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Rayleigh instability at small length scales
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The Rayleigh instability (also called the Plateau-Rayleigh instability) of a nanosized liquid propane thread
is investigated using molecular dynamics (MD). The validity of classical predictions at small length scales is
verified by comparing the temporal evolution of liquid thread simulated by MD against classical predictions.
Previous works have shown that thermal fluctuations become dominant at small length scales. The role and
influence of the stochastic nature of thermal fluctuations in determining the instability at small length scale is also
investigated. Thermal fluctuations are seen to dominate and accelerate the breakup process only during the last
stages of breakup. The simulations also reveal that the breakup profile of nanoscale threads undergo modification
due to reorganization of molecules by the evaporation-condensation process.
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I. INTRODUCTION

The stability of a fluid structure of cylindrical geometry
was first studied by Savart [1] who discovered that liquid jet
breakup is a property of jet dynamics. Plateau experimentally
[2] summarized that the instability arose in the jet when
the length of the liquid column exceeded the diameter by a
factor. He estimated this factor to be in between 3.13 and
3.17. This phenomenon was given an analytical explanation
by Rayleigh [3] who explained that small perturbations in
the liquid structure are amplified by surface tension. This
causes a varicose deformation of the jet column and causes
the jet to break into smaller droplets. For certain wavelengths,
these perturbations grow exponentially with time and render
the system unstable. The behavior of the liquid structure was
explained in detail and the factor suggested by Plateau was
attributed a value of 3.14, the value of π . Rayleigh showed
that the characteristic droplet size scales with the wavelength
of the disturbance that caused breakup. It was shown that
the wavelength of the fastest growing disturbance is nearly
nine times the radius of the jet. The Rayleigh instability thus
explains how a cylindrical fluid structure breaks into smaller
structures in the process of attempting to reduce its surface
tension. Subsequent works [4–6] have significantly contributed
to the understanding of macroscopic liquid breakup.

One of the early works [7] that explored the stability
of liquid nanoscale threads using MD discovered that the
rupture time of these threads were of the same order of
magnitude as predicted by Rayleigh [3]. Studies into the
rupture phenomenon of liquid threads [8] obtained dominant
wave numbers, which are in agreement with the values
predicted by the inviscid linear instability theory. However,
studies on the breakup behavior of jets of small length scales
[9] have shown the emergence of a new breakup profile—the
double-cone profile, which results in symmetric pinch off. This
phenomenon has been attributed to the domination of thermal
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fluctuations at small length scales. Thermal fluctuations act as a
competing force to the effect of surface tension in causing the
breakup of liquid structures at small length scales. Thermal
fluctuations were incorporated into lubrication equations to
describe the jet dynamics at small length scales. The work by
Eggers [10] confirmed by means of a path integral description
that the most probable breakup mode had a self-symmetric
profile. Experimental investigations [11] determined that
thermal fluctuations become predominant in the breakup of
low surface tension fluids. Kang and Landman have studied
[12] the pinch-off shape profiles for liquid nanobridges and
found that the surrounding environment was a crucial factor
in determining the dynamics of evolution. This work also
highlighted the dominance of thermal fluctuations at small
length scales. Studies into the role of thermal fluctuations [13]
in the spreading process of viscous drops on solid substrates
discovered enhanced spreading rates. This was confirmed by
means of MD studies [14], which validated the predictions re-
garding spreading rates. An innovative workaround to the high
computational requirements of MD is to employ a dissipative
particle dynamics (DPD) scheme, which coarse models parti-
cles as clusters of atoms or molecules. An implementation of
the DPD method has been used to study the stability of jets [15]
and cylinders [16] of nanoscale dimensions with exceptional
success.

The aim of this study is to investigate how good the Rayleigh
predictions about the instability of a liquid thread are at length
scales where thermal fluctuations are expected to dominate.
This is done by comparing Rayleigh predictions against MD
simulations of propane threads of nanoscale dimensions. It
is interesting to test the accuracy of classical predictions
regarding breakup time in the case of breakup processes
where thermal fluctuations become a considerable force. The
influence of the stochastic thermal fluctuations in the instability
at this length scale is also investigated. The influence of the
initial configuration on the stability dynamics of the thread
is explored. The evolution of the breakup profile is of special
interest as it is the easiest means to identify the forces involved
in the breakup process.
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FIG. 1. (Color online) A two-dimensional (2D) representation of
the simulation box elucidating the general configuration of molecules
in this study. The spheres represent the propane molecules modeled.
The figure is not to scale.

