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Subcritical Turing bifurcation and the morphogenesis of localized patterns
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Subcritical Turing bifurcations of reaction-diffusion systems in large domains lead to spontaneous onset of
well-developed localized patterns via the homoclinic snaking mechanism. This phenomenon is shown to occur
naturally when balancing source and loss effects are included in a typical reaction-diffusion system, leading
to a super- to subcritical transition. Implications are discussed for a range of physical problems, arguing that
subcriticality leads to naturally robust phase transitions to localized patterns.
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I. INTRODUCTION

Reaction-diffusion systems are known to give rise to
a wide variety of stationary and oscillatory patterns; see,
e.g., Refs. [1–3]. The primary mechanisms for explaining
transition from quiescent to patterned states is the instability
first described by Turing [4]. Such patterns are used to
explain diverse physical phenomena, such as gas discharge
dynamics [5], active fluid behavior [6], and tumor growth [7].
Now diffusion-driven instability, or Turing bifurcation, is
a key part of any graduate course on nonlinear far-from-
equilibrium physics or biology. For systems in large domains,
however, many different wave numbers can become unstable
in Turing bifurcations for nearby parameter values, and mode
interactions can lead to a remarkable richness in patterns and
their dynamics; see, e.g., Ref. [8].

A different explanation of localized pattern formation has
emerged in recent years: the so-called homoclinic snaking
mechanism [9,10]. The one-dimensional (1D) generalized
Swift-Hohenberg equation with competing nonlinear terms is
a canonical model for such analysis [11,12]. In two dimensions
a richness of localized stripy, spotty, hexagonal, square-wave,
and target-like patterns have been observed [13–15]. The
mechanism has been shown to underlie many physical ob-
servations such as the onset of turbulent spots in plain Couette
flow [16], stationary patterns in binary convection [17], and
localized modes in optical cavities [18].

One of the distinctions between the homoclinic snaking
and Turing bifurcation pattern formation theories is that the
Swift-Hohenberg equation has variational structure, which can
be linked to the free energy of the system. General systems of
reaction diffusion equations for which the Turing mechanism
applies do not typically have such variational structure. How-
ever, the snaking mechanism still applies to Swift-Hohenberg
equations with broken variational structure [19], provided
spatial reversibility is retained, although stationary asymmetric
patterns are lost.

The purpose of this paper then is to show how the
connection between homoclinic snaking and Turing instability
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analysis gives a robust explanation for the formation of
localized patterns in reaction-diffusion systems. We show that
this robustness arises from inclusion of source and loss terms
in reaction-diffusion models, which realistic effects are often
ignored in canonical models. For example, a model equivalent
to the system we study below but without source and loss
terms gives rise to wave pinning but no localized patterns [20].
Inclusion of such terms naturally breaks material conservation
and paves the way for effective competing nonlinear terms, and
in turn this allows Turing bifurcations to become subcritical.
We show that this subcriticality is equivalent to the key
condition for homoclinic snaking to occur in long domains (see
also Ref. [13]). Hence, upon considering long domains, we can
set the backbone conditions under which reaction-diffusion
systems naturally give rise to spots and pulses, rather to than
just spatially extended patterns (see also Ref. [3] for further
experimental and theoretical evidence).

It is worth mentioning earlier related work of Yochelis
et al. [21] who performed numerical bifurcation analysis
on the Gierer-Meinhardt system, which includes a rational
nonlinearity. They also found the existence of a bistability
region and a subcritical Turing bifurcation that leads to
homoclinic snaking; see also Ref. [22] for further details. The
novelty of the present paper is to show that such scenarios
are in some sense generic and can occur for a pure-power
nonlinear system, given the presence of source and loss terms.

II. LOCAL ANALYSIS

For the ease of explanation, we shall perform our detailed
calculations in one dimension in space. Extension to higher
spatial dimension is in principle possible as we shall indicate
in what follows, although there are additional considerations
due to the range of different spatial symmetries of underlying
patterns, stripes, rolls, and hexagonal lattices, among others;
see Refs. [14,15,23]. We shall also apply the theory to
reaction-diffusion systems with just two interacting species
and a single nonlinear interaction term. Application to more
complex systems is in principle straightforward because the
theory is built upon the principle of normal-form reduction.

Consider a reaction-diffusion system

Ut = D1Uxx + F (U,V ; μ), (1a)

Vt = D2Vxx + G(U,V ; μ), (1b)
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VÍCTOR BREÑA-MEDINA AND ALAN CHAMPNEYS PHYSICAL REVIEW E 90, 032923 (2014)

for x ∈ (−L/2,L/2), subject to homogeneous Neumann
boundary conditions. Here parameters D1 and D2 are diffusion
coefficients and F and G are sufficiently smooth functions.
Without loss of generality time scales have been scaled to
unity, but the length scale L is retained.

The linear analysis provides of the usual conditions under
which Turing bifurcations occur; see Ref. [2]. Thus, suppose
there exists an isolated homogeneous equilibrium (U,V )T =
(U0,V0)T . Upon substituting the incremental variables U =
U0 + u and V = V0 + v into system (1), we obtain(

ut

vt

)
=

(
D1uxx

D2vxx

)
+ A(μ)

(
u

v

)
+

(
f (u,v; μ)
g(u,v; μ)

)
, (2)

where A = {aij } with a11(μ) = FU , a12(μ) = FV , a21(μ) =
GU , a22(μ) = GV evaluated at the steady state, and f and
g gather all remaining higher-order terms. Under the usual
assumptions of Turing bifurcation analysis, we first need to
assume that the homogeneous steady state is stable in the
absence of diffusion; that is, trace A < 0 and det A > 0.

To find diffusion-driven instability with spatial wave num-
ber κ we look for modes of the form

cos (κ(x − L/2))
(

C1

C2

)
, C2

1 + C2
2 > 0, (3)

where κ = κm = mπ/L for some positive integer mode
number m. This leads to the search for zero eigenvalues λ

of the matrix

Aκ (μ) =
(

a11 − D1κ
2 a12

a21 a22 − D2κ
2

)
, (4)

with wave number κ = √
(D2a11 + D1a22)/(D1D1). The con-

dition for instability is that κ is real, which is guaranteed
for a stable equilibrium [with sign (a11a22) < 0] if D1D2 �
max{D2

1,D
2
2}. Without loss of generality, suppose a22 < 0 and

that D1 � D2, which, in comparison to the V component,
implies that the U component diffuses slowly.

We now perform a proper comparison between the two
theories in question, in the case of a long domain L � 1. We
suppose that at parameter value μ = μc there is a double zero
eigenvalue of Aκ , corresponding to a large mode number mc,
not necessarily an integer. The condition for such a double root
is

(D2a11 + D1a22)2 = 4D1D2 det A. (5)

On the one hand, for a L � 1 there will be a large number
of Turing bifurcations for nearby κ values corresponding to
κ = mπ/L for integers m close to mc. Generically, μ will
depend quadratically on κ close to μc, which would imply
a double accumulation of Turing bifurcations: one family
corresponding to higher wave numbers κ > κc, the other to
lower wave numbers κ < κc; see in Fig. 1(a) the mode numbers
m which correspond to zeros of the dispersion relation as μ

tends towards μc.
Alternatively, in the limit L → ∞, so-called spatial dy-

namics can be applied (see, e.g., Ref. [9]) where steady
states (U (x,t),V (x,t))T = (u(x),v(x))T of (1) are sought by
considering the ODE system on the real line

D1uxx + F (u,v; μ) = 0 , D2vxx + G(u,v; μ) = 0 ,

μ
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FIG. 1. (Color online) The equivalence between (a) the mode
numbers accumulation point of Turing bifurcations and (b) a
Hamiltonian-Hopf bifurcation point for long domains.

as a four-dimensional dynamical system in “time” x. As
such, the symmetry (ux,vx)T → (−ux, − vx)T and x → −x

corresponds to a spatial reversibility. In this context, a
homogeneous steady state (U0,V0)T of the PDE corresponds to
an equilibrium (u,ux,v,vx)T = (U0,0,V0,0)T within the fixed
point set of the reversibility. The linearization of the system
about such an equilibrium would take the form(

uxx

vxx

)
+

(
a11/D1 a12/D1

a21/D2 a22/D2

)(
u

v

)
=

(
0
0

)
. (6)

Such an equilibrium will undergo a transition from being
hyperbolic to elliptic at a Hamiltonian-Hopf bifurcation (also
known as a reversible 1:1 resonance) [24], which occurs, under
suitable nondegeneracy conditions, when there is a double pair
of complex conjugate eigenvalues ±iω of the Jacobian in (6).
Upon substituting (u,v)T = (A,B)T exp (iωx) into (6), we find
that we need a double root to

