid line) and for κ =
1.24 × 10−5 cm7/g s2 at different resolutions (symbols).

measurements show that σ ≈ 0.57 dynes/cm2 [93] at T =
145 K where Tc = 150.85 K.

Deterministic simulations were performed on a periodic
domain in 1D with a slab of liquid in the center. The
temperature was set at T = Tc − 5 K with the liquid density
set at 0.561 g/cc and vapor density at 0.256 g/cc. Resolution
studies were conducted to compute converged estimates of σ

for given values of κ from the steady-state profile of the density
via (4.4). Our initial numerical tests revealed that κHS gave
extremely sharp interfaces as shown in Fig. 1. The calculated
value of σ was more than a factor of four too small compared
with the experimental value. After a number of trials, we settled
on a value of κ approximately one order of magnitude larger,
specifically κ = 1.24 × 10−5 cm7/g s2.

For a system of 256 cells with a liquid slab that was initially
60 cells wide, using 	x = 4.6875 × 10−7 cm the estimated
surface tension was σ = 0.62 dynes/cm2, comparable to
experimental measurements. Simulations with larger system
sizes and larger slabs with the same mesh spacing gave
results that differed by about 2%. More detailed refinement
studies indicate that the interface is slightly under-resolved (see
Fig. 1); for finer grid spacings the surface tension converges to
approximately σ = 0.68 dynes/cm2. However, at these finer
grids the cell volumes are so small that the stochastic fluxes,
when included, have large amplitudes, potentially leading to
numerical instabilities. This problem is exacerbated by the
presence of a gas phase which has much larger compressibility
and thus larger density fluctuations than the liquid phase,
especially close to criticality. Here we use a slightly under-
resolved mesh spacing for the simulations reported below.
Some heuristic corrections have been proposed in Appendix B
of Ref. [22] to prevent numerical instabilities due to large
density fluctuations. A more systematic alternative is to adjust
the magnitude of the fluctuations by filtering the stochastic
fluxes (see Appendix B in Ref. [45]); this corresponds to
separating the grid spacing (and thus the spatial discretization
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of various differential operators) from the physical coarse-
graining length scale.

B. Structure factor calculations

To validate the FNS algorithm in two and three dimensions,
static structure factor calculations for density are performed
in pure gas and liquid regions and compared with analytical
expressions. The parameters used in the simulations are listed
in Table I. The static structure factor of density is calculated
as

S(k) = 〈δρ̂(k,t)δρ̂∗(k,t)〉, (4.5)

where the Fourier transform of the density fluctuations is

δρ̂(k,t) =
∫

dr e−ik·r[ρ(r,t) − ρ̄], (4.6)

with ρ̄ being the mean density and 〈· · · 〉 denoting a time
average over the length of the simulation.

For the analytical calculations, the linearized fluctuat-
ing Navier-Stokes equations are rewritten as an Ornstein-
Uhlenbeck process and the steady-state covariances (static
structure factor) are calculated from the fluctuation-dissipation
balance [42],

S(k) = ρ2kBT

KT + ρ2κk2
, (4.7)

where KT = ρ( ∂P
∂ρ

)T is the isothermal bulk modulus given by

KT = nkBT(
1 − n

3nc

) − 9

4

kBTcn
2

nc

+ 1

3

kBT n2

nc

(
1 − n

3nc

)2 ,

where the critical parameters are given in Eq. (2.5).
At k = 0, the standard expression for static structure factor

of density is recovered [94] and we see that the effect of
the Korteweg stresses is to make the structure factor wave-
number dependent. In the discrete approximation, the k2 term
in Eq. (4.7) comes from the Laplacian term in Eq. (2.14). We
used the standard seven-point Laplacian to discretize this term.
For the purpose of comparison with the simulation results, we
replace the wave-number-squared k2 in the denominator of
Eq. (4.7) with a modified wave number that comes from the
Fourier transform of the discrete Laplacian operator,

k2 ≈ exp(ikx	x) − 2 + exp(−ikx	x)

(	x/2)2

+ exp(iky	y) − 2 + exp(−iky	y)

(	y/2)2

+ exp(ikz	z) − 2 + exp(−ikz	z)

(	z/2)2
,

which simplifies to

k2 ≈ sin2(kx	x/2)

(	x/2)2
+ sin2(ky	y/2)

(	y/2)2
+ sin2(kz	z/2)

(	z/2)2
.

(4.8)

The system is prepared initially in a subcritical state at
temperature T = Tc − 5 K and at a density either in the gas
phase (ρ = 0.1 g/cc) or in the liquid phase (ρ = 0.63 g/cc).
The system size used in 2D simulations is (6 × 10−5)2 cm2

FIG. 2. (Color online) Two-dimensional structure factor S(k) for
density in the pure gas region at ρ = 0.1 g/cc, T = 145.85 K. (a)
Simulation results and (b) analytical calculations. System volume =
36 × 10−14 cm3; periodic boundary conditions with 1282 grid points.
Simulation results have been averaged over 2 × 107 time steps.

with a thickness of 1 × 10−4 cm using a 128 × 128 grid. The
time step used is 1.0 × 10−13 s with a single random variable
each time step. In Figs. 2(a) and 2(b), the 2D simulation results
for the static structure factor of density is compared with theory
for the case where the initial state in the pure gas regime. Good
agreement is found for most values of the wave number. For
low k (longest, slowest modes), the structure factor takes a
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FIG. 3. (Color online) Two-dimensional structure factor S(k) for
density in the pure liquid region at ρ = 0.63 g/cc, T = 145.85 K.
(a) Simulation results and (b) analytical calculations. System vol-
ume = 36 × 10−14 cm3; periodic boundary conditions with 1282 grid
points. Simulation results have been averaged over 4.9×106 time
steps.

very long time to converge and hence the values at the center
of the k grid in Fig. 2(a) show the largest errors.

In the case when the initial state is in the pure liquid regime,
the simulation results in Fig. 3(a) are again in very good
agreement with the theoretical prediction shown in Fig. 3(b).
We note in numerical structure factors in liquid are smoother
than in the gas since density fluctuations are smaller in relative
magnitude due to the lower compressibility of the liquid state.

Analogous simulations were run in 3D on a triply periodic
domain with dimensions Lx = Ly = Lz = 1.6 × 10−5 cm
discretized using a 32 × 32 × 32 grid. The time step was
	t = 5.0 × 10−13 s, corresponding to approximately 10% of
the maximum allowable time step. For these simulations, an
initial 4 × 104 steps were taken to allow the fluctuations to
reach equilibrium. Data were then taken every 10 steps for
4 × 106 steps to compute the static structure factors. The
figures for the 3D structure factors (Figs. 4 and 5) reveal a
pattern similar to that for the 2D structure factors. In Fig. 4(a),
the deviations from theoretical calculations in Fig. 4(b) are
larger at the center of the k grid as a result of slow convergence
of long wavelength modes.

In the pure liquid region, the simulations results in Fig. 5(a)
again compare very well with theoretical results in Fig. 5(b).
Overall, the 2D and 3D structure factors calculated from simu-
lations are in very good agreement with analytical calculations,
which serves as a good validation of the numerical scheme.
(We note that additional tests were run in 3D using transport
properties proportional to density, i.e., η = ηcρ/ρc, etc., and
with ζ = η. The results, which are not presented here, are
essentially unchanged from the constant coefficient results.)

C. Liquid-vapor fluctuating interfaces

A fluid interface near a critical point is often imagined to be
an interface distorted due to thermal fluctuations. Distortions
of the normal interface are often characterized as capillary
waves. Capillary wave theory [60,95,96] predicts that, at
thermodynamic equilibrium, the variance of the interface
height varies with the wave number as k−2 in the absence
of gravitational attraction. For a smooth, nearly flat interface,
a height function, h(x), can be defined that measures the
deviations of the interface from the flat profile. According to
capillary wave theory, the variance of the height fluctuations
in the Fourier domain can be written as

〈|ĥk|2〉 = kBT

k2σ
, (4.9)

where k is the wave number and 〈· · · 〉 denotes the time average.
The height function is defined as follows: as the liquid layer
is approached from the vapor layer, find the first y location
where the linear interpolant of the cell-centered values gives
ρ = 1

2 (ρ� + ρg).
We simulated a 512 × 512 domain with 	x = 	y =

2.34375 × 10−7 cm, 	z = 4 × 10−6 cm at a time step of
	t = 1.25 × 10−13 s. Simulations were initialized from the
steady solution of a one-dimensional deterministic simulation
that was initialized with a liquid layer 120 cells thick. The
temperature was set at T = Tc − 5 K with the liquid density set
at 0.561 g/cc and vapor density at 0.256 g/cc. The simulation
was run for 4 × 105 time steps to reach statistical equilibrium
before collecting data for four million time steps. Figure 6
shows the variance of height fluctuations versus discrete wave
number (4.8) as well as the theory given by (4.9) where the
theoretical value is calculated using the discrete wave number
for the standard Laplacian (4.8).

We note that for the smaller 	x used here, the interface
is well resolved in 2D and offers more control over the
noise amplitude by fine-tuning the thickness of the domain;
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FIG. 4. (Color online) Three-dimensional structure factor S(k)
for density in the pure gas region at ρ = 0.1 g/cc, T = 145.85 K.
(a) Simulation results and (b) analytical calculations; periodic
boundary conditions with 323 grid points. Simulation results have
been averaged over 4 × 106 time steps.

consequently, we use σ = 0.68 dynes/cm2 for the theory. The
data from the simulation correspond well with the theory,
indicating that the numerical method is producing results
consistent with capillary wave theory. At higher wave numbers,
we observe larger fluctuations than predicted by the simple

FIG. 5. (Color online) Three-dimensional structure factor S(k)
for density in the pure liquid region at ρ = 0.63 g/cc, T = 145.85 K.
(a) Simulation results and (b) analytical calculations; periodic
boundary conditions with 323 grid points. Simulation results have
been averaged over 4 × 106 time steps.

incompressible sharp-interface theory 4.9, similarly to those
reported in Refs. [56] and [22]. While the precise cause
of this mismatch is difficult to pinpoint, it is expected that
compressibility effects play a role [22] and that the harmonic
approximation is insufficient and one needs to account for
(continuum and discrete) curvature corrections [56].
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FIG. 6. (Color online) Variance of height fluctuations versus
wave number comparing 2D simulations (red circles) and capillary
wave theory (CWT) (black solid line); the variance is time averaged
using simulation data that are saved every 1000 steps starting from
400 000 time steps and 4 million steps of total simulation time.

