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Modulational instability and resonant wave modes act on the metastability of oscillator chains

Torsten Gross,1,* Dirk Hennig,2,† and Lutz Schimansky-Geier1,‡
1Department of Physics, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany

2Department of Mathematics, University of Portsmouth, Portsmouth PO1 3HF, United Kingdom
(Received 4 June 2014; published 22 September 2014)

We describe the emergence and interactions of breather modes and resonant wave modes within a two-
dimensional ringlike oscillator chain in a microcanonical situation. Our analytical results identify different
dynamical regimes characterized by the potential dominance of either type of mode. The chain is initially placed
in a metastable state, which it can leave by passing over the brim of the applied Mexican-hat-like potential. We
elucidate the influence of the different wave modes on the mean-first passage time. A central finding is that also in
this complex potential landscape a fast noise-free escape scenario solely relying on nonlinear cooperative effects
is accomplishable even in a low-energy setting.
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I. INTRODUCTION

The interest in the escape of coupled degrees of freedom
or chains of interacting units out of metastable states has
been intensified lately [1–8]. Escape is accomplished when
the considered object overcomes a potential barrier separat-
ing the local minimum of the potential landscape from a
neighboring domain of attraction. The associated transition
state corresponds to a saddle point in the potential landscape.
Surmounting the energetic bottleneck requires a minimal
amount of energy greater than the activation energy, which
can be provided in two different ways. One is the possibility
of stochastic escape occurring in the presence of a heat bath
that is sampled for the optimal fluctuations triggering an event
of escape [9,10]. The second one is that in the noise-free
situation the energy can be supplied in a single shot under
microcanonical circumstances.

Previous work [7,8] addressed microcanonical escape
scenarios of chains of interacting units in one- and two-
dimensional potential landscapes with a single barrier and
compared those to the corresponding noise-assisted escape
process. In the deterministic setting, a nonlinear breather
dynamics assists at a speedy passage through the metastable
transition state. If additionally noise and linear dissipation act
on the chain and the friction is large, the escape rate becomes
smaller. The breathers are then unable to grow out of the
phonon background. In contrast for small friction when relax-
ation times become large, the breathers are able to survive and
contribute as added noise to the amplification of the escape [8].

In this paper we extend these studies to systems of higher
complexity and explore whether the observed phenomena
are solely inherent to highly idealized settings or whether
they remain relevant in a more general context. To this
end, we investigate a ring of interacting units evolving in
a Mexican-hat-like two-dimensional potential landscape.
The emergence of breathers and resonant wave modes in
the chain’s dynamics is elucidated. Analytical results are
derived that allow us to determine parameter choices, which
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accomplish an efficient noise-free escape scenario solely
relying on nonlinear cooperative effects.

Apart from our conceptual interest in this work, the
results can be applied to the description of microbubble
surface modes. Microbubble surfaces can be modeled by a
closely related system in which breather modes were verified
experimentally [11]. Our results demonstrate the potential
relevance of resonant wave modes and the escape behavior
within this specific context.

The paper is organized as follows: In the next section the
model of the ring of interacting units evolving in the Mexican-
hat-like potential is introduced. Then, the formation of breather
solutions initiated by modulational instability is considered,
followed by the analysis of the resonant longitudinal wave
modes and the interaction between the two. After establishing
this theoretical framework, the subsequent section elucidates
the deterministic escape scenario. Transition states and the
associated escape channels are discussed in detail, followed
by an investigation of the escape time statistics. Finally, we
summarize our results.

II. LOCALIZED AND RESONANT WAVE MODES
IN AN OSCILLATOR RING CHAIN MODEL

Motivated by the experimental studies in Ref. [11] we
study a Rouse-like Hamiltonian system consisting of a ring
chain of N linearly coupled oscillators of mass m subjected to
an external Mexican-hat-like anharmonic potential V (qi) =
−a

