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Rayleigh-Bénard convection with uniform vertical magnetic field
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We present the results of direct numerical simulations of Rayleigh-Bénard convection in the presence of a
uniform vertical magnetic field near instability onset. We have done simulations in boxes with square as well as
rectangular cross sections in the horizontal plane. We have considered the horizontal aspect ratio η = Ly/Lx = 1
and 2. The onset of the primary and secondary instabilities are strongly suppressed in the presence of the vertical
magnetic field for η = 1. The Nusselt number Nu scales with the Rayleigh number Ra close to the primary
instability as [{Ra − Rac(Q)}/Rac(Q)]0.91, where Rac(Q) is the threshold for onset of stationary convection at a
given value of the Chandrasekhar number Q. Nu also scales with Ra/Q as (Ra/Q)μ. The exponent μ varies in the
range 0.39 � μ � 0.57 for Ra/Q � 25. The primary instability is stationary as predicted by Chandrasekhar. The
secondary instability is temporally periodic for Pr = 0.1 but quasiperiodic for Pr = 0.025 for moderate values of
Q. Convective patterns for higher values of Ra consist of periodic, quasiperiodic, and chaotic wavy rolls above
the onset of the secondary instability for η = 1. In addition, stationary as well as time-dependent cross rolls are
observed, as Ra is further raised. The ratio ro/Pr is independent of Q for smaller values of Q. The delay in
the onset of the oscillatory instability is significantly reduced in a simulation box with η = 2. We also observe
inclined stationary rolls for smaller values of Q for η = 2.
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I. INTRODUCTION

Rayleigh-Bénard convection (RBC) [1], where a thin
horizontal layer of fluid is heated from below, is a topic
of intense research. A particularly interesting variation of
RBC is the case in which a low-Prandtl-number fluid is
subjected to a magnetic field [1–4]. The system, also known as
hydromagnetic convection, is relevant for several geophysical
and astrophysical problems [5–7]. There have been extensive
theoretical and numerical studies of RBC in fluids in the
presence of an external magnetic field [1–4,8–21]. They have
addressed interesting issues such as pattern selection and insta-
bility [10–17], heat transport [18–20], and flow reversal [21].

It is widely known that a uniform vertical magnetic field
tends to suppress the onset of convection, significantly reduces
the convective heat transport across the fluid layer, and affects
the primary as well as secondary instabilities [1–3,9,10,13].
Experiments [18,19] show that the scaling exponent of the
Nusselt number Nu, which is a measure of the convective
heat flux across the fluid layer, with the Rayleigh number
Ra depends on the Chandrasekhar number Q. The numerical
simulations [10,13] have mainly focused on investigating the
stability of fluid patterns near primary instability. A systematic
study of the convective flow structures and the scaling behavior
even close to the onset of convection is lacking.

In this paper, we present the results of direct numerical
simulations (DNS) for RBC in low-Prandtl-number fluids
(Pr � 0.7) in the presence of small uniform vertical magnetic
field (Q � 670). We have carried out the simulations in a
three-dimensional box (Lx × Ly × Lz). We have considered
boxes of square (Ly = Lx) and rectangular (Ly = 2Lx) cross
sections in the horizontal plane. Straight stationary rolls appear
at the primary instability. The stationary straight rolls persist
for higher values of Ra and moderate values of Q. Nu
scales with ε = [Ra − Rac(Q)]/Rac(Q) as ε0.91 very close to
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the primary instability. The range of scaling expands with
an increase in Q. The Nusselt number also scales with
Ra/Q as (Ra/Q)μ with 0.39 � μ � 0.57 for Ra/Q � 25,
which is consistent with the experimental results [18,19]. The
secondary instability is always in the form of quasiperiodic
or periodic waves along the roll axis in a square box. The
secondary instability leads to periodic waves in a rectangular
box. The patterns of straight stationary rolls, wavy rolls,
quasiperiodic and chaotic wavy rolls, and stationary oblique
rolls are observed, as Ra is raised at a given value of Q.