D1D2ω
4 − (D2a11 + D1a22)ω2 + det A = 0,

which leads to precisely the same condition for a fold Turing
points with respect to κ , namely, equality as in (5); see
Fig. 1(b). It is straightforward to show that the condition for
a criticality of the Turing bifurcation at the double root is
precisely the same as the condition for the criticality of the
corresponding Hamiltonian-Hopf; see, e.g., Ref. [25]. Both
problems may be expressed as via an amplitude equation
whose real part reads [24]

Z′′(ξ ) = q1(μ − μc)Z + q3Z|Z|2 + q5Z|Z|4 . (7)

A key prediction of the homoclinic snaking mechanism [10]
is the birth of a spatially localized mode (a homoclinic orbit
in space x) if the Hamiltonian-Hopf bifurcation is subcritical,
q1q3 > 0. For small q1q3 > 0, then, provided q1q5 < 0, an
unfolding of the normal form shows that there is a heteroclinic
connection from a background state to a nontrivial periodic
orbit. Taking account of beyond-all-orders terms in the normal
form [26,27] enables an analysis to be undertaken in which we
find infinitely many homoclinic orbits arranged on two closed
curves; see Fig. 3(b) below.

III. ILLUSTRATION FOR A GENERALIZED
SCHNAKENBERG SYSTEM

In order to illustrate our findings, we here consider
the generalized Schnakenberg system, which is a spatially
homogeneous form of a model proposed in Ref. [28] of
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pattern formation via interaction between active U and
inactive V small G-proteins in subcellular-level biological
morphogenesis:

Ut = D1∇2U + k2U
2V − (c + r)U + hV, (8a)

Vt = D2∇2V − k2U
2V + cU − hV + b, (8b)

in which all parameters are taken to be positive. Here the model
models a nonreversible autocatalytic process and differs from
the standard Schnakenberg and Gray-Scott systems through
the presence of a production term b of the inactive component
and removal rate r of the activated component. Notice that, as
can easily be shown, otherwise Turing bifurcations are always
supercritical in straightforward Schnakenberg and Gray-Scott
systems.

There is a unique homogeneous equilibrium

U0 ≡ b

r
, V0 ≡ br(c + r)

k2b2 + hr2
. (9)

Upon substituting the incremental variables U = U0 + u and
V = V0 + v into system (8) in 1D, we get a system of the
form (2) where the coefficients of A are given by

a11 = (c + r)(k2b
2 − hr2)

k2b2 + hr2
, (10a)

a12 = −a22 = k2b
2 + hr2

r2
, (10b)

a21 = chr2 − k2b
2 (c + 2r)

k2b2 + hr2
, (10c)

and the nonlinear terms(
f

g

)
≡ k2(u2v + V0u

2 + 2U0uv)

(
1

−1

)
. (11)

Note that the nonlinearity contains both quadratic and cubic
terms when written in these coordinates. It is straightforward
to show that the steady state (U0,V0)T is asymptotically stable
in the absence of diffusion provided c + r < 8h.

Figure 2(a) shows the dispersion relation as function of
squared wave number κ2

m, for several values of a bifurcation
parameter k2. In this and unless otherwise stated in what
follows we use parameter values k2 ∈ (0,5) and b = 1, c = 1,
r = 1, h = 1, D1 = 0.1, D2 = 10.

To calculate the criticality condition of the Turing in-
stabilities of (8), we follow a Lyapunov-Schmidt reduction
method [29]. Upon obtaining the steady-state smooth func-
tional φ = φ (U,V,μ), which comes from setting ut and vt

to zero, and hence defining the bifurcation function g (z,μ) ≡
〈w∗,φ (zw,μ)〉 at the steady state w = (u − U0,v − V0)T , the
result is a so-called bifurcation equation g = 0, the leading-
order expansion of which can be written

g(z,μ) = q1μz + q3z
3 + q5z

5 + O(μ2z,μz3) . (12)

Note that the form of g is identical to the right-hand side of
the amplitude equation (7). The bifurcation parameter here is
defined as μ = k2 − k2c and the scalar variable z parametrizes
the amplitude of the component of the Turing pattern in the
kernel of the matrix Aκ (μ) = −Dκ2 + A, where D is the
diffusivity matrix. The calculation of the coefficients qi is

(a) (b)

FIG. 2. (Color online) (a) Dispersion relation of Aκ (μ) restricted
to the eigenspace spanned by modes of the form (3). The bold solid
curve corresponds to where a double root of det [Aκ (μ)] = 0 occurs.
(b) Bifurcation diagram and pitchfork criticality condition; stable
branches are shown as solid lines, the filled circle at k2 = 1.4369
corresponds to a subcritical bifurcation, and the square at k2 = 1.5258
to a supercritical bifurcation. The subcritical branch undergoes to a
fold bifurcation (LP). The pitchfork criticality condition is depicted
as a (blue) heavily dashed line, where the criticality transition is
indicated by a (red) vertical dashed line at k2 = 1.5226.

straightforward but lengthy, and full details are available in
Ref. [30]; we omit the details for brevity.