√
q2

i + b cos(
√

q2
i /λ). The ring chain (qN+1 = q1 and

pN+1 = p1) is initially situated close to the bottom of the
potential well. We are particularly interested in events of
escape of the entire ring chain over the outer brim of
the Mexican-hat-like potential. Rescaling coordinates, q̃i =
(b/a) qi , momenta, p̃i = √

m b pi , and time, t̃ = (
√

m b/a) t ,
to natural units yields two remaining effective parameters,
the coupling strength κ̃ = (b/a2) κ and the potential width
parameter λ̃ = (a/b) λ, and leads to the Hamiltonian (tildes
have been omitted),

H =
N−1∑
i=0

[
p2

i

2
+ κ

2
(qi − qi+1)2 + V (qi)

]
,

V (qi) = −
√

q2
i + cos

(√
q2

i

λ

)
, (1)
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with the corresponding equations of motion

q̈i = − κ (2 qi − qi+1 − qi−1) + qi√
q2

i

+ sin

(√
q2

i

λ

)
qi

λ

√
q2

i

i ∈ 0 . . . N − 1, (2)

and the coordinates and momenta are subject to periodic
boundary conditions, qN−1 = q0 and pN−1 = p0.

The energy is conserved,

H({p(t)},{q(t)}) = const. = E.

That is, we consider deterministic dynamics under micro-
canonical conditions when the energy initially allocated to
the system has to suffice for the task performance and no
additional coupling to a thermal bath or any other external
sources assists the escape. This has to be distinguished from
the experimental setup considered in Ref. [11], where energy
is injected into the system by means of external parametric
driving.

Considering the rotational symmetry of the Mexican-hat-
like potential, it is convenient to express the equations of mo-
tion also in terms of radial and angular coordinates, ri and ϕi ,

r̈i = ri ϕ̇
2
i − κ [2 ri − ri+1 cos (ϕi − ϕi+1)

− ri−1 cos (ϕi−1 − ϕi)] + 1 + 1

λ
sin

(
ri

λ

)
(3)

ϕ̈i ri = − 2 ṙi ϕ̇i + κ[ri−1 sin(ϕi−1 − ϕi)

− ri+1 sin(ϕi − ϕi+1)]. (4)

A. Stability of the minimum-energy configuration

Fixed points are found for the configuration ri = r0, ϕi =
i ��, with �� = 2π/N , where a conditional equation for r0

arises from setting all time derivatives in Eq. (3) to zero

0 = −2 κ r0

[
1 − cos

(
2 π

N

)]
+ 1 + 1

λ
sin

(
r0

λ

)
. (5)

Initially, the ring chain is placed in the vicinity of this so-
called minimum-energy configuration. In order for the ring
chain to evolve from a metastable state, that is from a basin of
potential energy, the fixed point needs to be (Lyapunov) stable.
Consequently, we will need to limit our parameter space to the
region of stability. The results of a linear stability analysis,
see Appendix A, are represented in Fig. 1. It shows instability
arising for large values of the coupling constant when the ring
chain’s tendency to contract becomes so strong that any small
perturbation will initiate a contraction that pulls the entire ring
chain over the central potential hump into the first potential
valley (and possibly beyond).

As an additional constraint on the parameters, let us require
the existence of the barrier in the Mexican-hat-like potential
(see Fig. 2), which confines the range of the potential width
parameter to 0 < λ < 1 and in conjunction with a restriction of
the coupling constant to 0 < ��2κ < 1.3 a sufficiently large
region of stability in parameter space results. The number of
oscillators will be kept at N = 100.
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FIG. 1. The left-hand side of the figure represents the profile
of the Mexican-hat-like potential. The potential barrier vanishes for
λ > 1. The right-hand side of the figure shows the result of the
stability analysis of the fixed point comprising the minimum-energy
configuration and vanishing momenta for N = 100 (see Appendix A
for details).

B. Modulational instability produces radial breathers

Initially, the oscillators are placed in a perturbed ringlike
structure around the central potential hump (Fig. 2),

qIC
i = r IC ·

(
cos (i ��)
sin (i ��)

)
+

(
�qx

i

�q
y

i

)
, pIC

i =
(

�px
i

�p
y

i

)
,

where �qx
i and �q

y

i as well as �px
i and �p

y

i are random
perturbations taken from a uniform distribution within the
intervals

�qx
i ,�q

y

i ∈ [−0.01,0.01] ; �px
i ,�p

y

i ∈ [−0.01,0.01] .