V. NUMERICAL EXAMPLES

In this section, two computational examples are considered.
First, we examine the effect of thermal fluctuations on spinodal
decomposition. Next, the rapid cooling and the resulting
condensation of a fluid in a square cavity with cold thermal
walls is simulated.

A. Spinodal decomposition

When a fluid is rapidly quenched from above the critical
point to a thermodynamically unstable region below the
critical point, the homogeneous phase separates spontaneously
into coexisting phases. The domains then grow and move
towards a state of minimum interfacial energy. This process of
spontaneous decomposition and coarsening is called spinodal
decomposition. The basic theory of spinodal decomposition
was developed from a metallurgical point of view for binary
alloys by Hillert [97,98], Cahn [99,100], Hilliard [101], and
Cook [102]. The Cahn-Hilliard-Cook linear theory has been
further developed and explored in a number of studies for
binary alloys and binary immiscible fluids; see Refs. [96,103–
109] and references therein. Numerical studies of spinodal
decomposition in liquid-vapor systems have been limited
to isothermal, compressible models [67,68] without thermal
fluctuations. In this study, we focus on a fully compressible,
thermal fluid model that includes the effect of thermal
fluctuations via stochastic fluxes.

The simulations were done using the parameters for an
argon fluid quenched to a temperature of T = Tc − 5 K. We
first consider a 3D critical quench in which the system is
initialized (see Table I) with density set to the critical density.
For this simulation, the box dimensions were Lx = Ly =
Lz = 6.4 × 10−5 cm with a mesh size of 1283. The time
step for this simulation was 5 × 10−13 s, again approximately
10% of the maximum allowable time step. Starting from
the uniform initial state, fluctuations cause the system to
decompose spontaneously into coexisting liquid and vapor
regions that form a bicontinuous pattern as shown in Fig. 7.

FIG. 7. (Color online) Liquid-vapor spinodal decomposition in
a near-critical van der Waals argon system at ρ = 0.415995 g/cc,
T = 145.85 K at different times: (a) t = 2.5 × 10−8, (b) t = 7.5 ×
10−8, (c) t = 1.25 × 10−7, (d) t = 2 × 10−7, (e) t = 2.5 × 10−7, and
(f) t = 3 × 10−7 s. The 3D simulations with fluctuations turned on
leading to formation of the bicontinuous pattern; 1283 grid points.

As the quenching process continues the figure illustrates the
emergence on increasing larger scale features.

In order to study the role of fluctuations on the quenching
process in more detail, we consider 2D systems undergo-
ing a critical quench, ρc = 0.415995 g/cc, as above, and
two off-critical quenches corresponding to ρ = 0.36 g/cc,
where droplets of the minority liquid phase emerge and
ρ = 0.47 g/cc, which gives rise to bubbles of vapor in the
majority liquid phase. The box dimensions used in the 2D
simulations were Lx = Ly = 6 × 10−5 cm with a thickness
of 1 × 10−6 cm and mesh size of 1282. The time step used
is 1.0 × 10−13 s. Two different types of simulations were
run for each quench; first, where the fluctuations are present
throughout the simulations and, second, where they are turned
off after the first 5000 steps by setting the amplitudes of the
stochastic fluxes to zero. The fluctuations in the second case
only serve to perturb the system from the initial state and
nucleate phase separation in the quenching process. The output
data are collected after the initial 5 × 105 time steps up to
5 × 106 time steps. In each case the process is repeated for
nine different runs to compute statistics.

033014-11



CHAUDHRI, BELL, GARCIA, AND DONEV PHYSICAL REVIEW E 90, 033014 (2014)

FIG. 8. (Color online) Liquid-vapor spinodal decomposition in a near-critical van der Waals argon system at ρ = 0.415995 g/cc, T =
145.85 K at different times (seconds). Left to right: t = 0, t = 5 × 10−9, t = 1.0 × 10−8, t = 5 × 10−8, t = 1.0 × 10−7, and t = 5 × 10−7. (a)
Without fluctuations and (b) with fluctuations leading to the bicontinuous pattern; 2D simulations with 1282 grid points; system volume = 36 ×
10−16 cm3.

For the critical quench, ρc = 0.415995 g/cc, a bicontin-
uous pattern similar to the 3D case emerges as shown in
Fig. 8. For the off-critical quench, ρ = 0.36 g/cc, droplets
of the minority liquid phase emerge, as shown in Fig. 9,
whereas the off-critical quench, ρ = 0.47 g/cc, gives rise to
bubbles of vapor in the majority liquid phase as shown in
Fig. 10. The figures also show the formation of these phases
both with and without fluctuations as a function of simulation
time. It is interesting to note that Fig. 9(b) suggests that
fluctuations help accelerate the growth of droplets over time.
The number of the droplets in Fig. 9(b) is larger than in Fig. 9(a)
and droplets appear to be bigger in size. In the case of the

critical quench, the domains in Fig. 8(b) are less connected
compared to the domains in Fig. 8(a). The growth of bubbles
in Fig. 10(b) follow the same trend as the droplet pattern in
Fig. 9(b).

Scaling theories of symmetric quenches in spinodal de-
composition [107,108] point to the existence of a single
characteristic length scale in the system at late stages of
decomposition when the domains have formed and are coars-
ening over time. During this stage, the time evolution of the
system is governed by diffusive and hydrodynamic forces. For
phase separation in binary fluids undergoing a critical quench,
three growth regimes have been identified using scaling

FIG. 9. (Color online) Liquid-vapor spinodal decomposition in a near-critical van der Waals argon system at ρ = 0.36 g/cc, T = 145.85 K
at different times (seconds). Left to right: t = 0, t = 5 × 10−9, t = 1.0 × 10−8, t = 5 × 10−8, t = 1.0 × 10−7, and t = 5 × 10−7. (a) Without
fluctuations and (b) with fluctuations leading to the formation of droplets in a majority vapor phase; 2D simulations with 1282 grid points;
system volume = 36 × 10−16 cm3.

033014-12



MODELING MULTIPHASE FLOW USING FLUCTUATING . . . PHYSICAL REVIEW E 90, 033014 (2014)

FIG. 10. (Color online) Liquid-vapor spinodal decomposition in a near-critical van der Waals argon system at ρ = 0.47 g/cc, T = 145.85 K
at different times (seconds). Left to right: t = 0, t = 5 × 10−9, t = 1.0 × 10−8, t = 5 × 10−8, t = 1.0 × 10−7, and t = 5 × 10−7. (a) Without
fluctuations and (b) with fluctuations leading to the formation of bubbles in a majority liquid phase; 2D simulations with 1282 grid points;
system volume = 36 × 10−16 cm3.

arguments [108],

L(t) ∝
⎧⎨⎩t1/d , diffusive

t, viscous hydrodynamics
t2/3, inertial hydrodynamics

, (5.1)

where d is the dimensionality of the system. In the dif-
fusive regime, the system evolution is governed by the
Lifshitz-Sloyozov evaporation-condensation process (Ostwald
ripening) (1/3 power law in 3D) and Brownian coagulation
(1/3 in 3D and 1/2 in 2D). Hydrodynamic interactions due
to interfacial effects play a significant role in the growth
of domains and characterize the growth depending on the
importance of the viscous and advective terms in the Navier-
Stokes equation. Furukawa [107] found that in 2D fluids, the
viscous hydrodynamics regime is absent as the inertial forces
are more important. There have been a number of numerical
studies of spinodal decomposition in binary immiscible fluids
and mixtures over the years to confirm some the above scaling
regimes and identify others in the process [110–120]. Since
binary fluids and liquid-vapor fall into the same universality
class [66], similar scaling laws should also apply to phase
separation in single-component systems as well, though the
precise mechanisms are not well understood in the presence of
fluid motion, particularly in fully compressible systems [67].
Previous studies on liquid-vapor isothermal models [67,68]
have identified the growth of critical domains by a 0.70 [67],
2/3 [68] power law at late stages of spinodal decomposition.

There are various probes available for making a quantitative
comparison of the growth rate in these systems [106]. We chose
the inverse of the weighted first moment of the structure factor,
which is often used to define the characteristic length scale that
grows with time,

k−1
1 =

∑
k〈δρ̂(k,t)δρ̂∗(k,t)〉k∑

k k 〈δρ̂(k,t)δρ̂∗(k,t)〉k , (5.2)

where 〈· · · 〉k denotes the average over a shell in Fourier space
at fixed k = |k|.

The inverse of the weighted first moment is fit to a power-
law function of the form A0t

A1 to estimate the growth-law
exponent A1 in each of the nine runs for all the cases. The
average growth-law exponent and error (standard deviation
from mean) are reported in Tables II and III.

In Table II the power-law fit is done over the entire length
of the simulations output, whereas it is done only over the
initial 5 × 105 time steps in Table III. From the data shown
in both tables, it is clear that thermal fluctuations enhance the
growth of droplets over time. However, no such conclusions
can be drawn for the bicontinuous or bubble cases. Density
fluctuations in gases are higher than in liquids. In the droplet
case, where gas is the majority phase, the enhanced density
fluctuations influence the growth of droplets. In the bubble
case, where liquid is the majority phase, density fluctuations
are weaker and hence the effect of fluctuations is not as
pronounced. It is also difficult to draw any conclusions for
the bicontinuous case since there is a large overlap in the
growth-law exponents. The growth of critical domains without
fluctuations is governed by a 0.65 (±0.19) power law for

TABLE II. Mean growth-law exponent calculated by fitting a
power-law function to Eq. (5.2). Mean and error (standard deviation
from mean) calculated over nine simulations runs for the entire length
of saved output (4.5 × 106 time steps).

Case studied Growth-law exponent (error)

Droplets with fluctuations 0.287 (0.045)
Droplets without fluctuations 0.208 (0.015)

Bicontinuous with fluctuations 0.691 (0.200)
Bicontinuous without fluctuations 0.644 (0.191)

Bubbles with fluctuations 0.290 (0.053)
Bubbles without fluctuations 0.253 (0.025)
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TABLE III. Mean growth-law exponent calculated by fitting a
power-law function to Eq. (5.2). Mean and error (standard deviation
from mean) calculated over nine simulations runs for the first 500 000
time steps of saved output.

Case studied Growth-law exponent (error)

Droplets with fluctuations 0.333 (0.039)
Droplets without fluctuations 0.225 (0.032)

Bicontinuous with fluctuations 0.508 (0.076)
Bicontinuous without fluctuations 0.511 (0.070)

Bubbles with fluctuations 0.289 (0.042)
Bubbles without fluctuations 0.276 (0.073)

the entire simulation, which is comparable to the 0.70 [67]
and 2/3 [68] power laws identified by previous studies on
isothermal models.

B. Cooling by the piston effect

In this final example we consider a homogeneous fluid,
enclosed in a square cavity, at the critical density and at
a temperature above the critical temperature. At t = 0 the
temperature of the cavity’s walls drop below the critical
temperature, initiating condensation at the walls. Due to the

FIG. 11. (Color online) Adiabatic expansion of supercritical ar-
gon in a square cavity driven by boundary cooling at different times
(seconds); low noise (cell volume = 2.197266 × 10−17 cm3), left
to right and top to bottom: t = 0, t = 5 × 10−10, t = 1.5 × 10−9,
t = 2.5 × 10−9, t = 4.5 × 10−9, t = 9 × 10−9, t = 1.8 × 10−8, t =
3.15 × 10−8, t = 4.5 × 10−8, t = 9 × 10−8, t = 1.26 × 10−7, t =
1.845 × 10−7, t = 2.52 × 10−7, t = 3.51 × 10−7, t = 4.545 × 10−7,
and t = 5 × 10−7 s. the plots follow the initial development of a
liquid boundary layer in the cavity due to thermalization by fast
acoustic waves, followed by spinodal decomposition in the interior
and thickening of both boundary layers and interior domains over
time.

large compressibility of the fluid near criticality the adiabatic
cooling process by sound waves is the dominant heat transfer
mechanism, equilibrating the temperature far more rapidly
than thermal conduction [121]. Phase separation is induced in
the fluid due to contraction of diffusive boundary layers [71],
which is termed the piston effect [76,77]. Due to the appear-
ance of buoyant convection this effect cannot be reproduced
experimentally under Earth’s gravity; it has been observed
in space under microgravity conditions [122]. This problem
serves as a good example of how spinodal decomposition can
be induced by nonequilibrium boundary effects as opposed to
isothermal situations where it is primarily studied.

In our simulations the system was initially at a supercritical
state with temperature T = Tc + 5 K and density ρ = ρc. The
cavity size used in 2D simulations is 6 × 10−5)2 cm2 with a
thickness of 1 × 10−4 cm for low noise and 1 × 10−6 cm for
high noise with a mesh size of 1282 in both cases. The time
step used is 1 × 10−13 s. Boundary conditions for pressure,
temperature, and velocity are set using standard conditions of
no-slip walls, namely, wall temperatures were set at Twall =
Tc − 5 K, wall velocities were set to zero, and pressure at
the boundary condition is set so there is no pressure gradient
in the normal direction to the wall. Because of higher-order
derivative terms in the Korteweg stress an additional density
boundary condition is needed. Here we have imposed that the
second normal derivative of density is zero, which makes the
Korteweg stress smooth up to the boundary.

FIG. 12. (Color online) Adiabatic expansion of supercritical ar-
gon in a square cavity driven by boundary cooling at different
times (seconds); high noise (cell volume = 2.197266 × 10−19 cm3);
simulated times are the same as in Fig. 11. The plots follow the
initial development of a liquid boundary layer in the cavity due
to thermalization by fast acoustic waves, followed by spinodal
decomposition in the interior and thickening of both boundary layers
and interior domains over time; higher fluctuations lead to faster
growth of domains and fewer droplets compared to Fig. 11.
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FIG. 13. (Color online) Temperature profiles. Top panel: Cooling
by adiabatic expansion of supercritical argon in a square cavity driven
by boundary cooling. Bottom panel: For cooling by heat conduction
alone. Both systems start at same initial condition; plots are snapshots
of temperature profile (left to right) at t = 5 × 10−10 s, t = 1.5 ×
10−9 s, t = 4.5 × 10−9 s, and t = 1.25 × 10−8 s; low noise (system
volume = 36 × 10−14 cm3).

When the boundary temperature is changed, pressure
perturbations from acoustic waves travel and change rapidly
across the domain as seen in Figs. 11 and 12 for low noise and
high noise, respectively (large and small volume, respectively;
since the simulations are quasi-2D, the noise amplitude is
controlled by changing the thickness of the cell). Thermal
equilibration is reached through the boundary diffusive layers
that act as a piston adiabatically changing the density in the
cavity [71,121]. To see if the temperature equilibration is
indeed faster in the piston effect, the adiabatic cooling problem
is compared with a simple diffusive cooling (heat equation) and
the temperature profiles are compared in Fig. 13 . It can be
seen from the figures that cooling due to piston effect causes
temperatures to equalize all over the domain in the first few
thousand time steps compared to diffusive cooling by Fourier’s
law, where the temperature profile is still roughly parabolic.
The rapid density and temperature changes are followed by
slow nucleation and coarsening from the boundary to the
interior of the domain (see Figs. 11 and 12). The results here
show qualitative agreement with deterministic simulations
of Onuki [71]. When the effect of thermal fluctuations is
increased, the pressure perturbations and coarsening happen
on a faster time scale, as seen in Fig. 12.

VI. CONCLUSIONS

Fluctuating hydrodynamics is a powerful mesoscopic tech-
nique that combines fluid mechanics and statistical mechanics
to model physical systems more realistically. The compressible
fluctuating hydrodynamics equations bridge the gap between
molecular and hydrodynamic length and time scales. Numer-
ical methods for solving these stochastic PDEs for single
species or multispecies fluids are now well established. Yet
many important applications are both multicomponent and
multiphase fluids and it is important to include all the relevant
physics when modeling these complex systems. As a first step
in this direction we have extended the existing fluctuating
hydrodynamics framework to model two-phase fluids.

A van der Waals diffuse interface model was developed
in this study for solving the fluctuating Landau-Lifshitz
Navier-Stokes equations. Our finite-volume scheme treats the

advective, diffusive, Korteweg, and stochastic fluxes consis-
tently and uses an accurate stochastic, three-stage Runge-Kutta
temporal integrator. The appropriate value for the gradient
energy coefficient, κ , was established based on numerical tests
done to reproduce the correct surface tension of argon near
the critical point. The scheme was validated by calculating
the 2D and 3D structure factors of density and comparing it
with analytical expressions. Additional validation was done
by comparing the capillary wave spectrum obtained from
simulations with the theoretical prediction.

Two nonequilibrium systems were simulated to demon-
strate the utility of the scheme. In the first example, spinodal
decomposition in a near-critical van der Waals argon fluid. The
scheme captures the essential physics quite well by reproduc-
ing the expected bicontinuous pattern for critical quenches and
droplets or bubbles for off-critical quenches. Calculations of
the growth law using the inverse first moment of the structure
factor compare well with existing studies in the literature. They
point additionally to the idea that fluctuations enhance droplet
growth. The second example examined droplet formation in
a square cavity due to adiabatic cooling by sound waves
(piston effect) initiated when the boundary temperature is
lowered suddenly. The simulations agree qualitatively with
earlier deterministic calculations but also indicate that thermal
fluctuations lead to a faster growth of droplets.

The multiphase fluctuating hydrodynamics methodology
was developed in this paper for near-critical argon with con-
stant transport properties. This can be extended for fluids very
close to the critical point where the transport properties are now
wave-number dependent, especially thermal diffusivity [123].
If a system is very close to the critical point, the thermody-
namic and transport properties are governed by asymptotic
critical behavior, whereas far from the critical point, the be-
havior is more classical thermodynamically. The methodology
can be extended to systems far away from the critical point
using crossover equations of state [124] that help connect the
critical phenomena with classical thermodynamics. There is
also a need to go beyond the van der Waals theory [125–128] to
include gravitational effects and study the effect of fluctuations
on the interface and capillary wave spectrum.

A possible extension of this work would be for systems
with nonconstant κ; i.e., κ(ρ,T ). Dependencies of this kind
would, however, lead to additional terms that can arise
in the momentum and energy equations that have to be
properly admitted using the GENERIC framework. Laying the
foundation for addition of cross-coupling terms such as the one
we use for �C is another important avenue for future work. A
number of potential applications in the area of complex fluids
lie in multiphase, multispecies (multicomponent) mixtures.
A natural extension of this work would be to connect to
the fluctuating hydrodynamics of multispecies mixtures [29].
Multispecies mixtures introduce a lot of complicated cross-
diffusion effects [47] that can complicate the problem enor-
mously. Further extension to problems with complex chemical
reactions is another possibility. A large number of interesting
applications involve drops or bubbles either suspended or
moving in liquids or on a solid surface. The framework
developed here could be extended to model bubble dynamics
in biomedical applications such as drug delivery [129], gas
embolism dynamics where a surface tension gradient due to
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surfactant adsorption at the interface can lead to Marangoni
stresses that cause bubble motion [130], or in dynamical
wetting transitions at large driving velocities to study contact
line motion [131]. Fluctuations are also extremely important
in applications where different types of particles or ions are
driven either towards or away from the interface [132].