II. SIMULATION DETAILS

The simulation box (Fig. 1) consists of a Lennard-Jones
(LJ) fluid bridge (parameters chosen to be that of propane
[17]) time integrated using a velocity Verlet algorithm with a
time step of 1 fs. Three diameters (D) of threads, are simulated:
2.6 nm, 3.9 nm, and 5.2 nm; each for five random seed values
and three different lengths (L) (325 nm, 650 nm, and 975 nm)
and two temperatures (185 K and 205 K). The summary of the
90 simulations performed are given in Table I. A modified
version of the LAMMPS MD package [18] was employed
for the simulations and property evaluation was performed
by postprocessing the MD trajectory using codes developed
in-house. Visualization of MD trajectory was done using OVITO

[19]. In order to avoid unnatural interactions between thread
ends (due to the periodic boundary condition enforced on the
simulation box) a spacing, a, of length 3.25 nm is incorporated
between the thread end and the simulation box boundary along
the z axis. The size of the simulation box is 26 nm × 26 nm ×
L + 2a nm in the x, y, and z direction respectively. A
10000 step long equilibration procedure is performed with
a Langevin-style thermostat. The selection of the Langevin
thermostat was done based on experiences from a previous
work [20], which investigated the effects of thermostats in
the simulation of nanojets. The Langevin thermostat performs
Brownian dynamics on the propane molecules where the total
force on each molecule will have the form:

ftotal = fc + fd + fr, (1)

TABLE I. The simulation parameters employed in this study.
Viscosity and surface tension were calculated from equilibrium MD
simulations.

Parameter Value

Van der Waals radius, σ 0.466 nm
Well depth, ε 0.553 kCal/mole
Friction factor, 1

ϕ
0.5

Number of molecules 56561(D = 2.6 nm,L = 325 nm) to
295601(D = 5.2 nm,L = 975 nm)

Surface tension, γ 1.32 × 10−2 N/m at 185 K
Dynamic viscosity, μ 4.2 × 10−4 Ns/m2 at 185 K
Time step 1 fs
Equilibration duration 10000 time steps
Thermal length scale, lT 0.4399 nm at 185 K

where fc, fd and fr are the conservative force, the drag force
and the random force acting on the molecule respectively. The
conservative force, on account of the Lennard-Jones potential
used to model the interaction between propane molecules can
be written as

fc = −24ε

[
2

(
σ 12

r13

)
−

(
σ 6

r7

)]
. (2)

The drag force is defined as

fd = −m

ϕ
v, (3)

where m is the mass of the molecule and v is the velocity
of the molecule and 1

ϕ
is the friction factor, which is set to

0.5. The random force is introduced to model the collision of
molecules into a particle at any given temperature T . Based
on the fluctuation-dissipation theorem,

fr ∝
√

mkBT

ϕdt
, (4)

where kB is the Boltzmann constant and dt is the time-step
size. Uniform random numbers are used to randomize the
magnitude and direction of this force. It is to be noted
here that the Langevin thermostat only acts on the system
during the equilibration phase and the production run consists
of a time evolution of the system as per the microcanonical
ensemble. No explicit perturbation is applied on the liquid
bridge as the equilibration procedure is seen to result in per-
turbations to the initial structure, due to the action of thermal
fluctuations. In order to estimate the temporal evolution of the
thread radius a proper estimation on the liquid-vapor interface
is required. A cylindrical coordinate adaptive mesh algorithm
has been employed for this purpose. The simulation box is
sliced into 2 nm bins along the axis (z axis) of the thread.
Each such slice is radially divided into four concentric ring
bins of width equal to 0.75kb/4 where k is a parameter that
is initially set to 0 and b (13 nm) is the half the length of the
simulation box in the x and y directions. The densities in each
ring region is calculated and if the density of the outermost
region is equal to or less than half the density of the innermost
region, the concentric binning is repeated after incrementing
the value of n by unity. This results in the shrinking of the ring
regions and the process is repeated until the density condition
is satisfied. As the density of the liquid phase is markedly
higher than the vapor phase, the procedure will continue until
the outermost bin shrinks to the interface region. Once the
interface region has been determined, the radius along the x
dimension is determined by defining a sector of angular width
10◦ symmetrically about the x and the negative x axes. The
maximum value of the radius in each sector is estimated and
the average of the two values is recorded as the radius of the
thread in that slice. The steps are repeated in the y direction
and across all the slices to calculate the radius distribution of
the thread along its length (z direction). The entire procedure
is repeated every 100 time steps so as to calculate the temporal
evolution of the radius along the two directions (x and y).