II. HYDROMAGNETIC SYSTEM

We consider a thin layer of a low-Prandtl-number Boussi-
nesq fluid of a reference density ρ0, kinematic viscosity ν,
thermal diffusivity κ , magnetic diffusivity λ, and thermal
expansion coefficient α, which is confined between two
horizontal surfaces separated by a distance d. The fluid layer is
subjected to an adverse temperature gradient β and a uniform
vertical magnetic field B0. A coordinate system is chosen
such that the lower fluid surface is coincident with the xy

plane. The z axis is positive along the vertically upward
direction, which is also the direction of the applied magnetic
field. The hydrodynamic equations are made dimensionless by
measuring lengths in units of the fluid thickness d, time in units
of viscous diffusion time d2/ν, temperature in units of νβd/κ ,
and the magnetic field in units of B0ν/λ. As the magnetic
Prandtl number Pm = ν/λ is usually of the order 10−6 or less
for terrestrial fluids, we set Pm equal to zero. The dynamics
of RBC in the presence of a uniform vertical magnetic field is
then governed by the following set of dimensionless equations:

∂tv + (v · ∇)v = −∇p + ∇2v + Q∂zb + Raθe3, (1)

Pr[∂tθ + (v · ∇)θ ] = ∇2θ + v3, (2)

∇2b = −∂zv, (3)

∇ · v = ∇ · b = 0, (4)

1539-3755/2014/90(3)/033002(8) 033002-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.033002


ARNAB BASAK, ROHIT RAVEENDRAN, AND KRISHNA KUMAR PHYSICAL REVIEW E 90, 033002 (2014)

where p(x,y,z,t) is the fluid pressure due to convection,
v (x,y,z,t) ≡ (v1,v2,v3) is the fluid velocity, θ (x,y,z,t) is
the convective temperature field, b (x,y,z,t) = (b1,b2,b3) is
the induced magnetic field due to convection, and e3 is a
unit vector directed in the positive direction of the z axis.
The induced magnetic field is slaved to the velocity in the
limit of Pm → 0, and there is no independent dynamics for
b field. The dynamics of RBC in the presence of a uniform
vertical magnetic field is then governed by three dimensionless
parameters: (i) Prandtl number Pr = ν/κ , which is the ratio of
kinematic viscosity ν and thermal diffusivity κ , (ii) Rayleigh
number Ra = αβgd4/(νκ), and (iii) Chandrasekhar number
Q = B2

0d2/(4πρ0νλ).
We assume idealized stress-free boundary conditions at

the upper and lower surfaces, which may be a more useful
approximation on a boundary between two liquids with a large
difference in their viscosities. Almost stress-free boundary
conditions were achieved in experiments by Goldstein and
Graham [22]. We also consider the bounding surfaces to be
thermally conducting but electrically nonconducting. Teflon or
some ethylene-vinyl-acetate (EVA) composite [23] may serve
this purpose in an experiment. The boundary conditions are
thus given by

∂v1

∂z
= ∂v2

∂z
= v3 = θ = b1 = b2 = ∂b3

∂z
= 0 at z = 0,1.

(5)

All fields are considered periodic in the horizontal plane.
The magnetic field bp inside the electrically nonconducting
boundaries of magnetic permeability μp is determined by a
scalar potential ψ (bp = ∇ψ), which satisfies the Laplace
equation ∇2ψ = 0. Nonzero horizontal velocities of a liquid
metal at the stress-free boundaries allow a surface current
density S at the horizontal boundaries. As the horizontal
magnetic fields in the fluid vanish at the boundaries, we have
the condition e3×bp/μp = S = S1e1 + S2e2 to be satisfied at
the boundaries. The surface currents are fixed by applying the
condition b

p

3 = b3 at the boundaries.