In this setting, the angular distance between any pair of
neighboring oscillators is almost equal (close to ��) so that
the initial angular acceleration is small. Thus, for short time
periods after the system’s preparation, virtually no variations of
the angular variables, viz. ϕi(t) = ϕ0

i = i ��, are expectable.
Moreover, for low-energy settings each oscillator’s initial
radius is close to r0, so that the equation of motion for
the radial components can be approximated by a Taylor
expansion in ri around ri = ri

0, where we neglect terms of
order �ri

3 = (ri − r0)3 and higher. Thus, as an approximation

potential barrier
central  potential

hump potential valley

FIG. 2. (Color online) A typical initial preparation of the oscilla-
tor chain.
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time: 111.8 time: 173.2 time: 201.8

FIG. 3. Simulation snapshots showing the growth of a radial
breather array from an almost homogeneous initial state due to
modulational instability. The ongoing amplification of this pattern
eventually drives an individual oscillator over the potential barrier and
thus triggers an escape of type I as described in Sec. III. Parameters:
κ ��2 = 0.79×10−4, λ = 0.85.

for short periods of time after the initiation of the system, the
angular components remain fixed and the evolution of the
radial components is governed by the equation

�r̈i = κ

[
cos

(
2 π

N

)
(�ri+1 + �ri−1) − 2 �ri

]
−ω0

2 �ri + α �ri
2,

ω0
2 = − 1

λ2
cos

(
r0

λ

)
, α = − 1

2 λ3
sin

(
r0

λ

)
.

In this case, the oscillators can only move along equally
spaced rays that all emerge from the origin. Therefore, this
approximation will be referred to as the starlike ring-chain
model.

Due to the initial ringlike setup, the chain will first oscillate
in a k = 0 phononlike manner. Typically, in our simulations
we observe the emergence of a regularly spaced array of
breathers, as shown in Fig. 3. These localized excitations play a
crucial role because they concentrate energy in single degrees
of freedom and, therefore, substantially influence the escape
behavior, as will be discussed in Sec. III.

The studies in [12,13] reveal that the starlike chain model
is able to describe the emergence of these transversal modes
in terms of a modulational instability. The key idea herein is to
formulate a discrete nonlinear Schrödinger equation (DNLS),
also known as the discrete self-trapping equation [14], for a
time-dependent amplitude of the first-harmonic phonon wave.
Inspecting the stability of the DNLS’s plane-wave solutions
yields a dispersion relation for the small perturbation terms
on the basis of which those wave modes on the oscillator
chain that grow in amplitude and create the transversal
pattern can be determined. We call the wave number and the
angular frequency of the phonons k and ω, and those of the
perturbations Q and 
. Their dispersion relations read

ω2 = ω2
0 + 2κ (1 − cos �� cos k) and

(ω0 
 − κ cos �� sin k sin Q)2

= κ cos �� cos k sin2 Q

2

×
(

4κ cos �� cos k sin2 Q

2
− 2γA2

)
. (6)

Equation (6) describes the stability of the Q-mode perturbation
on the k-mode carrier wave. Q and k have a 2 π periodicity
and can therefore be chosen to be in the first Brillouin zone.
Furthermore, we can restrict the range of k and Q: k,Q ∈
[0,π ], because negative values only correspond to waves with
the opposite direction of propagation. The perturbations are
stable for 
 ∈ R, which is the case when the right-hand side
of Eq. (6) is positive. Since γ � 0, all carrier waves with
cos k � 0 ⇔ k ∈ [π/2,π ] are therefore stable with respect to
any perturbation mode. For k ∈ [0,π/2], perturbations will
grow, provided that

cos k sin2

(
Q

2

)
� A2

A0
2 . (7)

Here A is the phonon amplitude,

A0
2 = 2κ cos(��)

γ
, and γ = 10α2

3ω0
2
.

We can then find an according growth rate

�̃r (Q) = |Im(
)| = sin
(

Q

2

)
ω0

×
√

2 κ γ cos k

[
A2 − A0

2 sin2

(
Q

2

)
cos k

]
. (8)

The left-hand side of Eq. (7) is monotonically increasing
as a function of Q. Thus, there is an upper bound, Q∗,
such that for Q > Q∗ wave modes cannot be unstable. For
A2 � 2 A0

2 cos k the function Eq. (8) attains its maximum at

Qmax = 2 arcsin

√
A2

2 A0
2 cos k

.