The Rayleigh instability manifests as the evolution of
a liquid thread over time magnifies initially insignificant
perturbations, which grow to determine its dynamics. In order

033001-2



RAYLEIGH INSTABILITY AT SMALL LENGTH SCALES PHYSICAL REVIEW E 90, 033001 (2014)

to estimate if the inviscid assumption is valid in the case of
the simulations, the Ohnesorge number has to be evaluated.
The Ohnesorge number is defined as Oh = η

√
1/Dγρ. Here,

η is the shear viscosity, D is the diameter, γ is the surface
tension and ρ is the density of the liquid thread. Provided
Oh � 1, the effect of viscosity in determining the dynamics
of the jet can be safely neglected. To determine whether
the inviscid assumption is valid, the viscosity of the liquid
must be estimated. In order to estimate the viscosity of liquid
propane, separate equilibrium simulations were performed and
the results were analyzed using the Green-Kubo method. The
shear viscosity is defined as

η = V

kBT

∫ ∞

0
〈Pxy(0)Pxy(t)〉dt, (5)

where V is the volume of the system and Pxy are the
off-diagonal components of the pressure tensor. To ensure
that the simulation box size and random seed values used for
velocity initialization had minimal effects on the prediction of
viscosity, both these parameters were varied. Four simulations
of different number of molecules (256, 2048, 16384, and
131072) each with two different random seed values were
performed in order to estimate the viscosity of propane. The
analysis of the liquid thread also requires the evaluation of the
surface tension. The Guggenheim corresponding-states law
with values suggested by Gloor et al. [21], based on the test
area simulation method (TASM), is used to predict the surface
tension of liquid propane. The surface tension of liquid propane
at 185 K thus calculated is 0.0132 N/m. This suggests that in
all cases studied here, the inviscid approximation is valid and
as per the classical theory, the relevant time scale is given by
the capillary time scale defined as

τc =
√

ρD3/γ . (6)

III. INSTABILITY OF A LIQUID THREAD

Surface tension is measured as the energy required to
increase the surface area of a liquid by a unit of area. Thus,
some distortion of the liquid thread surface will change its
initial cylindrical shape (assuming that the volume of the
cylinder remains largely a constant) and lower the energy
of the system. Sinusoidal excitations of the thread about the
center line will not reduce the surface energy. If the thread
radius is changed, the surface energy is affected. Consider a
perturbation of the form

R(z,θ ) = R0 + εcos(kz)cos(mθ ), (7)

where R0 is the initial radius of the thread, k is longitudinal
wavelength, and θ is the azimuthal angle. The perturbation
can thus be considered a Fourier mode of the initial condition
R(z,θ ). The azimuthal modulations result in corrugations of
the thread’s outermost layer and thus result in increases in
surface area, which in turn increase the surface energy. The
initial volume of the thread, V0 is given by

V0 = πR2
0

∫
L

dz. (8)

The volume at any point in time is given by

V (t) =
∫

L

πR2dz. (9)

As the volume is conserved, then V0 = V (t) = const. For this
condition to be satisfied, the mean radius, R̄ should then be of
the form

R̄ = R0 − δ2

4R0
. (10)

This means that the the mean radius will be lesser than the
unperturbed radius. Now, the exact form of the surface energy
can be given as

ES = 2πγ

∫
L

R(1 + R′2)1/2dz. (11)

The initial surface energy can be expressed as

E0 = 2πγR0

∫
dz. (12)

Consider a cylindrical jet that breaks up into a spherical
droplet. If we assume that the volume of the structure is
conserved, we can equate the volume of the cylinder with
that of the resulting drop,

πrc
2L = 4

3πrd
3. (13)

Thus,

rd = 3

√
3

4
rc

2L. (14)

The free energy of the liquid is the result of contributions
from the surface tension and the capillary pressure. A liquid
thread will form a droplet if the free energy can be reduced.
Thus,

�c + c � �s + s, (15)

where �c and �s are the surface tension contribution to the free
energy of the cylinder and the sphere respectively. Similarly,
c and s are the capillary pressure contribution to the free
energy of the cylinder and the sphere respectively. Then,

�c = 2πLrcγ. (16)

Similarly,

�s = 4πrd
2γ. (17)

Assuming that the interface of the liquid thread with the
surrounding vapor is static and thin, the Laplace-Young
equation is valid and thus

�p = −γ∇ · n̂ = γ

(
1

R1
+ 1

R2

)
. (18)

Considering the capillary contribution to the free energy for
the cylinder,

c = γ

(
1

R1
+ 1

R2

)
Vc = 1

rc

πrc
2Lγ (19)

s = γ

(
1

R1
+ 1

R2

)
Vs = 8

3
πrd

2γ. (20)
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FIG. 2. (Color online) The dimensionless growth rate of sinu-
soidal perturbations on a cylinder as a function of the wave number,
as per Rayleigh’s analysis for an inviscid fluid. The maximum growth
rate ωn,max has a value of 0.3433 corresponding to k = 0.697.

Thus,

2πLrcγ + γπrcL � 8
3πrd

2γ + 4πrd
2γ, (21)

which leads to

3rcL � 20
3 rd

2. (22)

Substituting for rd from Eq. (14),

L � 1.96πrc. (23)

Plateau concluded that for any wavelength, λ that is larger than
the perimeter of the thread results in negative energy and are
thus unstable. The wavelength is defined as

λ = πD

k
. (24)

Plateau’s analysis did not predict which of all the possible
modes is the most unstable or how fast an instability grows.
Now, if the perturbations are assumed to be small (ε � 1), the
derivative of radius (R′) can be neglected. Then the change in
surface energy can be expressed as, �E = ES − E0. Then,

�E

E0
= ε2

4h2
0

[(kh0)2 − 1]. (25)

Assuming the perturbations are harmonic waves with fixed
longitudinal wavelengths (k), the radius at any time can be
expressed as

R(z,t) = R0 + δei(kx−ωt). (26)

In the above equation, ω is the growth rate of the wave.
Rayleigh elegantly summarized (Fig. 2) that for a jet that
could be considered inviscid, the balance of inertia and surface
tension force leads to

ω2 = − γ

ρR0
3 (kR0)[1 − (kR0)2]

I1(kR0)

I0(kR0)
. (27)

In case the viscosity of the fluid is not negligible, the breakup
time tb of a cylinder due to capillary instabilities can be shown

to be [6]

tb = C1

(
Dμ

2γ

1

1 − k2

)
. (28)

In the above equation, C1 is a constant. Now at a constant
temperature, the dynamic viscosity (μ) can be assumed to be
a constant and it has been shown that the surface tension of
threads decreases linearly with radius [22]. Then,

tb = C

(
D2

1 − k2

)
. (29)

Thermal fluctuations are expected to play a dominant part in
determining the stability of the liquid thread when the thread
dimensions are of the order of the thermal length scale, which
is defined as lT = √

(kBT /γ ). Based on MD calculations for
propane at 185 K, the value of lT is determined to be 0.4399 nm.
Thus thermal fluctuations are expected to be dominant when-
ever the diameter of the thread is close to this value. All
three diameters selected for the simulation are larger than this
value. This is done in order to estimate the effect of thermal
fluctuations at small length scales, which are, however, at least
an order of magnitude larger than the thermal length scale.
Then, it can be expected that thermal fluctuations will compete
surface tension and inertia force to determine the temporal
evolution of the thread.

IV. RESULTS AND DISCUSSIONS

The first step of the analysis involves visualization of the
MD trajectories. The temporal evolution of the the simulated
nanoscale thread reveals a profile consisting of irregular beads
of fluid (Fig. 3). This is in stark contrast to the macroscopic
case, where the preferred profile resembles beads of uniform
size intermittently connected by long threadlike structures.
Although the modified shape at nanoscale can directly be
attributed to thermal fluctuations, explaining the irregular
size of the fluid beads is trickier. In the macroscopic case,
a particular wavelength dominates over all others and grows
over time to emerge as the driving force behind breakup. The
perturbations caused by thermal fluctuations, owing to their
flat power spectral density, can be expected to have various
wave numbers simultaneously. This results in perturbations of
various wavelengths that grow over time. The visualizations
seem to suggest that although many of these wavelengths
saturate or die with time, when breakup occurs wavelengths
are comparable to one another. This can be attributed to
the small radius of the liquid thread, which results in faster
breakup and consequently offers lesser time for growth or
death of initial disturbances. This would explain the profile
consisting of beads of fluid of irregular size. In order to
get a clearer picture about breakup, it becomes essential to

FIG. 3. (Color online) A typical profile obtained during simula-
tion (set 2, 260 ps into the production run). The irregular beadlike
fluid structure, which eventually breaks up into pieces of varying
sizes, can be seen clearly.
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FIG. 4. (Color online) The variation of the effective wavelength
as a function of thread radius. Each point is averaged over five
simulations with varying random number seeds. The theoretical
predictions are obtained from equation (24) with k = 0.697.

estimate the effective wavelength of breakup. The parameter
referred to as the effective wavelength is calculated as the
initial length of the thread divided by the maximum number
of pieces into which the thread eventually breaks up. As the
pieces have a tendency to roll up into drops and coalesce
with one another, tracking the maximum number of drops
becomes a challenge. In order to overcome this, for each
simulation, the entire MD trajectory is scanned for maximum
number of pieces due to breakup. In each simulation, the time

at which this occurs is recorded as the breakup time (tb).
It is seen that the effective wavelength calculated is clearly
larger than those predicted by Rayleigh (Fig. 4). A casual
glance may conclude that this result contradicts the previous
study on the breakup time of liquid threads by Koplik and
Banavar [7], which reported wavelengths that are an order
of magnitude in agreement with Rayleigh theory. Koplik and
Banavar [7] focused on the stability of short threads where
only a single breakup process was possible. The choice of a
shorter geometry for the liquid thread, with only one possible
instance of breakup, helps avoid any confusion regarding
the definition of a wavelength responsible for breakup. But
obviously such a configuration offers no idea if the breakup
of a long thread will be caused by a single wavelength.
Understanding this difference in configurations is essential
to appreciate why the effective wavelength reported in this
work is different from the definition of wavelength used
by Koplik and Banavar [7]. It is seen that as the radius
of the thread increases, the effective wavelength calculated
also increases. The simulations reveal that multiple breakups
that break the nanoscale liquid thread into drops do not
occur simultaneously and are temporally separated. Thus an
instance of breakup results in the creation of new free surfaces,
which modifies the dynamics of future breakup process. This
could explain why the wavelength is larger and consequently
the wave number (Table II) is smaller than the Rayleigh
predictions. A previous study by Kawano [8] also observed
that the wavelengths responsible for breakup are less than
0.697. An increase of temperature is seen to result in greater
number of breakups per unit length and thus result in a lower
effective wavelength. It must also be emphasized here that
faster breakup does not mean simultaneous breakup. Before
proceeding any further, an attempt is made to evaluate the
correctness of the inviscid assumption. Instead of evaluating

TABLE II. The details of the simulation sets where each set consists of five simulations that vary only in the random seed value used in
the Langevin formulation. The mean breakup time denoted refers to the time of first breakup. In case of set 7, only three simulations resulted
in breakup.

Set no. D L Temperature Mean breakup time Mean number Mean wave number, C
(nm) (nm) (K) (ps) of droplets k

1 2.6 325 185 138 8.6 0.216 101.167
2 2.6 650 185 137 19.6 0.246 98.956
3 2.6 975 185 213.8 28.6 0.240 94.241
4 3.9 325 185 585 3.4 0.128 295.017
5 3.9 650 185 510 8.6 0.162 254.544
6 3.9 975 185 501 14.6 0.184 248.028
7* 5.2 325 185 1237.5 2 0.101 474.758
8 5.2 650 185 1105 4.8 0.120 423.424
9 5.2 975 185 1069 9.4 0.158 408.506
10 2.6 325 205 110 11.2 0.282 77.730
11 2.6 650 205 113 19.6 0.246 81.456
12 2.6 975 205 94 34 0.285 66.429
13 3.9 325 205 506 4.2 0.158 252.810
14 3.9 650 205 487 10.8 0.204 238.970
15 3.9 975 205 408 16.2 0.204 200.381
16 5.2 325 205 1102 2 0.101 419.560
17 5.2 650 205 1008 6.8 0.171 376.126
18 5.2 975 205 899 11.2 0.188 333.621
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FIG. 5. (Color online) The variation of the constant, C as a
function of thread radius. Each point is averaged over five simulations
with varying random number seeds.

the viscosity using a Green-Kubo approach, an attempt is
made to evaluate the viscosity of the liquid thread during the
production run. This is done by averaging individual molecular
trajectories. It is seen that the viscosity value calculated shows
considerable fluctuations (order of 102). This can be attributed
to the localized fluctuations in fluid density. As the calculation
of the effective wave number does not provide a clear insight
into the dynamics of breakup the validity of macroscopic
scaling laws at this length scale is explored. Following the work
of Tiwari et al. [16], in order to assess whether the breakup time
of a nanoscale liquid thread can be predicted by macroscopic
scaling laws, the value of C from Eq. (29) is estimated (Fig. 5).
The choice of the viscous equation for predicting breakup time
is justified as the validity of the inviscid approximation cannot
be established as a fact. It is seen that the value of C obtained
for various cases do not show a considerable variation and
can be fairly assumed to be a constant. The breakup time
predicted by the macroscopic viscid theory thus scales well
even into the nanoscale regime. The simulation data suggests
that the value of C reduces with increase in temperature. This
can be attributed to the fact that changing the temperature of
the system changes the values of γ and μ. For simulations at
205 K (cases 10–18), it is noticed that the value of C is lower
than for simulations at 185 K (cases 1–9). This can be attributed
to the faster breakup of the liquid thread. The effect is very
predominant in the comparison of cases 10–12 with cases 1–3.
The effect of the increase in temperature is more pronounced
in case of threads with smaller radii.

The successful scaling of the macroscopic viscid theory
in predicting the breakup at nanoscale and the effect of
temperature on breakup raises questions about the nature
of breakup at nanoscale. If thermal fluctuations dominate
at nanoscale, it seems unlikely that nanoscale breakup can
be predicted by scaling down the classical viscid theory.
Previous works have attempted to determine whether the
nature of breakup is deterministic [23] or stochastic [9].
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the 90 cases of breakup. αc refers to the value of α (1) predicted by
classical deterministic model while αs refers to the value of α (0.418)
predicted by the stochastic model. The mean value of α obtained from
the simulations is found to be nearly 0.536.

The time dependence of the minimum diameter (Dmin) is an
excellent indicator of the nature of breakup. The minimum
radius depends on time, for both deterministic and stochastic
pinching, as

Dmin ∝ (t0 − t)α, (30)

where t0 is the time at breakup of the liquid structure. In the
case of deterministic pinching the time value of α is predicted
to be close to 1 [24]. Stochastic pinching on the other hand
predicts the value of α to be 0.418 [23]. Thus the value of
α serves as a good yardstick to identify the force dominant
in determining the stability of the liquid structure. The value
of α is obtained by curve fitting the value of Dmin obtained
from five randomly chosen instances of breakup, from each
of the simulation sets (Fig. 6). Only those values of α with a
coefficient of determination (R2) value above 0.95 are chosen.

The variation in the value of α has a mean value of 0.536
thereby establishing that the breakup process at this scale
is better described by the stochastic model. It is seen that
the breakup profiles are symmetric about the breakup point.
The variation from the stochastic prediction (of α = 0.418)
can be attributed to the spatial resolution of the algorithm
implemented. It now becomes necessary to ascertain the
contribution of thermal noise to the breakup process. It is
evident from the results so far that comparing the thermal
length scale with the diameter of the liquid thread is not a
reliable means of evaluating the role of fluctuations. In order
to do this, two instances of breakup, one corresponding to
case 9 and another corresponding to case 18 are compared
(Fig. 7). The two threads simulated differ in the initial
thermalisation temperature and the initial arrangement of the
fluid molecules. The interest of this study is to determine
what fraction of the breakup time is dominated by thermal
fluctuations and how this varies with temperature. The two
cases correspond to the largest initial radius modeled in
this study and thus offers a greater chance of detecting
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FIG. 7. (Color online) The variation of breakup coefficient, α for
two cases of breakup. The initial diameter in both cases correspond to
4 nm. The top panel is for simulation at 185 K and the bottom panel
for simulation at 205 K. The dotted line in each graph demarcates the
surface tension dominant breakup phase.

a surface-tension-dominated breakup regime, if there exists
one. It is assumed, in further discussions, that any value
α � 0.8 corresponds to a deterministic breakup regime, which
is dominated by surface tension.

It is evident from the MD data that the initial reduction
of diameter scales closer to the deterministic model rather
than the stochastic one. For the sake of comparison, the
variation of the diameter for both cases is considered from
an initial diameter of 4 nm up to the breakup time when the
diameter reaches zero. From the value of α it becomes clear
that the thermal fluctuations dominate the breakup process
only during its final stages, where an acceleration of the
breakup process is quite evident. The total breakup time is in
both cases determined by the surface-tension-driven growth of
disturbances and thus predictable by a classical viscid theory.

FIG. 8. (Color online) The breakup profile of a simulated
nanoscale liquid thread section. The initial diameter is 3.9 nm and
length is 975 nm (simulation set no. 9). The rendered images are at
(a) 700 ps, (b) 750 ps, (c) 800 ps, and (d) 850 ps, respectively. Both
elongated neck and double-cone breakups are observed. In the case
of an elongated neck breakup profile, satellite droplet formation is
also observed.

It is seen that increasing the temperature decreases the time
of breakup. This can be attributed to the reduction of surface
tension and the strengthening of thermal fluctuations. Based
on our assumption that the breakup process can be considered
deterministic if α � 0.8, we see that the breakup process
is deterministic 180 ps before t0 in the case of 185 K and
200 ps before t0 in the case of 205 K. Clearly, increasing the
temperature decreases the duration of the deterministic phase
of breakup. Acceleration of breakup in jets as a result of the
dominance of thermal fluctuations has been reported by Eggers
[10]. Thus, the breakup process in a 4 nm diameter thread is
initially driven by surface tension. But as pinching progresses,
the thickness of the thread in the necked region drops to few
molecular layers. At this stage, thermal fluctuations begin
to determine the physics of the breakup process. Although
the present study cannot demarcate an exact point at which
thermal fluctuations become dominant, the mechanism of
breakup is clear with surface tension initiating and driving the
initial breakup process and thermal fluctuations accelerating
the stages closer to breakup. This effect is detectable only in
the case of the larger liquid threads as the surface-tension-
dominant breakup phase of smaller threads are too short to
detect.

The calculation of the breakup coefficient α also reveals
a surprising development—the apparent reemergence of the
elongated neck breakup profile, reminiscent of macroscopic
liquid thread breakup (Fig. 8). This is surprising as the small
thread radius would suggest a thermal-fluctuation-dominated
breakup process, leading to symmetric pinch off. This finding
is confirmed by means of trajectory visualization of the MD
data. Although this seems to contradict the theoretical predic-
tions [10], this phenomenon has been reported in literature [12]
and the effect has been attributed to the interaction of the vapor
environment with the liquid thread. The interaction results in
a net evaporation condensation flux, which in turn leads to a
redistribution of the liquid thread molecules. Naturally, this
phenomenon is pressure dependent and is more predominant
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for threads of smaller radii where the redistribution mechanism
considerably alters the profile. This is supported by the fact that
increasing the initial thermalization temperature from 185 K
to 205 K increases the occurrence of this phenomena. It should
also be pointed out here that the classical predictions, outlined
in the theory, do not account for evaporation-condensation
process.

V. CONCLUSIONS

Three-dimensional MD simulations are employed to study
the stability of nanoscale liquid threads. It is seen that the
nanoscale liquid thread breaks up into pieces of unequal
size and the mean wavelength predicted from the number of
ruptures is found to be significantly larger than the classical
Rayleigh predictions. The profile of the liquid thread is found

to resemble irregular sized beads. Based on an understanding
of the growth of disturbances in macroscopic liquid threads,
this is attributed to multiple waves of comparable wavelength.
The classical viscid theory is seen to predict the breakup
time of nanoscale liquid threads with surprising accuracy. An
analysis of the breakup coefficient, α for various instances
of nanoscale thread breakup reveals that the breakup process
is closer to stochastic predictions than deterministic ones. It
is seen that the breakup process of liquid threads of 4 nm
diameter are initially driven by surface tension. Thermal
fluctuations dominate only during the last stages of breakup
and are seen to accelerate the breakup process. The presence
of vapor molecules results in the modification of the breakup
profile, which bears resemblance to the classical elongated
neck profile.

[1] F. Savart, Annal. Chim. 53, 337 (1833).
[2] J. Plateau, Mem. Inst. Roy. Sci. Natur. Belg. 16, 1 (1843).
[3] L. Rayleigh, Proc. R. Soc. London 29, 71 (1879).
[4] G. Taylor, Proc. R. Soc. London, Ser. A 280, 383 (1964).
[5] J. Haynes, J. Colloid. Interface Sci. 32, 652 (1970).
[6] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability

(Dover Publications, Mineola, 1981).
[7] J. Koplik and J. R. Banavar, Phys. Fluid. A 5, 521 (1993).
[8] S. Kawano, Phys. Rev. E 58, 4468 (1998).
[9] M. Moseler and U. Landman, Science 289, 1165 (2000).

[10] J. Eggers, Phys. Rev. Lett. 89, 084502 (2002).
[11] Y. Hennequin, D. G. A. L. Aarts, J. H. van der Wiel, G. Wegdam,

J. Eggers, H. N. W. Lekkerkerker, and D. Bonn, Phys. Rev. Lett.
97, 244502 (2006).

[12] W. Kang, U. Landman, and A. Glezer, Appl. Phys. Lett. 93,
123116 (2008).

[13] B. Davidovitch, E. Moro, and H. A. Stone, Phys. Rev. Lett. 95,
244505 (2005).

[14] A. M. Willis and J. Freund, J. Phys.: Condens. Matter 21, 464128
(2009).

[15] A. Tiwari and J. Abraham, Microfluidics and Nanofluidics 4,
227 (2008).

[16] A. Tiwari, H. Reddy, S. Mukhopadhyay, and J. Abraham,
Phys. Rev. E 78, 016305 (2008).

[17] Q. Pu, Y. Leng, X. Zhao, and P. T. Cummings, Nanotechnology
18, 424007 (2007).

[18] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[19] A. Stukowski, Model. Simulat. Mater. Sci. Eng. 18, 015012

(2010).
[20] N. Gopan and S. P. Sathian, Mol. Simulat. 38, 179

(2012).
[21] G. J. Gloor, G. Jackson, F. J. Blas, and E. de Miguel, J. Chem.

Phys. 123, 134703 (2005).
[22] H. Yan and H. Sun, J. Mol. Liq. 161, 144 (2011).
[23] J. Eggers, Rev. Mod. Phys. 69, 865 (1997).
[24] J. Eggers, Phys. Rev. Lett. 71, 3458 (1993).