III. DIRECT NUMERICAL SIMULATIONS AND RESULTS

The components of the velocity field v (x,y,z,t), the
convective temperature field θ (x,y,z,t), and the pressure
p (x,y,z,t) are expanded consistent with the boundary con-
ditions [Eq. (5)]. The expansions of the fields are

v1(x,y,z,t) =
∑
l,m,n

Ulmn(t)ei(lkxx+mkyy) cos (nπz), (6)

v2(x,y,z,t) =
∑
l,m,n

Vlmn(t)ei(lkxx+mkyy) cos (nπz), (7)

v3(x,y,z,t) =
∑
l,m,n

Wlmn(t)ei(lkxx+mkyy) sin (nπz), (8)

θ (x,y,z,t) =
∑
l,m,n

�lmn(t)ei(lkxx+mkyy) sin (nπz), (9)

p(x,y,z,t) =
∑
l,m,n

Plmn(t)ei(lkxx+mkyy) cos (nπz), (10)

where k = kxe1 + kye2 is the wave vector of convective fields
in the horizontal plane. The integers l,m,n can take values
consistent with the equation of continuity. The expansions
of the magnetic fields are determined by Eq. (3). The scalar
potentials ψ |z�0 and ψ |z�1 in the lower and upper boundaries,
respectively, are

ψ |z�0(x,y,z,t) =
∑
l,m,n

�lmn(x,y,t)eγ z, (11)

ψ |z�1(x,y,z,t) =
∑
l,m,n

(−1)n+1�lmn(x,y,t)eγ (1−z), (12)

where

�lmn(x,y,t) = nπWlmn(t)eikc(lx+my)

γ (γ 2 + n2π2)
(13)

and

γ = kc

√
(l2 + m2). (14)

The surface current densities on the boundaries (z = 0,1) can
be computed from the following equation:

S(z = 0,1) = e3×∇ψ(z = 0,1)/μp. (15)

The critical Rayleigh number Rac(Q) and the critical wave
number kc(Q) for the stationary convection with free-slip
boundary conditions are given by

Rac(Q) = π2 + k2
c

k2
c

[(π2 + k2
c )2 + π2Q], (16)

kc(Q) = π
√

a+ + a− − (1/2), (17)

a± =
(

1

4

{
1

2
+ Q

π2
±

[(
1

2
+ Q

π2

)2

− 1

4

] 1
2
}) 1

3

. (18)

The full hydromagnetic system [Eqs. (1)–(4)] with the
boundary conditions [Eq. (5)] has been integrated using
a pseudospectral method in a three-dimensional simula-
tion box (Lx = 2π/kx × Ly = 2π/ky × Lz = 1). Simulation
boxes with square (η = Ly/Lx = kx/ky = 1) as well as
rectangular (η = 2) cross sections in the horizontal plane
have been considered. We have taken kx = ky = kc(Q) for
the case of a square cross section, while kx = kc(Q) and
ky = kc(Q)/2 for the case of a rectangular cross section. This
allows us to investigate the interaction of two-dimensional
(2D) stationary straight rolls (Rolls) with a new set of rolls
aligned perpendicular to the old set. The new rolls have the
same wavelength as that of the old set for η = 1 and double
the wavelength of the old set for η = 2. A spatial resolution of
64 × 64 × 64 grids is used for simulations. Time integration
is carried out using a standard RK4 method with a maximum
step size of 0.001. We vary the reduced Rayleigh number
r = Ra/Rac(Q) in small steps for a fixed value Q in our
simulations. Final values of all fields for a given value of r

are used as initial conditions for the next higher value of r .
Results are also verified for different values of r starting with
random initial conditions. They yield the same results. Q is
varied from 5 to 670.
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A. Scaling behavior near the onset of convection

We now present the scaling properties of global quantities,
such as the time-averaged kinetic energy per unit mass K =
1
2

∫
v2dV and “convective entropy” defined as � = 1

2

∫
θ2dV

with ε = [Ra − Rac (Q)]/Rac (Q). The convection sets in as
stationary straight rolls at the primary instability. The vertical
magnetic field delays the onset of convection, which is well
known since the prediction of Chandrasekhar [1]. It is clearly
evident that the secondary instability, which is oscillatory, is
strongly inhibited due to the presence of a vertical magnetic
field. Figures 1(a) and 1(b) show the variation of K and �

with ε for Pr = 0.1 and three different values of Q. The kinetic
energy is proportional to ε in the stationary convection regime.
The deviation from this behavior is observed when there is
a transition from stationary to oscillatory convection. Away
from the onset of secondary (oscillatory) instability, K is again
approximately proportional to ε. The average flow speed scales
with ε as ε1/2 near onset. However, the convective entropy
scales with ε as ε0.9. The average convective temperature
field therefore scales as ε0.45. The scaling of the average
convective temperature field is different from that of the
average speed. As soon as convection begins, there is advection
of the temperature field and a thermal current is established
in the vertical direction. A part of the thermal energy injected
externally is used in maintaining the thermal flux. This is also
reflected by two types of possible temperature modes �lmn (l
or m �= 0 and n � 1) and �00n(n � 1). The modes �lmn have
zero horizontal average and they scale like velocity modes
Wlmn. The temperature modes �00n do not have a counterpart
in the expansion for the vertical velocity, as there is no net
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FIG. 1. (Color online) Variation of (a) kinetic energy K and (b)
convective entropy � with ε = [Ra − Rac (Q)]/Rac (Q) for Pr = 0.1
in a square box [kx = ky = kc (Q)(η = 1)] shown in different colors
for different values of Q, as computed from DNS. Colored (gray) dots
are for different values of Q. The dashed lines show the variation of
(a) K and (b) � with ε for the stationary convection.
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FIG. 2. (Color online) Plot of convective heat flux (Nu − 1) as a
function of ε = [Ra − Rac (Q)]/Rac (Q) for Pr = 0.1 and kx = ky =
kc (Q)(η = 1) shown for four different Q values, as computed from
DNS, for free slip boundaries (dotted lines with points). They are
compared with the numerical results (Clever and Busse [13]) for no
slip boundaries (solid lines). The dashed line is parallel to the linear
region for stationary rolls at onset for all four Q values. (Nu − 1)
scales as ε0.91 for stationary rolls near onset.

momentum flux in the vertical direction. Only in the limit
of Pr → 0 would the convective thermal flux vanish and the
temperature field follow the vertical velocity field.

The Nusselt number defined as Nu = 1 + Pr2〈v3θ〉xyz is a
measure of the heat flux across the fluid layer. The symbol
〈 〉xyz stands for the spatial average over the simulation box.
The variation of the time-averaged value of (Nu − 1) is
plotted as a function of ε in Fig. 2 for Pr = 0.1 at different
values of Q. The dotted curves in different colors (shades
of gray) are the results of DNS for different values of Q.
The scaling of convective heat flux with ε near onset is
given as Nu − 1 ∼ ε0.91. The product v3θ scales as ε0.95, if
we take v3 ∼ √

K ∼ ε0.5 and θ ∼ √
� ∼ ε0.45. This estimate

is not accurate. The convective heat flux is proportional
to 〈v3θ〉xyz = 〈W�

lmn�lmn + Wlmn�
�
lmn〉xyz, and therefore all

temperature modes do not contribute to the heat flux. This
feature in the scaling of heat transport should be observable in
other variations of a Rayleigh-Bénard system. The scaling
exponent for variation of the Nusselt number with ε may
depend on the details of a particular system, but it is expected to
be less than unity. The increase of the Nusselt number with ε is
stopped at the onset of oscillatory instability. It first decreases,
reaches a minimum, and then begins to increase once again as ε

is raised in small steps. Solid lines in Fig. 2 display the variation
of Nu with ε from numerical data obtained by Clever and
Busse [13] for no-slip horizontal boundaries. The slope of the
heat flux across the fluid layer during stationary convection and
much after the onset of oscillatory convection with free-slip
and no-slip boundary conditions shows qualitatively similar
behavior, although the actual value of Nu with free-slip is
higher than its value with no-slip velocity boundary conditions.
The convective heat transport for stationary convection scales
with ε as ε0.91 near the primary instability for moderate values
of Q. For higher values of Q (>100), the scaling exponent
decreases at relatively higher values of ε. The scaling law is

033002-3



ARNAB BASAK, ROHIT RAVEENDRAN, AND KRISHNA KUMAR PHYSICAL REVIEW E 90, 033002 (2014)

10
1

10
2

10
3

10
0

10
1

Ra/Q

N
u

 

 

Q=20
Q=50
Q=670

Nu ~ (Ra/Q)μ

μ=0.48

μ=0.39

μ=0.57

FIG. 3. (Color online) Variation of Nusselt number Nu with
Ra/Q for Pr = 0.1 (square box) for three different values of Q (for
Ra/Q > 25), as computed from DNS. The dashed lines through blue,
green and red data points are the best linear fits for Q = 20, 50, and
670, respectively. Nu scales as (Ra/Q)μ, where μ values are 0.39,
0.48, and 0.57 for Q = 20, 50, and 670, respectively.

broken at the onset of the oscillatory convection. However,
the Nu-ε curves with free-slip and no-slip conditions show
similar slopes for higher values of ε. The slope of any Nu-ε
curve for time-dependent convection is smaller than its value
for stationary convection.

The scaling exponent of Nu is slightly less than unity for
smaller values of Ra, which is expected even in the absence of
magnetic field. The scaling exponent is likely to be dominated
by the buoyancy force at much higher values of Ra, and is
therefore expected to be independent of Q for Ra 
 Q (fully
developed turbulent regime). One expects an intermediate
regime where the Lorentz force as well as the force of buoyancy
together may decide the scaling exponent, if a scaling behavior
is possible. We have therefore tried to probe the possibility
of a scaling regime by plotting Nu as a function of Ra/Q.
Figure 3 shows the variation of Nu as a function of Ra/Q
for Pr = 0.1. The points shown as blue (black) circles, green

(gray) squares, and red (light gray) triangles are data points
computed from DNS for Q = 20, 50, and 670, respectively.
They correspond to Ra/Q values in a range between 40 and
600. The dashed lines, which are the best linear fits of the
data obtained from DNS, show that Nu scales with Ra/Q as
(Ra/Q)μ. The scaling exponent μ is found to vary with Q.
Values of the exponent μ are found to be 0.39, 0.48, and
0.57 for Q = 20, 50, and 670, respectively. It is interesting to
note that the value of μ was found to be equal to 0.50 ± 0.03
for Q = 670 in experiments by Aurnou and Olson [19]. Its
value was found to be 0.43 for Ra/Q ≈ 50 in experiments by
Cioni et al. [18]. The latter case was a regime of soft convective
turbulence with reduced Rayleigh number r ≈ 100. The values
of μ computed in DNS are in qualitative agreement with those
observed in experiments. DNS shows a decrease in μ with an
increase in Ra/Q value.

B. Fluid patterns in a square simulation box

Abrupt changes in the Nu-ε curves (see Fig. 2) for a
fixed value Q indicate bifurcations in the convective flow
structures. We have computed the fluid patterns from DNS.
Table I enlists the convective patterns for a square box η = 1
for Pr = 0.025 and 0.1 close to onset. Thermal convection
appears as 2D stationary convection (Rolls) at the primary
instability. For larger values of Q (�60), the 2D rolls remain
stable even at r = 1.4 for Pr = 0.1. The secondary instability
is strongly delayed in the presence of a vertical magnetic
field. Time-dependent convection appears at the secondary
instability. Fluid patterns show quasiperiodic wavy rolls for
Pr = 0.025 and periodic wavy rolls for Pr = 0.1. As the
reduced Rayleigh number r is raised for a fixed value of
Q, three-dimensional (3D) convective patterns consisting of
periodic wavy rolls (WR), quasiperiodic wavy rolls (QWR),
and chaotic wavy rolls (CWR) are observed. Further increase
in r leads to stationary cross rolls (CR), quasiperiodic cross
rolls (QPCR), and chaotic cross rolls (CCR). Rolls become
unstable if r is increased for fixed values of Pr and Q. However,
an increase in Q for fixed values of Pr and r always leads to
2D stationary rolls for sufficiently large values of Q.

TABLE I. Convective patterns in a square simulation box (η = 1) computed from DNS for (i) Pr = 0.025 and (ii) Pr = 0.1 for different
values of r . Patterns observed are as follows: 2D stationary rolls (Rolls), periodic wavy rolls (WR), quasiperiodic wavy rolls (QWR), stationary
cross rolls (CR), quasiperiodic cross rolls (QPCR), and chaotic cross rolls (CCR).

Pr = 0.025 Pr = 0.1

Q r = 1.01 r = 1.05 r = 1.1 r = 1.2 r = 1.4 r = 1.01 r = 1.05 r = 1.1 r = 1.2 r = 1.4

5 Rolls QWR QWR CCR CR Rolls WR WR QPCR CR
10 Rolls QWR QWR CCR CR Rolls WR WR WR CCR
20 Rolls QWR QWR CCR CCR Rolls Rolls WR WR QPCR
30 Rolls QWR WR WR CCR Rolls Rolls Rolls WR WR
40 Rolls QWR CWR WR CCR Rolls Rolls Rolls WR WR
50 Rolls QWR CWR WR CCR Rolls Rolls Rolls Rolls WR
60 Rolls Rolls QWR WR WR Rolls Rolls Rolls Rolls Rolls
70 Rolls Rolls Rolls QWR WR Rolls Rolls Rolls Rolls Rolls
80 Rolls Rolls Rolls WR WR Rolls Rolls Rolls Rolls Rolls
90 Rolls Rolls Rolls WR WR Rolls Rolls Rolls Rolls Rolls
100 Rolls Rolls Rolls WR CWR Rolls Rolls Rolls Rolls Rolls
120 Rolls Rolls Rolls Rolls WR Rolls Rolls Rolls Rolls Rolls
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FIG. 4. Contour plots of the convective temperature field at
z = 0.5 close to the onset of convection (r = 1.05) in a simulation
box with a square cross section (η = 1) for Pr = 0.025 and Q = 50
[kc(Q = 50) = 3.270] showing temporally quasiperiodic wavy rolls
(QWR). Straight rolls are observed whenever the Fourier mode W111

becomes zero.

Figure 4 shows the contour plots of the convective tempera-
ture field at the midplane (z = 1/2) of a square simulation box
for Pr = 0.025, Q = 50, and r = 1.05 at four time instants
at equal intervals of one-fourth of the faster time period. The
time-dependent patterns alternate between straight and wavy
rolls. Temporal variations of the two largest Fourier modes
W011 and W111 corresponding to these patterns are shown in
Figs. 5(a) and 5(b), respectively. The mode W101 is not excited
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show the quasiperiodic nature of the wavy patterns.
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FIG. 6. Contour plots of the temperature field at midplane
(z = 0.5) in a simulation box with square cross section [Lx =
Ly = 2π/kc (Q)] for Pr = 0.1, r = 1.05. Periodic wavy rolls (WR)
for Q = 10 [kc(Q = 10) = 2.589] with time period τ = 0.262 (in
viscous time units) at four instants: (a) t = 0, (b) t = τ/4, (b) t = τ/2,
and (b) t = 3τ/4.

in this case. The Fourier mode W011 oscillates with a nonzero
mean, while the mode W111 oscillates with zero mean. Both
of the Fourier modes show amplitude modulation. The power
spectral density (PSD) of the mode W111 [Fig. 5(c)] and the
phase portrait in the W111-W011 plane suggests a temporally
quasiperiodic nature of the patterns [Fig. 5(d)]. The secondary
instability is always in the form of QWR for Pr = 0.025.

Figure 6 shows the midplane contour plots for a temperature
field for Pr = 0.1, r = 1.05, and Q = 10 at an equal time
interval equal to one-fourth of the period of oscillation τ .
Temporal variations of the two largest Fourier modes W011

and W111 are shown in Figs. 7(a) and 7(b), respectively. The
mode W011 again oscillates with a nonzero mean, while the
mode W111 oscillates with zero mean. The period of the wavy
mode W111 is equal to double the period of the 2D roll mode
W011. The PSD of the mode W111 [Fig. 7(c)] and the phase
portrait in the W111-W011 plane [Fig. 7(d)] also confirm the
periodic waves along the roll axis. The amount of waviness in
the rolls at any given instant depends on the value of W111 at
that instant.

Figure 8 shows the regions of the parameter space (the Ra-Q
plane) for Pr = 0.1 and η = 1 having different convective
patterns, as obtained from DNS. The region of the Ra-Q
plane below the solid curve represents the conduction state.
The solid curve is the threshold value of the Rayleigh
number Rac (Q) for the appearance of thermal convection,
as obtained by Chandrasekhar [1]. The points on this curve
are computed from DNS. They are in complete agreement.
As we have chosen Pm → 0, the condition for stationary
convection at onset (Pr > Pm) always holds. The onset of
convection is always stationary, and 2D straight rolls are the
primary convective patterns. Straight rolls become unstable
due to oscillatory instability. The dashed curve represents the
threshold for secondary instability Rao, which is oscillatory
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FIG. 7. (Color online) Properties of periodic wavy rolls (WR)
in a simulation box with square cross section corresponding to the
parameters given in Fig. 6. The temporal variations of the two largest
Fourier modes (a) W011 and (b) W111, (c) the power spectral density
(PSD) of the mode W111, and (d) the phase portrait in the W111-W011

plane show a set of periodic wavy rolls.

in this case. Periodic WR are observed in the region of the
Ra-Q plane bounded by the dashed and the dotted curves. In
the region above the dotted curve, we observe time-dependent
competition of two sets of rolls in mutually perpendicular

FIG. 8. (Color online) Regions of Ra-Q plane showing various
patterns for Pr = 0.1 and kx = ky = kc (Q). The onsets of primary
as well as secondary instabilities are delayed by magnetic field.
Convection at onset is stationary (Rolls) and becomes oscillatory
(WR) after Ra is increased above Rao (Q,Pr), the threshold for
secondary (oscillatory) instability. Above the region of wavy rolls,
we observe time-dependent cross rolls. The dashed lines show
polynomial fits for the DNS data (points).
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FIG. 9. (Color online) Scaling of oscillatory threshold with Q.
(a) The combination ro (Q,Pr)/Pr is independent of Q for smaller
values of Q. Circles, squares, and triangles are data points
for Pr = 0.025, 0.1, and 0.7, respectively. (b) The quantity
[Rao(Q) − Rao(Q = 0)]/Pr varies linearly with Q for different
values of Pr.

directions. Both sets of rolls oscillate around a finite mean.
Consequently, the fluid patterns consist of time-dependent
cross rolls. The presence of a vertical magnetic field strongly
delays not only the primary instability but also the secondary
and tertiary instabilities. The threshold for the oscillatory
instability Rao increases monotonically with Q, which shows
the inhibition of the oscillatory instability, in agreement with
the observations of Clever and Busse [13].

The threshold for oscillatory (secondary) instability
Rao(Q,Pr) also shows scaling behavior with Q. The variation
of ro (Q,Pr)/Pr, where ro = [Rao(Q,Pr)/Rac(Q)], with Q is
plotted in Fig. 9(a) for different values of Pr. The quantity
ro (Q,Pr)/Pr is found to be independent of Q for lower
values of Q. This behavior is observed in a wider range of
Q for smaller values of Pr. Figure 9(b) shows the variation
of [Rao(Q) − Rao(Q = 0)]/Pr with Q for different values of
Pr. The quantity [Rao(Q) − Rao(Q = 0)]/Pr is found to be
proportional to Q. This type of scaling was also observed in a
low-dimensional model of thermal convection in the presence
of a uniform horizontal magnetic field [17].

C. Fluid patterns in a rectangular simulation box

It is known that the straight rolls are unstable to long-
wavelength perturbations in low-Prandtl-number fluids in
the absence of any magnetic field. The fluid patterns in a
rectangular simulation box (η = 2) are therefore likely to
show interesting behavior. Table II lists the possible convective
patterns in low-Prandtl-number fluids (Pr = 0.025 and 0.1)
computed from DNS in a rectangular simulation box. Straight
stationary rolls appear at the onset of convection, as observed
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TABLE II. Convective patterns in a rectangular simulation box
(η = 2) computed from DNS for (i) Pr = 0.025 and (ii) Pr = 0.1 for
different values of r . Patterns observed are as follows: 2D stationary
rolls (Rolls), stationary inclined rolls (IR), periodic wavy rolls (WR),
quasiperiodic wavy rolls (QWR), and chaotic wavy rolls (CWR).

Pr = 0.025 Pr = 0.1

Q r = 1.05 r = 1.1 r = 1.2 r = 1.05 r = 1.1 r = 1.2

5 WR CWR CWR WR QWR IR
10 WR CWR CWR WR WR IR
20 WR IR CWR WR WR QWR
30 WR IR CWR WR WR WR
40 WR CWR CWR WR WR WR
50 WR CWR CWR WR WR WR
60 WR QWR CWR WR WR WR
70 WR QWR CWR WR WR WR
80 WR QWR CWR WR WR WR
90 WR QWR CWR WR WR WR
100 WR QWR CWR Rolls WR WR
120 WR WR CWR Rolls WR WR

in a square simulation box with η = 2. These straight rolls
become unstable and wavy rolls are excited at the secondary
instability. Standing waves are generated along the roll axis.

As the reduced Rayleigh number is raised further, we
observe interesting patterns. The longer simulation box allows
the turning of rolls, which is not observed in a small square
simulation box. The turning of rolls has a similarity with
pattern dynamics due to Küppers-Lortz instability [24] in
thermal convection in the presence of the Coriolis force.
The Coriolis force excites the vertical vorticity in rotating
convection. Large-wavelength perturbations in low-Prandtl-
number fluids allow the generation of vertical vorticity easily
even in the absence of rotation. The wavy rolls orient
themselves in the horizontal plane, making an angle from its
original position. The temporal behavior is either chaotic or
quasiperiodic. The upper row of Fig. 10 shows the midplane
(z = 1/2) contour plots for the temperature field at three
different instants for Pr = 0.025, Q = 60, and r = 1.1. The
lower row of Fig. 10 displays the variation of the two leading
modes with time for these patterns. The fluid patterns shown
in Figs. 10(a), 10(b), and 10(c) are for the instants marked by
ta , tb, and tc, respectively, in Fig. 10(d). The patterns show the
appearance of straight rolls and wavy rolls oriented at an angle
with the straight rolls. The oriented wavy rolls appear when the
magnitude of the nonlinear mode W111 is much larger than that
of the roll mode W101. The leading modes corresponding to
these patterns vary quasiperiodically in time. We also observe
stationary oblique (inclined) rolls (IR) at smaller values of Q.
Figures 11(a) and 11(b) show the midplane contour plots of 2D
stationary rolls close to the onset of convection for Pr = 0.1,
Q = 100, r = 1.05 and stationary inclined rolls at tertiary
instability for Pr = 0.1, Q = 10, r = 1.2.

IV. CONCLUSIONS

We have investigated the effect of a uniform vertical mag-
netic field on Rayleigh-Bénard convection for zero-magnetic-
Prandtl-number fluids considering stress-free top and bottom
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FIG. 10. (Color online) Midplane (z = 1/2) contour plots of
the convective temperature field for Pr = 0.025 and r = 1.1 in a
simulation box of rectangular cross section (η = 2). A quasiperiodic
competition between straight and inclined wavy rolls for Q =
60 [kc(Q = 60) = 3.376] shown for three different instants. (d)
Temporal variations of the Fourier modes W101 [blue (black) curve]
and W111 [red (gray) curve]. The time instants marked by ta , tb, and
tc correspond to the patterns (a), (b), and (c), respectively.

surfaces using direct numerical simulations. The magnetic
field strongly delays the primary, secondary, and higher-order
instabilities. Convection appears in the form of stationary
straight rolls at the primary instability. The Nusselt number
scales with the relative distance from the instability onset ε as
ε0.91 close to the onset of convection. The Nusselt number
also scales with Ra/Q as Nu ∼ (Ra/Q)μ for Ra/Q > 25.
The scaling exponent μ depends on Q, and its values agree
with experimental results. The straight rolls become wavy at
the secondary instability, showing periodic, quasiperiodic, or
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FIG. 11. Contour plots of the convective temperature field (at z =
0.5) in a rectangular simulation box (η = 2) for Pr = 0.1 showing (a)
stationary straight rolls for r = 1.05 and Q = 100 [kc(Q = 100) =
3.702], and (b) stationary inclined rolls (IR) for r = 1.2 and Q = 10
[kc(Q = 10) = 2.589].
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chaotic behavior in time in a square simulation box for different
values of Pr, r , and Q. The ratio ro/Pr is independent of Q,
while [Rao(Q) − Rao(Q = 0)]/Pr varies linearly with Q for
smaller values of Q. In a rectangular simulation box, oblique
wavy rolls as well as oblique stationary rolls are observed close
to the onset of convection.
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