If Qmax > Q∗ then the most unstable mode arises for Q∗
and for A2 > 2 A0

2 cos k, the maximal growth rate is found
at Q = π . The wave number associated with the maximal
growth rate defines the spatial pattern of the forming breather
array.

For our simulations the system is prepared in a flat initial
state with small random perturbations, and hence k = 0. The
phonon wave amplitude A is related to the energy of the
system, E, through

E = H
({pi(t) = 0} ,

{
ri = r0 + A,ϕi = ϕ0

i

})
. (9)

Combining Eqs. (5) and (9) allows us to calculate A for given
energy E and system parameters. Eventually, the so found
value of A determines the mode number and growth rate of
the most unstable modulation. However, due to the periodic
boundary conditions only a discrete spectrum of perturbative
waves can occur,

Q = mr �� mr ∈ 0,1 . . . (N − 1),

where mr denotes the possible mode numbers. To take
account of this, we choose the wave number of the most
unstable (continuous) mode as the nearest value lying in the
corresponding unstable part of the discrete spectrum yielding
the predicted mode number of the emerging transversal wave.
Its dependence on the system parameters is represented in
Fig. 5(a) together with the according growth rates in Fig. 5(b).
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time: 1.1 time: 37.2 time: 40.15

FIG. 4. Simulation snapshots showing the emergence of a longi-
tudinal wave pattern with wave number mϕ = 5. Arrows indicate the
chain movement. Parameters: κ ��2 = 0.06, λ = 0.4.

C. Emergence of resonant longitudinal waves

The foregoing analysis characterizes the transversal wave
pattern that arises from modulational instability on a k = 0
phonon background within the starlike chain model. This is
an essential step in the understanding of the chain escape
behavior, as discussed in Sec. III A. However, the basic
assumption of fixed angular components seems only justified
for short time periods. Obviously, the angular dynamics plays
an increasingly important role as time proceeds. Remarkably,
for most of the parameter choices the angular movement is
far from being erratic but instead consists of regular and
pronounced longitudinal wave patterns, as shown in Fig. 4.
These patterns are fundamental for the characterization of the
system’s dynamics and its deterministic escape behavior.

Our analytic description of this phenomenon is motivated
by the observation of periodic energy transfer between radial
and longitudinal degrees of freedom when these modes appear;
see the middle plot of Fig. 6. Typically, we first observe a few
oscillations of the perturbed radial k = 0 phononlike mode
until the longitudinal pattern grows in amplitude. This causes a
decrease of the radial mode’s amplitude. After a short time, the
longitudinal amplitude decreases again. Thereby the energy is
transferred back into the radial degrees of freedom and the
entire process repeats.

Motivated by this observation we expect longitudinal waves
to emerge in the presence of the k = 0 radial phononlike mode.
This leads to the ansatz

ri = r0 + A sin(ω0 t) ≡ r̃ 0(t), (10)

with A < r0. Note that this is not an exertion of (holonomic)
constraints, which would lead to a new set of equations of
motion. Instead, Eq. (10) serves as an approximation of the
original system’s radial dynamics.

It becomes more inaccurate as more energy is transferred
into the angular degrees of freedom (as this reduces the
amplitude of the k = 0 phonon) and the more the initial
perturbations cause a deviation from a flat state. However,
the aim is to describe a dynamical phenomenon that emerges
from a setting where the error of the assumption is small.

Substituting the ansatz Eq. (10) into the angular equations
of motion Eq. (4) yields

ϕ̈i = −γϕ(t) ϕ̇i + κ [sin (ϕi−1 − ϕi) − sin (ϕi − ϕi+1)] ,

with γϕ(t) = 2 ˙̃r 0(t)/̃r 0(t). We can define a continuous angu-
lar coordinate ϕ(�,t), where the oscillator index is replaced

by a continuous parameter � ∈ [0,2π ]. In the continuum
limit, N → ