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Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos
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Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs.
We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the
behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree
of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles
are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics
of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize
our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding
highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar
in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.
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I. INTRODUCTION

Nowadays, vesicles are extensively used as a model for
understanding dynamics and deformation of red blood cells
(RBCs) at the individual level but also regarding collective
phenomena and rheology. Vesicle membranes withstand bend-
ing but do not have a shear resistance, unlike RBCs, but they
still share several dynamical properties with RBCs, like tank
treading and tumbling under linear shear flow, or parachute
and slipper shapes under Poiseuille flow [1–3].

Under a Poiseuille flow, the situation of interest in this pa-
per, it is known experimentally that RBCs exhibit a parachute
as well a slipper shape [4–7]. Secomb and Skalak [8] have
presented a model for the slipper shape based on a lubrication
approximation. The slipper shape was also later observed in
numerical simulations by Pozrikidis [9]. These authors used
a capsule as a model for a RBC. Capsules are shells made
of polymers and are endowed with elastic properties, namely,
the shear elasticity that mimics the RBC cytoskeleton, i.e.,
the spectrin network lying underneath the cell membrane.
More recently, the minimal ingredients for the occurrence
of a slipper shape were identified [10]: a two-dimensional
(2D) vesicle even in an unbounded Poiseuille flow exhibits
a slipper solution when the flow strength is comparable to
that in the microvasculature. The slipper solution occurs as
a result of loss of stability of the symmetric solution (also
called a parachute). These shapes were further investigated
by including the effect of quasirigid bounding walls [11].
This study revealed a large variety of shapes and dynamics
such as centered and off-centered periodic oscillations (called
snaking). These oscillations are regular and stable in time.
Subsequent study in three dimensions has also reported on
similar phenomena [12,13]. The present study is a follow-up
study to that of Kaoui et al. [11] and reveals a variety of new
states. For example, we find that vesicles can first undergo
snaking (periodic oscillation of the shape in the form of a snake
motion) and suddenly undergo a new bifurcation showing
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period doubling of the temporal oscillation upon variation of a
control parameter (e.g., degree of confinement). On further
variation of the control parameter the system undergoes a
subharmonic cascade oscillation before transitioning to chaos.
Scenarios other than period doubling can also occur, as we
shall show. We investigate the occurrence of chaos using tools
of dynamical systems. We present a full phase diagram in
parameter space showing a variety of dynamics.

II. THEORETICAL FRAMEWORK

A. Membrane model

Vesicles in which we are interested consist of a closed
bilayer fluid membrane. Typically, vesicle diameters range
from a few hundred nanometers to a few hundred micrometers,
whereas the thickness of the bilayer is around a few nanome-
ters. At room temperature, bilayer membranes may be regarded
as two-dimensional fluids, but one should keep in mind that
they may present other phases (e.g., crystal and solid or gel
phases) depending on the temperature and the chemical nature
of the lipids. The membrane is a two-dimensional incompress-
ible fluid, and therefore its area is locally conserved. Due to
membrane impermeability, the volume of the enclosed liquid
inside the vesicle is also conserved. Fluid membranes present
a viscous resistance to shear stress, leading to a deformation of
the membrane with no storage of elastic energy. The only en-
ergetic contribution comes from the bending energy. Here we
employ the Helfrich elasticity theory for bilayer membranes
to describe the curvature energy in two dimensions [14] (2D
models have been proven to capture the essential features of
vesicles under flow and will be adopted here):

H = κ

2

∮
(c − c0)2ds, (1)

where c and c0 are, respectively, the mean and spontaneous
curvatures; κ is the curvature elastic modulus; s denotes the
curvilinear coordinate along the membrane; and

∮
refers to an

integral over the (2D) membrane contour. In two dimensions
the Gaussian curvature is irrelevant owing to the property∮

cds = 2π (an irrelevant constant). A tensionlike energy
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is added to the bending energy Eq. (1) in order to fulfill the
vesicle local perimeter conservation constraint:

Etens =
∮

ζ (s)ds, (2)

where ζ is a Lagrange multiplier that enforces constant local
length. The force is obtained from the functional derivative of
the Hamiltonian, including the tension energy, with respect to
the membrane elementary displacement [15]:

Fmem = κ

[
∂2c

∂s2
+ c3

2

]
n − cζn + ∂ζ

∂s
t, (3)

where n and t are the normal and tangent unit vectors,
respectively. The vesicle is characterized by a reduced area
(τ ), combining the actual fluid area enclosed by the vesicle
contour (S = πR2

0) and the area of a disk having the same
perimeter as the vesicle with

τ = 2
√

Sπ

P
(4)

and a viscosity contrast (λ) which expresses the ratio between
the inner (ηin) and outer (ηout) fluid viscosities:

λ = ηin

ηout
. (5)

The effective radius of the cell (R0 ≡ √
S/π ) and the outer

viscosity (ηout) are chosen to be the characteristic length and
viscosity scales, respectively.

B. Boundary integral formulation

The boundary integral method for low Reynolds number
flow is well established [16], and we have used it in different
contexts in two and three dimensions [10,13,15,17–20]. Here
we shall use a special Green’s function introduced quite re-
cently in [20] that automatically satisfies the no-slip boundary
condition at the bounding walls. Using this special Green’s
function the velocity along the membrane is given by [20]

1 + λ

2
v(X) = v∞(X) + 1

ηout

∫
γ

Gw(X − X0)Fmem(X0)ds(X0)

+ (1 − λ)
∫

γ

v(X0)Kw(X − X0)n(X0)ds(X0),

(6)

where X and X0 are two position vectors belonging to the
membrane (γ ). v and v∞ are the membrane’s velocity and the
imposed velocity. Gw and Kw stand for the Green’s-function
second- and third-order tensors for two parallel walls, and
v∞(X) is the imposed Poiseuille flow (to be specified below).
The detailed expression of the Green’s functions is given
in [20]. Because of the use of this special Green’s function the
integral is only performed along the vesicle, and not along the
bounding walls. This provides us with a quite powerful tech-
nique, as recently demonstrated [20,21]. The boundary condi-
tions used in order to derive the integral equation (6) are (i) a
no-slip condition at the walls and at the membrane, (ii) stress
balance at the membrane, and (iii) membrane inextensibility.

The external flow and confinement introduce two additional
dimensionless numbers: the so-called capillary number (Ck)

to quantify the flow strength over bending forces and the
confinement (Cn) to describe the ratio between the effective
diameter of the vesicle and the width of the channel. The
imposed Poiseuille flow is written as{

v∞
x = vmax

[
1 − (

y

W/2

)2]
vy

∞ = 0.
(7)

The capillary number is defined as

Ck = ηoutR
4
0

κ

vmax

(W/2)2
≡ τcγ̇ , (8)

and the confinement is written as

Cn = 2R0

W
, (9)

where R0, W , and vmax are the effective radius of the cell,
the width of the channel, and the maximum velocity of
the unperturbed Poiseuille flow. We define the characteristic
shear rate γ̇ as the imposed velocity gradient evaluated at
y = R0/2 and equal to R0vmax/(W/2)2, and τc = η0R

3
0/κ is

the characteristic shape relaxation time. Time will be measured
hereafter in units of τc, and distances will be measured in units
of R0. The details of numerical treatments are similar to those
used in [19,22].

III. RESULTS AND DISCUSSION

We performed a systematic scan in the three-dimensional
parameter space (λ, Ck , Cn), in order to explore the various
intricate behaviors of a vesicle under a Poiseuille flow. Instead
of Ck we shall use the combination CkW/R0 = Ck/2Cn,
which corresponds to the definition of the capillary number
from [11,23]. This will simplify comparison with the results
of [23]. In all simulations, we have set the reduced area τ to
0.6, which is close to that of a RBC in two dimensions.