Note that such a bifurcation equation (12) can be derived
in principle in a higher dimensional spatial domain �. There
a vector reduced bifurcation function g can be computed by
projecting onto the eigenspace defined by modes satisfying the
boundary value problem

∇2w + |κ |2w = 0, (n · ∇) w|∂� = 0 .

In computing the scalar function g, we find that trivially
gμ(0,0) = 0 and gμμ(0,0) = 0, by virtue of the equilibrium
being at the origin and having a zero eigenvalue. Also, owing to
the reflection symmetry in x, the reduced bifurcation function
must be odd in z, despite the presence of quadratic terms in
the original equation.

In the parameter region under investigation the sub- or su-
percriticality of the pitchfork (Hamiltonian-Hopf) bifurcation
is determined by the sign of

σ = q1q3;

see Ref. [24]. Figure 2(b) plots σ , as a function of k2 close to
k2c. We have also checked that q1q5 is negative in all the entire
parameter region of interest. The figure also shows computed
bifurcating branches close to the point where σ changes sign,
where we can see a restabilizing fold (limit point) in the case
of the subcritical bifurcation.

Now consider variation of a second parameter. For conve-
nience we choose D1. Figure 3(a) depicts a two-parameter
bifurcation diagram showing the Hamiltonian-Hopf bifur-
cation curve, the codimension-two point at which σ = 0
and the numerically computed “snaking region” in which
localized states exist in the (k2,D1) plane. In accordance with
the usual analysis of homoclinic snaking, inside this region
there are two branches of localized states. The states are all
invariant under the reversibility, and at each fold the number of
pulses varies, so that each second successive horizontal-like
branch has two additional large pulses. We remark that, in
contrast to the Swift-Hohenberg equation for example, there
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(a)

(b) (c)

FIG. 3. (Color online) (a) The snaking region (shaded) inside
which homoclinic snaking is observed in the (k2,D1) parameter
plane. (b) Homoclinic snaking; even-solutions branch (yellow) and
odd-solutions branch (purple), and fold bifurcations (filled circles);
bold solid lines indicate stable branches; D1 = 0.15. (c) Samples of
multipulse homoclinic stable solutions on the even and odd branch
for k2 = 1.45, top and bottom panels, respectively, which correspond
to six-spike solution (label A) and three-spike solution (label B) in
panel (b). The u component (solid line) and v component (dashed
line) are plotted for a domain size L = 100.

is no variational structure in the system (8), which therefore
implies there are no asymmetric stationary localized states
(so-called “ladders” in a “snakes and ladders” bifurcation
diagram).

In addition, we have computed stability of the states
shown in Fig. 3(b) using a standard three-point uniform
finite differences method and an eigenvalue solver. We have
numerically found that stable branches occur similarly to
results previously found for the Swift-Hohenberg system (e.g.,
Refs. [12,19]) as is shown (solid lines) in Fig. 3(b). There stable
branches lose stability in a fold bifurcation (filled circles)
where branches of solutions with odd and even numbers of
spikes annihilate each other. Examples of stable solutions are
shown in Fig. 3(c); note that number of spikes correspond to
ladder step.

IV. 2D SIMULATION RESULTS

To illustrate that a similar localized pattern formation
mechanism is likely to apply in higher spatial dimensions we
have performed simulations of the same system (8), on a large

(a) (b)

(c) (d)

FIG. 4. (Color online) Stable patterns for a two-dimensional
square domain Lx,y = 300 on a cool-warm scale (side bar). Localized
(a) two-spot for r = b = 10−4, k2 = 4 × 10−3, and D1 = 0.13, (b)
four-spot for r = b = 5 × 10−4, (c) eight-spot for D1 = 0.11, and
other parameter values as in (a); (d) two-stripe: r = b = 10−4, k2 =
0.6, D1 = 0.1, and Lx,y = 100. Other parameter values: c = 0.1,
h = 10−2, and D2 = 10.

square domain with Lx,y = 300. Specifically we have used a
finite difference method implemented in Matlab, with spatial
resolution 300 × 300. The computations were run a long time
until steady state reached. The results are presented in Fig. 4.

