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Speed selection for traveling-wave solutions to the diffusion-reaction equation with cubic reaction
term and Burgers nonlinear convection

V. A. Sabelnikov
ONERA - The French Aerospace Laboratory, F-91761 Palaiseau, France

A. N. Lipatnikov
Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, 412 96, Sweden

(Received 4 June 2014; published 9 September 2014)

The problem of traveling wave (TW) speed selection for solutions to a generalized Murray-Burgers-KPP-Fisher
parabolic equation with a strictly positive cubic reaction term is considered theoretically and the initial boundary
value problem is numerically solved in order to support obtained analytical results. Depending on the magnitude
of a parameter inherent in the reaction term (i) the term is either a concave function or a function with the
inflection point and (ii) transition from pulled to pushed TW solution occurs due to interplay of two nonlinear
terms; the reaction term and the Burgers convection term. Explicit pushed TW solutions are derived. It is shown
that physically observable TW solutions, i.e., solutions obtained by solving the initial boundary value problem
with a sufficiently steep initial condition, can be determined by seeking the TW solution characterized by the
maximum decay rate at its leading edge. In the Appendix, the developed approach is applied to a non-linear
diffusion-reaction equation that is widely used to model premixed turbulent combustion.
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I. INTRODUCTION

Propagation of a wave in a nonequilibrium medium is a
widespread phenomenon relevant to many branches of science,
such as biology [1–4], economics [5], combustion [6,7],
chemistry [8,9], physics [10], etc. To model the phenomenon,
the following nonlinear diffusion-reaction equation:

∂u

∂t
= D

∂2u

∂x2
+ Q(u) (1)

is widely used, with the first and second terms on the right hand
side (RHS) describing the spread of the wave due to diffusion
of a normalized density of a substance u with a constant
coefficient D and nonlinear reaction rate Q(u), respectively.
Here, t � 0 is time, independent variable x is unbounded,
i.e., −∞ < x < ∞, the function u(x,t) characterizes the state
of the medium, with u = 0 and u = 1 being homogeneous
unstable and stable states, respectively, i.e.,

Q(0) = Q(1) = 0, Q(0 < u < 1) > 0, (2)

and, therefore, the derivatives Q′(0) > 0, Q′(1) < 0. It is
worth noting that other reaction terms, which were not strictly
positive, were also considered in the literature, e.g., see
[5,6,11,12] and references quoted therein. The present study
is restricted to strictly positive reaction terms.

For dimensional reasons, the non-linear reaction (source)
term Q(u) can be written as follows:

Q(u) = ω(u)

τf

, (3)

where τf is a constant time scale. Subsequently, Eq. (1) reads

∂u

∂τ
= ∂2u

∂ξ 2
+ ω(u), (4)

where τ = t/τf and ξ = x/
√

Dτf are the normalized time
and spatial coordinate, respectively.

Partial differential Eq. (4) admits traveling-wave (TW)
solutions of permanent monotonous shape u(ξ,τ ) = U (ζ ),
where ζ = ξ − �τ is the wave variable. Such a TW body
propagates into an unstable state with a constant speed � > 0
(for brevity, we consider TWs that propagate from left to
right). Substitution of the TW solution to Eq. (4) results in
the following ordinary differential equation:

−�
dU

dζ
= d2u

dζ 2
+ ω(u), (5)

which is written in the coordinate framework attached to the
TW. Boundary conditions read

U (−∞) = 1, U (∞) = 0. (6)

Depending on the shape of the nonlinear reaction term
ω(U ), two regimes of TW propagation can be distinguished,
i.e., the so-called pulled and pushed TWs, e.g., see a review
paper by Ebert and van Saarloos [13]. The name pulled
TW comes from the fact that the speed spectrum and, in
particular, minimum (slowest) speed can be found using a
linear analysis technique in the vicinity of the unstable point,
i.e., by linearizing Eq. (5) with respect to U � 1 at the leading
edge of the TW. In other words, such a TW is pulled along
its leading edge. To the contrary, the speed of a pushed TW
is controlled by the entire wave structure and depends on the
shape of the nonlinear reaction term ω(U ) at 0 < U < 1.

Research into the pulled TW solutions to Eqs. (5)–(6) was
pioneered by Kolmogorov, Petrovsky, and Piskounov [2] who
studied the spreading of an advantageous gene in a population
by considering the following source term:

ω(0) = ω(1) = 0, ω(0 < u < 1) > 0,

ω′(0 < u � 1) < ω′(0). (7)

The last inequality in Eq. (7) means that the source term ω has
the highest slope at u = 0. It is assumed further without loss of
generality that ω′(0) = 1. Equation (7) is satisfied for a wide
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class of source terms, e.g., for concave functions, which have
negative second derivative ω′′ in the interval 0 < u < 1. A
widely used model of such a concave source term is as follows
ω = u − uk , where k > 1. Equations (5)–(7) are commonly
called the KPP case of a general diffusion-reaction problem.

Kolmogorov et al. [2] have shown that the nonlinear
boundary value problem given by Eqs. (5)–(7) cannot uniquely
determine the physically realizable (observable) wave speed.
They have established that the boundary value problem has
a spectrum � � �min of the wave speeds, bounded by a
minimum (slowest) speed �min = �KPP = 2

√
ω′(0) = 2. As

ζ → ∞, the TW solutions U (ζ ) decay at exponential rate
associated with the κ− branch of the dispersion relation
κ2 − �κ + 1 = 0, which results from the linear analysis [2].
Here, κ− = (� − √

�2 − 4)/2 � 1. The decay rate attains a
maximum κKPP = 1 for the minimum speed �KPP = 2.

As already mentioned, the spectrum � � �KPP = 2 can be
found using the linear analysis technique in the vicinity of
the unstable point, i.e., by linearizing Eq. (5) with respect
to U � 1 at the leading edge. A natural question arises:
what TW is actually observed? To answer this question, i.e.,
to select the physically realizable (observable) wave speed,
Kolmogorov et al. [2] studied the long-time behavior of the
solutions to the initial boundary value problem given by
Eq. (4) with the nonlinear source term ω(u) that satisfies
Eq. (7). They have shown that for physically natural initial
conditions associated with a sufficiently steep initial profile of
u(x,t = 0) = u0(x), e.g., u0(x) = 1 − H (x) = H (−x), where
H is Heaviside function, the solution to the initial boundary
value problem approaches the TW solution characterized
by the slowest speed �KPP = 2 and the highest decay rate
κKPP = 1.

It is worth stressing that a TW is a self-similar intermediate
asymptotic of the long-time solution u(ξ,τ ) = v(ξ − �τ,τ ) =
v(ζ,τ ) to the initial boundary value problem. Accordingly, in
order to investigate the asymptotic behavior of the long-time
solution u(ξ,τ ) at the leading edge, two limits of ξ → ∞
and τ → ∞ should be considered. This problem is discussed
in detail in a review paper by Ebert and van Saarloos [13].
The authors showed that the two limits do not commute and,
consequently, the order of the limits is of importance. The
linear analysis of a TW at the leading edge, which yields U ∝
exp (−κζ ), is valid for 1 � ζt ≡ ζ − 1.5 ln τ � √

τ , while
at ζt 	 2

√
τ 	 1, the solution u(ξ,τ ) decays as a Gaussian

function u(ξ,τ ) ∝ exp (−ξ 2/4τ ), which is steeper than any
exponential one. The interested reader is referred to the book
by Barenblatt [14] for further discussion of the intermediate
asymptotics and examples.

Another regime of TW propagation was studied by Aronson
and Weinberger [5] who addressed a more general reaction
(source) term

ω(0) = ω(1) = 0, ω(0 < u < 1) > 0, ω′(0) > 0. (8)

This constraint allows the reaction term ω to have an inflection
point in the interval 0 < u < 1, i.e., the maximum slope of
ω(u) can be reached at 0 < u < 1. Aronson and Weinberger
[5] have proved that: (i) similarly to the KPP case, the boundary
value problem given by Eqs. (5), (6), and (8) has a spectrum
� � �min of TW speeds, bounded by the minimum (slowest)

speed, which satisfies the following constraints:

�KPP � �min � 2 sup
0<u<1

√
ω(u)

u
. (9)

It should be stressed that Eq. (9) gives only bounds for �min,
but there is no explicit expression that relates the slowest
speed �min to the parameters of the boundary value problem.
In the KPP case, the lower and upper bounds coincide and,
consequently, �min = �KPP, but this equality can hold even if
the lower and upper bounds are different.

Similarly to the KPP case, TW solutions to Eqs. (5), (6), and
(8) that have � > �min decay exponentially, with the decay
rate belonging to the κ− branch of the dispersion relation κ2 −
�κ + 1 = 0, which results from the linear analysis. Moreover,
TW solutions with the slowest speed can be associated with
an isolated discrete point � = �min and decay with a rate
κ+ = (� + √

�2 − 4)/2, which belongs to another branch of
the dispersion relation [5].

In order to find TW solution that is actually observed,
Aronson and Weinberger [5] analyzed the long-time behavior
of the solutions to the initial boundary value problem given
by Eq. (4) with the nonlinear source term ω(u) that satisfies
Eq. (8). They proved that, for the natural (sufficiently steep)
initial profile of u0(x), the solution to the initial boundary value
problem can tend to pushed TW with � = �min and decay rate
κ+ > 1 larger than κKPP = 1.

Murray [3,4] was the first who introduced a nonlinear scalar
flux J (u) with the derivative J ′ 
= const into the diffusion-
reaction Eq. (1), i.e., he investigated the following equation:

∂u

∂t
+ ∂J (u)

∂x
= D

∂2u

∂x2
+ ω(u)

τf

, (10)

which is known as quasi-linear convection diffusion-reaction
equation and can be rewritten as follows:

∂u

∂t
+ J ′ ∂u

∂x
= D

∂2u

∂x2
+ ω(u)

τf

. (11)

Introduction of the flux J (u) into Eq. (11) aims at allowing
for deterministic motion of substance in (or opposite to) the
direction of its gradient, in addition to the Brownian motion
modeled by the first term on the RHS. Such deterministic mo-
tion is relevant to various phenomena in biology, physiology,
chemistry, etc., e.g., see [15–18].

The effect of the nonlinear convection term J ′∂u/∂x is
well known in the particular case of D = ω = 0. In that case,
Eq. (11) is transformed to a quasi-linear hyperbolic equation
[19–21]. If the slope J ′ of the nonlinear convection term is
positive (negative) and the initial profile u0(x) is a smooth
decreasing function, i.e., du0/dx < 0, then the profile u(x,t)
is compressed (expanded) and a shock (rarefaction) wave is
generated.

By analyzing Eq. (10) with ω(u) = u(1 − u) and J (u) =
Ku2/2 or J ′ = Ku, where parameter −∞ < K < ∞ had
dimension of velocity, Murray [3,4] found that depending
on the value of K , not only pulled, but also pushed TW
solutions satisfied Eq. (10). Murray’s quasi-linear convection
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diffusion-reaction equation reads

∂u

∂t
+ Ku

∂u

∂x
= D

∂2u

∂x2
+ u(1 − u)

τf

(12)

or

∂u

∂τ
+ ku

∂u

∂ξ
= ∂2u

∂ξ 2
+ u(1 − u) (13)

in a dimensionless form, where k = K/
√

D/τf . Because
the left hand side (LHS) of Eq. (13) is the well-known
inviscid Burgers equation [19–21], Eq. (13) can be called the
Burgers-KPP-Fisher equation. Accordingly, the parameter k is
the normalized intensity of the Burgers convection term.

The boundary value problem for TW solutions to Eq. (13)
reads

−�
dU

dζ
+ kU

dU

dζ
= d2U

dζ 2
+ U (1 − U ), (14)

with the boundary conditions being given by Eq. (6). By
investigating the boundary value problem, Murray [3,4] has
shown that if k � kcr = 2, then (i) TW solutions are pulled,
(ii) the spectrum � � �min of TW speeds is bounded by a
minimum speed �min = �KPP = 2, and (iii) the decay rates of
the solutions belong to the κ−-branch of the dispersion relation
κ2 − �κ + 1 = 0, which results from the linear analysis. All
these results are similar to the KPP results. However, if
k > kcr , then (i) the slowest wave speed is given by �min =
k/2 + 2/k > �KPP = 2, (ii) the TWs with � = �min are
pushed, and (iii) have the decay rates κ+ = k/2 > κKPP = 1,
which belong to another branch of the dispersion relation.
Subsequently, Murray [3,4] numerically solved the initial
boundary value problem for Eq. (11) with the Heaviside-like
initial profile u0(x) for a few representative values of the
parameter K and found that the numerical solutions tended to
(i) the pulled TW with � = �min = �KPP = 2 and κ = κKPP

when k � kcr = 2, but (ii) the pushed TWs with � = �min =
k/2 + 2/k > �KPP = 2 and κ = κ+ = k/2 > κKPP = 1 when
k > kcr . Recent numerical simulations by Méndez and Fort
[22] validated these findings also.

These results imply that the logistic reaction term ω(u) =
u(1 − u) overwhelms the Burgers nonlinear convection term
ku∂u/∂ξ if k < kcr , whereas the Burgers nonlinear convection
term overwhelms the logistic reaction term if k > kcr .

From the above discussion, it is clear that the boundary
value problem for either the diffusion-reaction or quasi-linear
convection diffusion-reaction equation does not uniquely
determine the TW speed. The speed selection is performed
by solving the counterpart initial boundary value problem
theoretically and/or numerically. For physically natural initial
conditions, e.g., given by Heaviside function, the TW with the
slowest speed �min and the highest decay rate is commonly
selected.

Many efforts were performed to resolve the speed selection
problem within the framework of the boundary value problem,
as an alternative to the consideration of the initial boundary
value problem. Here, we can mention (i) the marginal
stability hypothesis [23–25] and closely related steepness cri-
terion [26–28], (ii) construction of explicit solutions [28,29],
(iii) the structural stability hypothesis [30], (iv) dynamical
system methods [31], and (v) variational methods [32,33]. The

interested reader is referred to a review paper by von Saarloos
[34] for further discussion of the speed selection problem and
examples.

In the present communication, we support the steepness cri-
terion [26–28] by applying it to the problem of speed selection
for a generalized Murray-Burgers-KPP-Fisher Eq. (13) with
a cubic reaction term which, depending on a parameter, can
be either a concave function or a function with the inflection
point. In this case, transition from pulled to pushed TWs is
controlled by the interplay of two nonlinear terms, i.e., the
Burgers convection and reaction terms.

The paper is organized as follows. Section II contains
a qualitative discussion of a role played by the Burgers
convection term in the problem of front propagation into
unstable states. In Sec. III, the boundary value problem for
finding TW solutions is stated and the linear analysis is
applied to it. Explicit pushed TW solutions to the problem
are derived in Sec. IV in order to study the interplay between
the nonlinear convection and cubic source terms. In Sec. V, we
compare the decay rates of pulled and pushed TW solutions in
order to select the physically observable TWs, by associating
them with waves that are characterized by the highest decay
rate. In Sec. VI, we confirm obtained analytical results by
numerically solving the initial boundary value problem for
Eq. (13). Conclusions are drawn in Sec. VII. The Appendix
addresses an application of the obtained results to the theory
of premixed turbulent combustion.

II. MATHEMATICAL FORMULATION AND
GOVERNING EQUATIONS

Let us consider the initial boundary value problem for
the quasi-linear convection diffusion-reaction equation with
the Burgers convection term, i.e., Eq. (13), and with a cubic
reaction term

ω = u(1 − u)(1 + 2εu), (15)

where ε � −0.5 in order for the reaction term to be positive
for 0 < u < 1. The reaction term is not concave if ε > 0.5.
Equation (15) subsumes the following particular cases: ω =
u(1 − u)2 if ε = −0.5, ω = u(1 − u) if ε = 0, or ω = u(1 −
u2) if ε = 0.5.

It is worth noting that a cubic reaction term that is not
strictly positive is also used in various applications. For
instance, the FitzHugh-Nagumo model of the transmission
of nerve impulses [35,36] is based on Eq. (4) with ω =
u(1 − u)(u − α), where 0 < α < 1. Equation (4) with that
reaction term is called the FitzHugh-Nagumo equation. In this
case, the reaction term is negative in an interval of 0 < u < α,
points u = 0 and u = 1 are stable, whereas point u = α is
unstable.

Substitution of Eq. (15) into Eq. (13) yields

∂u

∂τ
+ ku

∂u

∂ξ
= ∂2u

∂ξ 2
+ u(1 − u)(1 + 2εu). (16)

Boundary conditions are as follows:

u(−∞,τ ) = 1, u(∞,τ ) = 0. (17)
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Integration of Eq. (16) over interval ξ1 < ξ < ξ2 results in
the following integral form of the scalar conservation law:

d

dτ
Iu(ξ1,ξ2,τ ) + k

2
u2(ξ2,τ ) − k

2
u2(ξ1,τ )

−
(

∂u

∂ξ

∣∣∣∣
ξ2

− ∂u

∂ξ

∣∣∣∣
ξ1

)
=

∫ ξ2

ξ1

ω(u)dξ, (18)

where

Iu(ξ1,ξ2,τ ) ≡
∫ ξ2

ξ1

u(ξ,τ )dξ. (19)

If ξ1 = −∞ and ξ2 = ∞, Eqs. (18) and (19) read

d

dτ
Iu(−∞,∞,τ ) = k

2
+

∫ ∞

−∞
ω(u)dξ (20)

and

Iu(−∞,∞,τ ) ≡
∫ ∞

−∞
u(ξ,τ )dξ, (21)

respectively, provided that ∂u/∂ξ is assumed to vanish at
ξ = −∞ and ξ = ∞. The quantity Iu(−∞,∞,τ ) is the total
amount of the substance u(ξ,τ ) in the unbounded domain
−∞ < ξ < ∞. The time derivative of Iu(−∞,∞,τ ) is well
defined in spite of the fact that the integral on the RHS of
Eq. (21) is divergent.

Equation (20) contains two terms on the RHS. The first
term k/2 depends explicitly on the intensity of the Burgers
convection velocity. If k > 0, this term coincides with the
speed of the shock wave generated in Burgers equation, see
Eq. (24) below. The second term

∫ ∞
−∞ ω(u)dξ is the spatial

integral of the reaction term. It depends on the Burgers
convection term implicitly, because the latter term affects the
profile u(ξ,τ ) by compressing (expanding) it if k > 0 (k < 0).
The term k/2 on the RHS of Eq. (20) is equal to the net flux into
the region through the left infinity ξ = −∞ (at the right infinity
ξ = ∞, this flux vanishes due to the boundary condition).
Equation (20) shows the difference between explicit and
implicit impacts of the Burgers convection term on the time
evolution of the global quantity Iu(−∞,∞,τ ). This twofold
effect of the Burgers convection term holds also for the speeds
of TW solutions, as will be discussed later.