One of the challenges that still remains is the time-
step limitation due to the explicit nature of the integration
algorithm. The acoustic modes limit the time steps that can
be taken in the system thus causing the simulations to run
slower and longer. One way to overcome this is to look
for low-Mach-number formulations where sound modes are
eliminated from the compressible equations. While acoustic
waves are important at short times as in the piston problem,
low-Mach-number schemes will be important for the long time
limit. Analysis of such low-Mach-number formulations for
phase-change fluctuating hydrodynamics is very challenging
and will be the subject of future research.

Another numerical challenge is the competing requirements
of having a fine mesh to completely resolve the interface versus

the size of the cell volume that is directly proportional to
the amplitude of the fluctuations. The numerical algorithms
have to be designed very carefully for both of the above
requirements to be met. One way of doing this by filtering
the stochastic fluxes has already been discussed in Ref. [45].
However, more work needs to be done to extend this to
multiphase, multispecies fluctuating hydrodynamics.
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Methods Appl. Sci. 06, 815 (1996).
[117] G. Gonnella, E. Orlandini, and J. M. Yeomans, Phys. Rev. E

59, R4741 (1999).
[118] J. Zhu, L. Q. Chen, J. Shen, and V. Tikare, Phys. Rev. E 60,

3564 (1999).
[119] G. Gonnella, A. Lamura, and A. Piscitelli, J. Phys. A Math.

Theor. 41, 105001 (2008).

[120] Y. C. Li, R. P. Shi, C. P. Wang, X. J. Liu, and Y. Wang, Model.
Simul. Mater. Sci. Eng. 20, 075002 (2012).

[121] A. Onuki and R. A. Ferrell, Physica A 164, 245 (1990).
[122] K. Nitsche and J. Straub, in Proceedings of the 6th European

Symposium on Material Sciences under Microgravity Condi-
tions, Bordeaux, ESA SP-256, 1987 (European Space Agency,
Paris, 1987).

[123] J. V. Sengers and R. A. Perkins, in Experimental Thermo-
dynamics IX: Advances in Transport Properties of Fluids,
edited M. J. Assael, A. R. H. Goodwin, V. Vesovic, and
W. A. Wakeham (Royal Society of Chemistry, Cambridge,
2014), pp. 337–361.

[124] M. A. Anisimov, S. B. Kiselev, J. V. Sengers, and S. Tang,
Physica A 188, 487 (1992).

[125] J. M. J. Van Leeuwen and J. V. Sengers, Physica A 132, 207
(1985).

[126] J. H. Sikkenk, J. M. J. Van Leeuwen, and J. V. Sengers, Physica
A 139, 1 (1986).

[127] J. V. Sengers and J. M. J. Van Leeuwen, Phys. Rev. A 39, 6346
(1989).

[128] J. M. J. Van Leeuwen and J. V. Sengers, Physica A 157, 839
(1989).

[129] D. Lohse, Phys. Today 56(2), 36 (2003).
[130] T. N. Swaminathan, K. Mukundakrishnan, P. S. Ayyaswamy,

and D. M. Eckmann, J. Fluid Mech. 642, 509 (2010).
[131] J. H. Snoeijer and B. Andreotti, Ann. Rev. Fluid Mech. 45, 269

(2013).
[132] J. Noah-Vanhoucke and P. L. Geissler, Proc. Natl. Acad. Sci.

USA 106, 15125 (2009).

033014-18

http://dx.doi.org/10.1103/PhysRevA.20.595
http://dx.doi.org/10.1103/PhysRevA.20.595
http://dx.doi.org/10.1103/PhysRevA.20.595
http://dx.doi.org/10.1103/PhysRevA.20.595
http://dx.doi.org/10.1080/00018738500101841
http://dx.doi.org/10.1080/00018738500101841
http://dx.doi.org/10.1080/00018738500101841
http://dx.doi.org/10.1080/00018738500101841
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1098/rsta.2002.1164
http://dx.doi.org/10.1098/rsta.2002.1164
http://dx.doi.org/10.1098/rsta.2002.1164
http://dx.doi.org/10.1103/PhysRevA.31.1001
http://dx.doi.org/10.1103/PhysRevA.31.1001
http://dx.doi.org/10.1103/PhysRevA.31.1001
http://dx.doi.org/10.1103/PhysRevA.31.1001
http://dx.doi.org/10.1103/PhysRevB.40.7027
http://dx.doi.org/10.1103/PhysRevB.40.7027
http://dx.doi.org/10.1103/PhysRevB.40.7027
http://dx.doi.org/10.1103/PhysRevB.40.7027
http://dx.doi.org/10.1103/PhysRevA.44.R817
http://dx.doi.org/10.1103/PhysRevA.44.R817
http://dx.doi.org/10.1103/PhysRevA.44.R817
http://dx.doi.org/10.1103/PhysRevA.44.R817
http://dx.doi.org/10.1103/PhysRevB.45.5276
http://dx.doi.org/10.1103/PhysRevB.45.5276
http://dx.doi.org/10.1103/PhysRevB.45.5276
http://dx.doi.org/10.1103/PhysRevB.45.5276
http://dx.doi.org/10.1103/PhysRevE.52.3821
http://dx.doi.org/10.1103/PhysRevE.52.3821
http://dx.doi.org/10.1103/PhysRevE.52.3821
http://dx.doi.org/10.1103/PhysRevE.52.3821
http://dx.doi.org/10.1103/PhysRevE.53.5513
http://dx.doi.org/10.1103/PhysRevE.53.5513
http://dx.doi.org/10.1103/PhysRevE.53.5513
http://dx.doi.org/10.1103/PhysRevE.53.5513
http://dx.doi.org/10.1142/S0218202596000341
http://dx.doi.org/10.1142/S0218202596000341
http://dx.doi.org/10.1142/S0218202596000341
http://dx.doi.org/10.1142/S0218202596000341
http://dx.doi.org/10.1103/PhysRevE.59.R4741
http://dx.doi.org/10.1103/PhysRevE.59.R4741
http://dx.doi.org/10.1103/PhysRevE.59.R4741
http://dx.doi.org/10.1103/PhysRevE.59.R4741
http://dx.doi.org/10.1103/PhysRevE.60.3564
http://dx.doi.org/10.1103/PhysRevE.60.3564
http://dx.doi.org/10.1103/PhysRevE.60.3564
http://dx.doi.org/10.1103/PhysRevE.60.3564
http://dx.doi.org/10.1088/1751-8113/41/10/105001
http://dx.doi.org/10.1088/1751-8113/41/10/105001
http://dx.doi.org/10.1088/1751-8113/41/10/105001
http://dx.doi.org/10.1088/1751-8113/41/10/105001
http://dx.doi.org/10.1088/0965-0393/20/7/075002
http://dx.doi.org/10.1088/0965-0393/20/7/075002
http://dx.doi.org/10.1088/0965-0393/20/7/075002
http://dx.doi.org/10.1088/0965-0393/20/7/075002
http://dx.doi.org/10.1016/0378-4371(90)90198-2
http://dx.doi.org/10.1016/0378-4371(90)90198-2
http://dx.doi.org/10.1016/0378-4371(90)90198-2
http://dx.doi.org/10.1016/0378-4371(90)90198-2
http://dx.doi.org/10.1016/0378-4371(92)90329-O
http://dx.doi.org/10.1016/0378-4371(92)90329-O
http://dx.doi.org/10.1016/0378-4371(92)90329-O
http://dx.doi.org/10.1016/0378-4371(92)90329-O
http://dx.doi.org/10.1016/0378-4371(85)90009-3
http://dx.doi.org/10.1016/0378-4371(85)90009-3
http://dx.doi.org/10.1016/0378-4371(85)90009-3
http://dx.doi.org/10.1016/0378-4371(85)90009-3
http://dx.doi.org/10.1016/0378-4371(86)90002-6
http://dx.doi.org/10.1016/0378-4371(86)90002-6
http://dx.doi.org/10.1016/0378-4371(86)90002-6
http://dx.doi.org/10.1016/0378-4371(86)90002-6
http://dx.doi.org/10.1103/PhysRevA.39.6346
http://dx.doi.org/10.1103/PhysRevA.39.6346
http://dx.doi.org/10.1103/PhysRevA.39.6346
http://dx.doi.org/10.1103/PhysRevA.39.6346
http://dx.doi.org/10.1016/0378-4371(89)90069-1
http://dx.doi.org/10.1016/0378-4371(89)90069-1
http://dx.doi.org/10.1016/0378-4371(89)90069-1
http://dx.doi.org/10.1016/0378-4371(89)90069-1
http://dx.doi.org/10.1063/1.1564347
http://dx.doi.org/10.1063/1.1564347
http://dx.doi.org/10.1063/1.1564347
http://dx.doi.org/10.1063/1.1564347
http://dx.doi.org/10.1017/S0022112009992692
http://dx.doi.org/10.1017/S0022112009992692
http://dx.doi.org/10.1017/S0022112009992692
http://dx.doi.org/10.1017/S0022112009992692
http://dx.doi.org/10.1146/annurev-fluid-011212-140734
http://dx.doi.org/10.1146/annurev-fluid-011212-140734
http://dx.doi.org/10.1146/annurev-fluid-011212-140734
http://dx.doi.org/10.1146/annurev-fluid-011212-140734
http://dx.doi.org/10.1073/pnas.0905168106
http://dx.doi.org/10.1073/pnas.0905168106
http://dx.doi.org/10.1073/pnas.0905168106
http://dx.doi.org/10.1073/pnas.0905168106