We have found a collection of different localized patterns
under the conditions of equal source and loss terms b = r .
Samples of these can be seen in Figs. 4(a)–4(c). Taking
similar initial conditions that was a 10−2 perturbation from
the homogeneous equilibrium (9) resulted in the two-spot
pattern depicted in Fig. 4(a). Taking this solution as an initial
conditions, a slight increase in b and r resulted in the localized
four-spot pattern depicted in Fig. 4(b). The dynamics of this
process was such that each spot arises through a form of
spot-splitting dynamics [31]. In a similar fashion, we slightly
decreased D1 instead. In so doing, a localized eight-spot
pattern is obtained from the four-spot pattern; see Fig. 4(c).

In addition, we also noted that upon performing a similar
computation but changing b = r or D1 in the other directions
results in a either a completely different form of spatially ex-
tended pattern or no pattern at all. This suggests that hysteretic
behavior is taking place, which should be a consequence of an
overlapping structure of stable branches similar to Fig. 3(b).

These patterns, however, are just a few examples of the
spotlike patterns that we were able to find and indicate that
the mechanism we have identified is likely to be robust in
higher dimensions. A full exploration in the spirit of Refs.
[13–15] though is left for future work. It is interesting to note
though that we were unable to find any localized patterns for
b �= r . This suggests that well-balanced source and loss plays
an important role in the (nonvariational) pattern formation
mechanism under investigation in higher dimensions.
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On the other hand, in Fig. 4(d), a stripelike pattern is
depicted. We initially obtained a two-spot pattern as before
in a smaller domain, and it was taken as an initial condition
for a second run. In so doing, note that upon significantly
increasing k2 and slightly decreasing D1 parameter values
the two-spot pattern dramatically changes. Moreover, upon
taking this solution as an initial condition once again but in a
much larger domain, a pattern consisting of spots and stripes
emerges (not shown). Patterns as such have been observed
in nonhomogeneous domains; see Refs. [32,33]. A further
analysis is nevertheless also left for future work.

V. CONCLUSIONS

In summary, we have shown that canonical reaction-
diffusion systems can generate localized patterns sponta-
neously, which, close to a relevant codimension-two point,
can occur at small amplitude. In particular, taking realistic
source and loss terms into account can provide conditions for
a subcritical Turing bifurcation to occur. Taking the paradigm
of spatial dynamics, on a long domain, the Turing bifurcation
corresponds to where two complex eigenvalues collide on
the imaginary axis (a Hamiltonian-Hopf bifurcation). In the
presence of spatial reversibility, this provides exactly the right
ingredients for the spontaneous formation of localized patterns
through the so-called homoclinic snaking mechanism. Note
that any realistic physical, chemical or biological systems,
especially those found in nature, are likely to feature such
source and loss terms.

Moreover, as argued more carefully in Ref. [34] this method
of pattern formation is likely to be more robust than via the
more traditional supercritical Turing instability, and hence to

be chosen by nature. In the supercritical case, the pattern is
always spatially extended, is born from zero amplitude and, in
long domains is typically subject to further instabilities through
mode interactions. In contrast for the subcritical Turing
bifurcations investigated here, we find jumps to well-formed,
finite amplitude patterns that are localized in the spatial
domain. Due to the hysteretic nature of fold bifurcations seen in
the snaking bifurcation branch, small fluctuations in parameter
values or small stochastic perturbations of the kinetics would
not typically destroy the localized pattern. In addition, the
presence of a weak spatial inhomogeneity will result in
bifurcation diagram similar to that in Fig. 3(b), but slanted so
that the folds of the snake occur at different values (results not
shown). For example, Ref. [34] considers the system (8), in a
different parameter regime, in a long (but finite) domain in one
dimension with a spatial gradient multiplying the bifurcation
parameter k2. The result is reminiscent of a finite portion of
a slanted snake bifurcation diagram where the patterns with a
higher number of spots occur for higher k2 values. This can be
explained using the concept of slanted snaking established by
Dawes [35], where in this case the spatial gradient is replaced
by a scalar field that is neutrally stable. We therefore believe
the mechanism we have uncovered will prove important in
explaining and predicting observations of localized patterns in
certain a wide variety of physical systems (see, for example,
Ref. [3]) and will only be accentuated by spatial homogeneity.
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