To further clarify a role played by the Burgers convection
term, let us consider abridged Eq. (16), i.e., its LHS

∂u

∂τ
+ ku

∂u

∂ξ
= 0, (22)

which is the inviscid Burgers equation [19–21]. In the case
of a smooth initial condition, the solution to this equation
supplemented with the boundary conditions given by Eq. (17)
develops to a shock or rarefaction wave [19–21]. In the
particular case of

u(ξ,0) = u0(ξ ) = 1 − H (ξ ) = H (−ξ ), (23)

the problem has two types of solutions. If k > 0, the solution is
a singular TW which is nothing but a shock wave propagating
at speed k/2, i.e.,

u(ζ,θ ) = 1 − H (ζ ) = H (−ζ ), ζ = ξ − k

2
τ. (24)

If k < 0, the solution is a centered rarefaction wave (not a TW)
with the appearance of all intermediate values of 0 < u < 1,
i.e.,

u(ζ,θ ) =
⎧⎨
⎩

1 if ξ < −|k|/2τ

−ξ/(|k|τ ) if −|k|/2τ � ξ � 0
0 if ξ > 0

, (25)

and Eq. (20) reads

d

dτ
Iu(−∞,∞,τ ) = k

2
. (26)

Therefore, the quantity Iu(−∞,∞,τ ) is not conserved for
the inviscid Burgers equation, but increases (decreases) for
positive (negative) k due to the supply (withdrawal) of the
substance u with the flux k/2 at ξ = −∞.

Solutions to the viscous Burgers equation, i.e., Eq. (13)
without the source term on the RHS, supplemented with the
initial conditions given by Eq. (23) resemble qualitatively the
solutions to the inviscid Burgers equation, given by Eq. (24)
or (25), with the shock or rarefaction wave being spread by the
diffusion term. The speed of such a spread shock or rarefaction
wave is equal to k/2, i.e., it is not affected by the diffusion term.

III. BOUNDARY VALUE PROBLEM. LINEAR ANALYSIS

Substitution of a TW solution u(ξ,τ ) = U (ζ ), where ζ =
ξ − �τ into the partially differential Eq. (16) yields the
following second-order ordinary differential equation:

−�
dU

dζ
+ kU

dU

dζ
= d2U

dζ 2
+ U (1 − U )(1 + 2εU ), (27)

which jointly with the boundary conditions given by Eq. (6)
constitute a boundary value problem.

Integration of Eq. (27) from ζ = −∞ to ζ = ∞ results in
the following equation:

� = k

2
+

∫ ∞

−∞
ω(U )dζ, (28)

for the TW speed � provided that Eq. (6) holds. Thus, as
noted above, the TW speed is the sum of two terms, i.e.,
(i) the explicit contribution k/2 from the Burgers convection
term and (ii) spatially integrated reaction term

∫ ∞
−∞ ω(U )dζ .

The second-order boundary value problem given by Eqs. (6)
and (27) can be reduced to a first-order boundary value problem

−�P + kUP = P ′P + U (1 − U )(1 + 2εU ), (29)

P (0) = P (1) = 0, (30)

which is stated in the phase space (U,P ), where P = dU/dζ

and P ′ = dP/dU .
Either the boundary value problem given by Eqs. (6) and

(27) or the boundary value problem given by Eqs. (29) and (30)
is an eigenvalue problem. We have to find such eigenvalues �

that the obtained trajectory P (U ) connects two singular points
(1,0) and (0,0) in the phase space [2,5]. The complete solution
to the boundary value problem requires considering the global
behavior of trajectories P (U ) in the phase space. However, the
necessary conditions for the existence of such trajectories can
be found by applying linear analysis at the leading edge.
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To do so, let us linearize Eq. (29) at the leading edge, i.e.,
in the vicinity of the unstable equilibrium point U = 0 [2,5].
Substitution of

P = −κU, κ > 0, U ∝ exp(−κξ ), ξ → ∞ (31)

into Eq. (29) yields the following dispersion relation:

κ2 − �κ + 1 = 0, (32)

which links the TW speed � and the decay rate κ of the profile
U (ζ ) at the leading edge. This dispersion relation has two
branches

κ+ = �

2
+

√
�2

4
− 1, (33)

κ− = �

2
−

√
�2

4
− 1 (34)

with κ+κ− = 1. Because U (ζ ) is a monotonous positive
function, both κ+ and κ− should be real. Because the dispersion
relation given by Eq. (32) depends only on the linear terms
in Eq. (29), neither the Burgers convection term, which is
of the second order with respect to U , nor the second- and
third-order contributions to the reaction term play a role, and
Eq. (32) coincides with the dispersion relation of the KPP
problem (k = ε = 0). Therefore, the linear analysis does not
allow us to gain an insight into the influence of these terms on
the TW solutions and their speeds. We can only arrive at the
well-known KPP result [2], i.e.,

�min � �KPP = 2. (35)