033001-8

http://dx.doi.org/10.1098/rspl.1879.0015
http://dx.doi.org/10.1098/rspl.1879.0015
http://dx.doi.org/10.1098/rspl.1879.0015
http://dx.doi.org/10.1098/rspl.1879.0015
http://dx.doi.org/10.1098/rspa.1964.0151
http://dx.doi.org/10.1098/rspa.1964.0151
http://dx.doi.org/10.1098/rspa.1964.0151
http://dx.doi.org/10.1098/rspa.1964.0151
http://dx.doi.org/10.1016/0021-9797(70)90159-1
http://dx.doi.org/10.1016/0021-9797(70)90159-1
http://dx.doi.org/10.1016/0021-9797(70)90159-1
http://dx.doi.org/10.1016/0021-9797(70)90159-1
http://dx.doi.org/10.1063/1.858879
http://dx.doi.org/10.1063/1.858879
http://dx.doi.org/10.1063/1.858879
http://dx.doi.org/10.1063/1.858879
http://dx.doi.org/10.1103/PhysRevE.58.4468
http://dx.doi.org/10.1103/PhysRevE.58.4468
http://dx.doi.org/10.1103/PhysRevE.58.4468
http://dx.doi.org/10.1103/PhysRevE.58.4468
http://dx.doi.org/10.1126/science.289.5482.1165
http://dx.doi.org/10.1126/science.289.5482.1165
http://dx.doi.org/10.1126/science.289.5482.1165
http://dx.doi.org/10.1126/science.289.5482.1165
http://dx.doi.org/10.1103/PhysRevLett.89.084502
http://dx.doi.org/10.1103/PhysRevLett.89.084502
http://dx.doi.org/10.1103/PhysRevLett.89.084502
http://dx.doi.org/10.1103/PhysRevLett.89.084502
http://dx.doi.org/10.1103/PhysRevLett.97.244502
http://dx.doi.org/10.1103/PhysRevLett.97.244502
http://dx.doi.org/10.1103/PhysRevLett.97.244502
http://dx.doi.org/10.1103/PhysRevLett.97.244502
http://dx.doi.org/10.1063/1.2988282
http://dx.doi.org/10.1063/1.2988282
http://dx.doi.org/10.1063/1.2988282
http://dx.doi.org/10.1063/1.2988282
http://dx.doi.org/10.1103/PhysRevLett.95.244505
http://dx.doi.org/10.1103/PhysRevLett.95.244505
http://dx.doi.org/10.1103/PhysRevLett.95.244505
http://dx.doi.org/10.1103/PhysRevLett.95.244505
http://dx.doi.org/10.1088/0953-8984/21/46/464128
http://dx.doi.org/10.1088/0953-8984/21/46/464128
http://dx.doi.org/10.1088/0953-8984/21/46/464128
http://dx.doi.org/10.1088/0953-8984/21/46/464128
http://dx.doi.org/10.1007/s10404-007-0166-3
http://dx.doi.org/10.1007/s10404-007-0166-3
http://dx.doi.org/10.1007/s10404-007-0166-3
http://dx.doi.org/10.1007/s10404-007-0166-3
http://dx.doi.org/10.1103/PhysRevE.78.016305
http://dx.doi.org/10.1103/PhysRevE.78.016305
http://dx.doi.org/10.1103/PhysRevE.78.016305
http://dx.doi.org/10.1103/PhysRevE.78.016305
http://dx.doi.org/10.1088/0957-4484/18/42/424007
http://dx.doi.org/10.1088/0957-4484/18/42/424007
http://dx.doi.org/10.1088/0957-4484/18/42/424007
http://dx.doi.org/10.1088/0957-4484/18/42/424007
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1080/08927022.2011.613382
http://dx.doi.org/10.1080/08927022.2011.613382
http://dx.doi.org/10.1080/08927022.2011.613382
http://dx.doi.org/10.1080/08927022.2011.613382
http://dx.doi.org/10.1063/1.2038827
http://dx.doi.org/10.1063/1.2038827
http://dx.doi.org/10.1063/1.2038827
http://dx.doi.org/10.1063/1.2038827
http://dx.doi.org/10.1016/j.molliq.2011.05.008
http://dx.doi.org/10.1016/j.molliq.2011.05.008
http://dx.doi.org/10.1016/j.molliq.2011.05.008
http://dx.doi.org/10.1016/j.molliq.2011.05.008
http://dx.doi.org/10.1103/RevModPhys.69.865
http://dx.doi.org/10.1103/RevModPhys.69.865
http://dx.doi.org/10.1103/RevModPhys.69.865
http://dx.doi.org/10.1103/RevModPhys.69.865
http://dx.doi.org/10.1103/PhysRevLett.71.3458
http://dx.doi.org/10.1103/PhysRevLett.71.3458
http://dx.doi.org/10.1103/PhysRevLett.71.3458
http://dx.doi.org/10.1103/PhysRevLett.71.3458