A. Effect of flow strength and confinement on the
shape of a vesicle (case λ = 1)

We first set the viscosity contrast to λ = 1 and explored
the effect of the confinement and the capillary number on the
morphology of the cell. In order to test the new code based on
the Green’s function that vanishes at the wall [20], we have
first confirmed the previously reported results [11,23], namely,
the existence of six different states: parachutelike shape,
confined and unconfined slipperlike shapes, centered and
off-centered oscillating motions (called snaking in [11]), and
peanutlike shape [23]). Figure 1 shows the parachutelike and
confined slipperlike solutions. The snaking motions (centered
and noncentered) recently reported by Kaoui et al. [11] and
Tahiri et al. [23] have not exhausted all intricate dynamics. By
investigating the evolution of solutions under close scrutiny we
have discovered a variety of new states ranging from simple
oscillations to complex multiperiodic oscillations, until chaotic
motion prevails, as described below.

1. Transition to chaos via a subharmonic cascade

We have set CkW/R0 = 5 and varied the degree of confine-
ment Cn. The results are shown in Fig. 2, where we represent
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FIG. 1. (Color online) Stationary shape and history of the center
of mass vertical position as a function of time. (a and b) Slipper
solution (CkW/R0 = 6.25 and Cn = 0.8). (c and d) Parachute
solution (CkW/R0 = 6.25 and Cn = 0.44). The x axis codes are
shown for the lateral position of the mass center yCM of the cell
scaled by the effective radius of the cell (R0).

the vertical position of the vesicle center of mass (yCM) as a
function of time. Below a first critical value of Cn, the slipper
becomes unstable in favor of a snaking motion (off-centered).
This is a Hopf bifurcation. Close to the bifurcation point the
temporal evolution of the amplitude of lateral excursion of
the center of mass (yCM) remains constant over time [see
Fig. 2(b)]. By further reducing Cn, the simple snaking solution
undergoes a new bifurcation whereby the period of oscillation
has doubled [Fig. 2(c)] and then quadrupled for a smaller
value of Cn [Fig. 2(d)]. By further decreasing Cn, dynamics
enter a chaotic regime (Fig. 3). In Fig. 4, we represent the
amplitude A of excursion of the center of mass in the y
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FIG. 2. (Color online) The center of mass vertical position as a
function of time. (a) Slipper solution (CkW/R0 = 5 and Cn = 0.769).
(b) Snaking dynamics (CkW/R0 = 5 and Cn = 0.733). (c) Period-
doubling dynamics (CkW/R0 = 5 and Cn = 0.729). (d) Period-
quadrupling dynamics (CkW/R0 = 5 and Cn = 0.727).
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FIG. 3. (Color online) The center of mass vertical position as
a function of time. An apparently chaotic regime is found for
CkW/R0 = 5 and Cn = 0.689.

direction (that is the absolute value of the difference between
two successive maxima). Since a slipper (as well as a parachute
solution) moves along a line in the x direction (see Fig. 1) the
amplitude of lateral excursion is zero above a critical value of
Cn = 0.75 (Fig. 4). Figure 4 shows the amplitude as a function
of Cn, where we can see the beginning of a subharmonic
cascade, and the signature of accumulation of bifurcation
points. This is a universal behavior, well documented in
chaos textbooks [24–26]. The subharmonic cascade is one
of the three generic scenarios of transition to chaos (the two
others being intermittency and quasiperiodicity). Here we have
represented only the main oscillation (period 1), the period
doubling (period 2), and the period quadrupling (period 4).
Because of the universal accumulation in the subharmonic
cascade (that is, the location points of new bifurcations
to higher-order oscillations become closer and closer), the
transition to periods 8 and 16, for example, requires tuning
very carefully the control parameter as well as increasing
numerical precision (a significant reduction of the numerical
mesh size leads to excessive computation time), and it was not
our aim to provide a very detailed analysis of the higher-order
period-doubling cascade. Starting from the regime of period-4
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FIG. 4. (Color online) Period-doubling bifurcation diagram. The
capillary number is fixed (CkW/R0 = 5), and only the confinement
Cn is changed. The x and y axes stand for the confinement and the
amplitude of the oscillations, respectively.
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oscillation, we found that a quite small variation of Cn (of
about 4%) leads to chaos, as shown in Fig. 3.

2. Transition to chaos via a period-tripling bifurcation

The subharmonic cascade is one of the three classical
scenarios of transition to chaos (in addition to intermittency
and quasiperiodicity). The subharmonic cascade corresponds
to a cascade where at each bifurcation point the period
is doubled (or the frequency is halved). By analyzing the
dynamics of the initial snaking motion in other regions
of parameter space, we have discovered that the snaking
motion can also lose its stability in favor of a period-tripling
bifurcation, which is a less-known scenario as compared to the
period-doubling one. We show in Fig. 5 both a typical temporal
signal and the bifurcation diagram. Period-tripling bifurcations
and more complex transitions were also reported in literature.
We take as a reference, for instance, the pioneering paper of Li
and Yorke [27], where they introduced the first mathematical
definition of discrete chaos, showing the relation between
period 3 and chaos. Lui [28] presented sufficient mathematical
conditions for period-tripling and period-n bifurcations. Ze-
Hui et al. [29] reported subharmonic bifurcations in a granular
system, in the sequence of period tripling, period sextupling,
and chaos. Zhusubaliyev and Mosekilde [30] showed transition
from periodic to chaotic oscillations through period-doubling,
-tripling, -quadrupling, and -quintupling bifurcations, among
others. They also discussed more complex transitions, from
a family of cycles to another family of cycles with multiple
periods.
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FIG. 5. (Color online) Period-tripling motion of the mass center.
(a) Temporal behavior for a period-tripling dynamics (CkW/R0 =
4.611 and Cn = 0.71). (b) Bifurcation diagram (CkW/R0 = 4.611).
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FIG. 6. (Color online) Poincaré sections of different oscillations
observed by decreasing the confinement when the capillary number
CkW/R0 has been fixed at 5. The y axis stands for the y component
of the mass center of the cell, and the x axis stands for its derivative
with respect to time. (a) Cn = 0.733. (b) Cn = 0.729. (c) Cn = 0.727.
(d) Cn = 0.689.

3. Transition to chaos

In order to characterize chaotic dynamics we have per-
formed a Poincaré map as well as Fourier transforms of the
temporal evolution of center of mass amplitude. Figure 6
displays the Poincaré sections relative to the different 1, 2,
and 4 periodic oscillations, in addition to the chaotic one. In
this case, the gradual decrease of the confinement under a
low capillary number (CkW/R0 = 5 in these simulations) is
responsible for the observed transitions. The motion actually
can be assimilated to a flagellalike motion, where the vesicle
undergoes a periodic or a chaotic up-down motion. Snapshots
of this motion are shown in Fig. 7 [31]. Figure 8 shows
the Fourier spectrum of different dynamics. We see there the
occurrence of the cascade until the transition to chaos.

FIG. 7. (Color online) Snapshots of a cycle of period-doubling
dynamics (CkW/R0 = 5 and Cn = 0.729). The cell seems to move
like a spermatozoon, using its tail as a flagellum. The straight solid
blue line indicates the centerline of the channel, and the blue point
indicates the mass center of the cell.
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FIG. 8. (Color online) Fourier spectrum of different dynamics in
linear (a, c, e, and g) and semi-logarithmic (b, d, f, and h) coordinates:
(a and b) Snaking dynamics (CkW/R0 = 5 and Cn = 0.733). (c
and d) Period-doubling dynamics (CkW/R0 = 5 and Cn = 0.729).
(e and f) Period-quadrupling dynamics (CkW/R0 = 5 and Cn =
0.727). (g and h) Chaotic dynamics (CkW/R0 = 5 and Cn = 0.689).
The semi-logarithmic scale allows one to see more easily the
continuum spectrum characteristic of chaotic regimes. The x axis
codes are shown for the frequency F scaled by the characteristic
time τc.

B. Phase diagram

We have performed a systematic analysis in order to
determine the region of different dynamical manifestation
going from order to chaos. The results are shown in Fig. 9.
Besides the dynamics and shapes reported earlier [11,23],
revealing slipper, parachute, and snaking, we have identified
here more complex dynamics, going from higher-order oscil-
latory motion to chaos. Surprisingly enough, a simple situation
treated here, namely, a 2D vesicle under a Poiseuille flow, has
revealed broadly nine different kinds of motion (actually the
number is even larger, since in Fig. 9 we do not specify the kind
of multiple oscillation). This result highlights the complexity
of this free boundary problem, where membrane elasticity that
acts here only via bending forces can trigger rich dynamics.
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FIG. 9. (Color online) Phase diagram summarizing the different
morphologies and dynamics of a single vesicle with a viscosity
contrast set to unity (λ = 1). (a) Overview of the phase diagram.
(b) Zoom on the region where oscillations occur. The combined effect
of the confinement and flow strength leads to nine distinct regions
represented by different colors in the phase diagram: peanutlike shape
(purple), unconfined slipperlike shape (orange), parachutelike shape
(dark red), confined slipperlike shape (gray), centered oscillations
(cyan), multiple periodic oscillations (dark blue), chaotic oscillations
(white), off-centered oscillations (pink), and pinlike shape (green).
Note that three regions are not represented in the legend, namely, the
multiple periodic, chaotic, and off-centered oscillations.

C. RBC-like vesicles in microcirculation conditions

The complex dynamics discussed above occur at low
enough flow strength. We will examine now what happens
at large enough flow strength by exploring other viscosity
contrasts. We will start our study by fixing the viscosity ratio
to λ = 5 (equivalent to a cytoplasmic viscosity of around
5 cP), which corresponds to the one of a young red blood
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FIG. 10. (Color online) Stationary shapes exhibited by a RBC-
like vesicle under the same conditions of flow and confinement (Ck =
120 and Cn = 0.7): λ = 5, cytoplasmic viscosity ≈5 cP (top) and
λ = 10, cytoplasmic viscosity ≈10 cP (bottom).

cell. Recently Tahiri et al. [23] investigated numerically the
deformation of a single vesicle bounded by two quasirigid
walls (walls could deform slightly) using a boundary integral
formulation in two dimensions. They reported, in addition
to the symmetric and asymmetric regions, on a region of
parameter space where there is a coexistence between the
symmetric and asymmetric shapes (parachute and slipper).
We have reinvestigated the effect of both confinement and
capillary number on the morphology of a single vesicle for
the case of rigid walls. We have observed two possible
solutions for the range of parameters investigated, namely,
(i) parachutelike shapes and (ii) slipperlike shapes (Fig. 10).
We have summarized the results in a phase diagram in
Fig. 11. Similar behavior was reported experimentally and
discussed in [5]. We restrict the use of the word parachute
to the strictly symmetrical solutions, where the word slipper
covers the asymmetrical solutions. We have found series of
symmetric-asymmetric-symmetric transitions. This transition
was also observed in the experimental work of Abkarian
et al. [6] and Tomaiuolo et al. [7], but not discussed in detail.
Tahiri et al. [23] report that a change in the inner viscosity of the
cell from around 1 cP (viscosity of the plasma) to around 5 cP
(a typical value for a young red blood cell) leads to different
stationary shapes. Given the importance of this parameter we
have also investigated another larger value. It is important first
to underline that (i) the cytoplasmic viscosity of the red blood
cell is a variable from one cell to the other (within the same
organism), due to age, and then (ii) its value depends on the
mean corpuscular hemoglobin concentration (MCHC). The
MCHC describes the concentration of the hemoglobin per unit
volume of a red blood cell. Cokelet and Meiselman report that
the value of the cytoplasmic viscosity increases in a nonlinear
manner with the MCHC [32]. During its lifespan, the mean cell
volume and the mean surface area of the red blood cell decrease
with a constant ratio: the reduced volume of the cell remains
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FIG. 11. (Color online) Phase diagram of a red blood cell-like
vesicle (λ = 5) in a Poiseuille flow showing the existence of three
different regimes at very high capillary number.

the same [33,34]. Since the concentration of the hemoglobin
stays constant over time, the MCHC increases as a function
of the age of the cell. A typical value of the cytoplasmic
viscosity for a young red blood cell is around 5–7 cP and
corresponds to a value of MCHC of about 32g/dl [34,35].
For MCHC around 40g/dl, the viscosity of the cell nearly
quadruples [36]. Therefore, one natural question is the impact
of the cytoplasmic viscosity of the red blood cell on dynamics.
We would like to see how the phase diagram changes (at
high enough flow strength, corresponding to physiological
values) when the viscosity contrast is high enough as compared
to the so-called normal one, λ = 5. We have set λ = 10,
which corresponds to a cytoplasmic viscosity of around
10 cP. We report the results in Fig. 12. We observe that the
slipperlike solution prevails when increasing the confinement
and disappears for CkW/R0 � 190. The separation region
between the symmetric and asymmetric solutions is more
pronounced than for the case of λ = 5. Indeed, for the range of
the explored data, we do not observe any kind of transition from
symmetry to asymmetry to symmetry (as for λ = 5), but rather
we observe a transition from symmetric to asymmetric shapes.
We show clearly that the stationary solutions are sensitive to
inner viscosity changes, as shown in Fig. 10. Considering that
in most of the experimental works the cytoplasmic viscosity of
the red blood cells is an unknown variable and most probably
a nonuniform one, this may give a lead about why, for fixed
flow and confinement conditions, symmetric and asymmetric
shapes can both be observed. Our study regarding this effect is
only indicative, and a systematic analysis should be postponed.

IV. CONCLUDING REMARKS

The most pronounced result of our study is the discovery
of surprisingly complex behavior of vesicles in a Poiseuille
flow. The dynamics has revealed nine major distinct shapes
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FIG. 12. (Color online) Phase diagram for λ = 10. The red and
blue dots indicate, respectively, parachutelike and slipperlike shapes.

and dynamics, ranging from symmetric and nonsymmetric
solutions up to chaos. Dynamics of vesicles are treated here
in the Stokes regime. In the absence of inertia, it is a
classical result that the Poiseuille flow is always laminar.
The existence of a single elastic object within the flow,
acting only via bending forces, completely destroys the overall
picture: chaotic dynamics take place. It would be interesting to
investigate in the future the behavior of these chaotic regimes
in the presence of many vesicles. It is tempting to conjecture
that the composite fluid would look chaotic not only in time
(as reported here) but also in space. This problem could be
viewed as a class of systems exhibiting the so-called elastic

turbulence [37], that is a turbulence caused by the elasticity
of the suspending entities when coupled to fluid flow in the
purely Stokes regime. Elastic turbulence is characterized by
a cascade of transfer of energy from large to small scales,
akin to the Kolmogorov cascade for classical turbulence.
A systematic analysis should be undertaken before drawing
conclusive answers.

In a two-dimensional unbounded Poiseuille flow, the
shape diagram of vesicles shows centered symmetric
(parachute and bullet) shapes and off-centered asymmet-
ric (slipper) shapes [10]. These results are also observed
in three-dimensional simulations [13]. Snaking oscillations
are observed in both two-dimensional [11] and three-
dimensional [12] simulations of vesicles in a confined
Poiseuille flow. Chaotic dynamics, which were not reported
in the previous numerical studies, were observed here under a
close scrutiny. It is likely that the kind of solutions reported in
this study should also occur in three dimensions with a rigorous
investigation. To the limits of the authors’ knowledge, there
are no results in two dimensions that have not been confirmed
in three dimensions. For all these reasons, it would be desirable
to extend this work in three dimensions.

We hope that this study will trigger further investigations
both numerically and experimentally.
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