IV. EXACT SOLUTION

Let us find explicit pushed TW solutions to the boundary
value problem given by Eqs. (29) and (30) such that the
wave speed and decay rate are higher than �KPP and κKPP,
respectively. We seek a solution P (U ) in a form of a quadratic
function

P = −κ+U (1 − U ), P ′ = −κ+(1 − 2U ),
(36)

U = 1

1 + exp(κ+ξ )
,

where κ+ � 1 satisfies Eq. (33). Substitution of Eq. (36) into
Eq. (29) yields the following relation:

−� + κ+ + 1

κ+
+

(
k − 2κ+ + 2ε

κ+

)
U = 0. (37)

In order for Eq. (37) to be identically satisfied for all 0 <

U < 1, the following two equations:

−� + κ+ + 1

κ+
= 0 (38)

and

k − 2κ+ + 2ε

κ+
= 0 (39)

should hold. Note that Eq. (38) is identical to the dispersion
relation given by Eq. (32) with κ = κ+. This result is not
surprising, because Eq. (32) is always valid at U � 1.

Equation (39) reads

κ2
+ − k

2
κ+ − ε = 0. (40)

Because physically admissible roots of the quadratic Eq. (40)
should be positive, we have

κ+ = k

4
+

√
k2

16
+ ε. (41)

Because the decay rate κ+ should be real, the TW solutions
given by Eqs. (36) and (41) exist only if

ε > 0 or k > 4
√

|ε|. (42)

If −1/2 � ε < 0, then the exact TW solution does not exist in
the range of k <

√
4|ε|.

Equations (38) and (41) result straightforwardly in

� = κ+ + 1

κ+
� 2. (43)

In the case of the logistic growth rate, i.e., ε = 0,
Eqs. (41) and (43) reduce to the well-known exact solution by
Murray [3,4],

κ+ = k

2
, � = k

2
+ 2

k
� 2, k > 0. (44)

In the case of vanishing nonlinear convection term, i.e., k =
0, Eqs. (41) and (43) reduce to the exact solution found by
Hadeler and Rothe [37],

κ+ = √
ε, � = √

ε + 1√
ε

� 2, ε > 0. (45)

V. SELECTION OF TW SOLUTION

In line with the steepness criterion [26–28], a physically
realizable TW solution to the initial boundary value problem is
the TW solution with the maximum decay rate κ . Accordingly,
the inequality κ+ > κKPP should be satisfied in order for the
explicit pushed TW solution to be physically relevant, where
κKPP = 1 results from the linear analysis. If κ+ < κKPP, then,
the pulled solution with κ = κKPP is physically realizable.
Thus, combining the KPP result for pulled TWs with the
exact solution for the pushed TWs, we obtain the following
propagation speeds:

� =
{
�KPP = 2 if −∞ < k < kcr

k/2 + (1 + ε)/κ+ if kcr < k < ∞ (46)

and decay rates

κ =
{
κKPP = 1 if −∞ < k < kcr

κ+ = k/4 +
√

k2/16 + ε if kcr < k < ∞ (47)

of the physically relevant TW solutions, where

kcr = 2(1 − ε) (48)

is the critical intensity of the nonlinear Burgers convection
term at which the transition from pulled to pushed TW
solutions occurs. It is worth remembering that ε � −1/2.
Note that Eq. (48) is consistent with the constraints given
by Eq. (42). Indeed, if −1/2 � ε < 0, then

2(1 − ε) − 4
√

|ε| = 2 + 2|ε| − 4
√

|ε| = 2(1 −
√

|ε|)2 > 0.
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Equation (47) shows that if k > kcr , then, the decay rate
κ = κ+ is increased by both k and ε. Equation (48) shows that
the critical value kcr is decreased when ε is increased, with kcr

being negative if ε > 1.
The input of the reaction term to � is given by Eqs. (28)

and (46), which result in∫ ∞

−∞
ω(U )dζ =

{
2 − k/2 if −∞ < k < kcr

(1 + ε)/κ+ if kcr < k < ∞ ,(49)

provided that ε � −1/2. It is worth noting that at k > kcr ,
the integral

∫ ∞
−∞ ω(U )dζ can be calculated straightforwardly

using Eq. (36)∫ ∞

−∞
ω(U )dζ =

∫ 1

0

ω(U )

|P | dU =
∫ 1

0

U (1 − U )(1 + 2εU )

κ+U (1 − U )
dU

= 1

κ+

∫ 1

0
(1 + 2εU )dU = 1 + ε

κ+
.

In the case of ε > 1 and k < kcr < 0, the Burgers nonlinear
convection term is negative and serves to expand the profile
of U (ζ ). Accordingly, the integral

∫ ∞
−∞ ω(U )dζ given by

Eq. (49) in this case is increased when the magnitude |k|
of that term is increased. Due to the expansion of U (ζ ) by
negative Burgers nonlinear convection term, the profile has
a long tail at the trailing edge if k < kcr < 0. Indeed, let us
consider the asymptotic behavior of U (ζ ) at the trailing edge,
i.e., at ζ → −∞. Substitution of

1 − U = exp(μζ ) � 1,

P = dU

dζ
= −μ exp(μζ ) = −κ(1 − U ) < 0, (50)

d2U

dζ 2
= −μ2 exp(μζ ) = μP, μ > 0

into Eq. (29) yields

μ2 + (� − k)μ − (1 + 2ε) = 0. (51)

Therefore,

μ± = −� − k

2
±

√(
� − k

2

)2

+ 1 + 2ε (52)

and the positive root μ+ is decreased when the magnitude |k| of
negative k is increased. In particular, μ → 0 when k → −∞
and the profile of U (ζ ) has a long tail at the trailing edge.
Similarly, the profile has a long tail at ζ → −∞ if ε → −1/2.

In the particular case of ε = 0 or k = 0, Eqs. (46) and (47)
obtained in the present work reduce to equations derived earlier
by Murray [3,4] or Hadeler and Rothe [37], respectively.

VI. NUMERICAL SIMULATION

In order to support the obtained analytical results and, in
particular, the steepness criterion [26–28] for selecting phys-
ically observable solutions, we numerically investigated the
initial boundary value problem. Simulations were performed
by using an in-house code widely exploited in previous studies,
e.g., [38,39]. Briefly speaking, Eq. (16) was numerically
integrated using implicit scheme for various k and ε on a
uniform spatial grid. In order to keep the wave in the middle

of the computational domain, the numerical integration was
performed in the coordinate framework that moved from left
to right at a speed λ equal to � given by Eq. (46). Boundary
conditions were set by Eq. (17). Initial profile of ũ(ξ,0) varied
linearly from 0 at ξ = ξ1 	 1 to unity at ξ = ξ2 > ξ1, with
ξ2 − ξ1 � 1. Weak sensitivity of obtained results to time step,
grid size, and initial conditions was checked. The code was
tested by comparing computed TW speeds with the theoretical
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FIG. 1. TW speed vs. magnitude k of the nonlinear Burgers
convection term. Lines and symbols show analytical and numerical
results, respectively. Parameter ε is specified in legends.
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results by Kolmogorov et al. [2], analytical results by Murray
[4], and numerical results by Méndez and Fort [22].

In the present paper, we restrict ourselves to discussing
data computed for fully developed waves associated with TW
solutions to Eq. (16) and characterized by stationary wave
speed � and thickness 
t , which were evaluated as follows:

� = λ + dξf

dτ
, (53)


t = 1

max |du/dξ | , (54)

where ξf (τ ) is associated with u(ξf ,τ ) = 0.5. Validity of
Eq. (28) was also checked in the simulations.

Figure 1 validates the above theoretical analysis and the
steepness criterion by showing that TW speeds � obtained
numerically in the range of −10 � k � 10 and −0.5 � ε � 4,
see symbols, agree very well with the speeds � given by
Eq. (46), see lines. To make the validation more clear, the
same results are shown solely for pushed TWs, i.e., k � kcr =
2(1 − ε), in a larger scale in Fig. 2.

The exact solution given by Eq. (36) offers an opportunity
to evaluate not only the speed �, but also the thickness 
t


t = 4

κ+
= 16

k + √
k2 + 16ε

if k � kcr = 2(1 − ε).

(55)

Figure 3 validates this analytical result and the steepness
criterion invoked to arrive at Eq. (55) by showing that TW
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FIG. 2. Pushed TW speed vs. magnitude k of the nonlinear
Burgers convection term. Lines and symbols show analytical and
numerical results, respectively. Parameter ε is specified in legends.
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FIG. 3. Pushed TW thickness vs. magnitude k of the nonlinear
Burgers convection term. Lines and symbols show analytical and
numerical results, respectively. Parameter ε is specified in legends.

thicknesses 
t obtained numerically in the range of kcr �
k � 10 and −0.5 � ε � 4, see symbols, agree very well with
the TW thicknesses 
t given by Eq. (55), see lines.

Finally, it is worth noting that the computed structure of
pushed TWs agree very well with Eq. (36) in all investigated
cases such that k � kcr = 2(1 − ε). These results are not
reported in a figure form, because the analytical and numerical
curves are indistinguishable in all such cases. When k < kcr =
2(1 − ε), the computed structure U (ζ ) and thickness 
t of
TWs differed from results yielded by Eqs. (36) and (55),
respectively, with the differences being increased by kcr − k.
Therefore, the exact pushed TW solution discussed in Sec. IV
is physically observable only if k � kcr = 2(1 − ε), in line
with the contents of Sec. V.

VII. CONCLUSIONS

By analyzing a generalized Murray-Burgers-KPP-Fisher
parabolic equation with a strictly positive cubic reaction term,
see Eq. (16), (i) the spectrum of traveling wave speeds was
determined by linearizing the equation at the leading edge of
the wave and (ii) an exact analytical solution to the equation
was obtained.

The problem of selection of physically observable traveling
waves was addressed by invoking a steepness criterion, i.e., by
associating the observable waves with solutions characterized
by the highest decay rates at their leading edges. Based on
this selection criterion, the speeds of physically observable
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traveling waves were analytically determined. It was also
shown that transition from pulled to pushed traveling waves
occurred when the nonlinear Burgers convection term over-
whelmed the nonlinear reaction term. A criterion of the
transition was obtained and the thickness and structure of the
pushed traveling waves were analytically found.

Numerical simulations of the counterpart initial boundary
value problem fully confirmed the above theoretical results in
a wide range of two problem parameters, k and ε in Eq. (16),
thus, supporting the steepness criterion for the equation studied
in the present work.
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APPENDIX: APPLICATION TO PREMIXED
TURBULENT COMBUSTION

Let us consider turbulent combustion of premixed gases
(fuel and air) as an example of an application of results of the
present work. For simplicity, but without loss of generality,
we assume that the gas density is constant. In this case,
(i) Eq. (15) subsumes the well-known model developed by
Bray [40] for evaluating the mean rate of product creation (note
that significantly different models of the source term ω can be
invoked to study other exothermic reacting wave fronts of KPP
type, e.g., see [6,7,41]), while (ii) the nonlinear convection
term can be associated with the so-called countergradient
turbulent scalar flux [42], as discussed elsewhere [39]. Because
(i) the flux should vanish for both unstable (unburned gas) and
stable (products) states of the substance u (the combustion
progress variable c) and (ii) the flame speed � should
be equal to the turbulent burning velocity

∫ ∞
−∞ ωdζ , the

Murray-Burgers-KPP-Fisher parabolic Eq. (16) requires a
minor modification.

For this purpose, let us consider Eq. (16) in a coordinate
framework that moves at a constant dimensionless speed v.
Then, Galilean transformation (ξ ′ = ξ − vτ , τ ′ = τ ) yields

∂u

∂τ ′ + ∂

∂ξ ′

[(
k

2
u − v

)
u

]
= ∂2u

∂ξ ′2 + u(1 − u)(1 + 2εu),

(A1)

because u(ξ,τ ) is a scalar field. For brevity, primes in ξ ′ and
τ ′ will be skipped in the following. We can adjust the speed v

of the coordinate framework as follows: v = k/2 in order for
the nonlinear part f (u) = (0.5ku − v)u of the turbulent flux
in Eq. (A1) to vanish both at u → 0 or ξ → ∞ and u → 1 or
ξ → −∞. Therefore,

f = −k

2
u(1 − u) (A2)

and this equation is well suited to model the nonlinear part
of the scalar flux in turbulent premixed flames, provided that
k = −sign(∂u/∂ξ ), as discussed in detail elsewhere [39]. In
order for the selected coordinate framework to be attached to
the flame that moves from left to right, the parameter k should
be positive.

Then, Eqs. (A1), (20), (27), and (28) read

∂u

∂τ
− ∂

∂ξ

[
k

2
u(1 − u)

]
= ∂2u

∂ξ 2
+ u(1 − u)(1 + 2εu),

(A3)

d

dτ
Iu(−∞,∞,τ ) =

∫ ∞

−∞
ω(u)dξ, (A4)

−�
dU

dζ
−k

2

dU

dζ
+kU

dU

dζ
= d2U

dζ 2
+ U (1 − U )(1 + 2εU ),

(A5)

and

� =
∫ ∞

−∞
ω(U )dζ =

∫ ∞

−∞
U (1 − U )(1 + 2εU )dζ, (A6)

respectively. Equation (A6) shows that consideration of the
quasi-linear convection diffusion-reaction Eq. (16) in the
moving coordinate framework allows us to exclude the direct
impact of the nonlinear Burgers convection term on the flame
speed, which is equal to to the spatial integral of the reaction
term in this framework attached to the flame.

Equations (32)–(35) read

κ2 −
(

� + k

2

)
κ + 1 = 0, (A7)

κ± = 1

2

(
� + k

2

)
±

√
1

4

(
� + k

2

)2

− 1, (A8)

and

�min � �KPP = 2 − k

2
. (A9)

It is worth noting that if k > 4, then, �KPP given by Eq. (A9)
is negative. Therefore, the linear analysis does not allow us to
find the lowest eigenvalue if k > 4.

The physically realizable TW solutions have the following
speeds

� =
{

2 − k/2 if 0 � k < kcr

(1 + ε)/κ+ if kcr < k
; ε � −1

2
, (A10)

while the decay rates of these solutions are still given by
Eq. (47), because Galilean transformation does not change
the decay rate. The critical value kcr = 2(1 − ε) is still given
by Eq. (48).
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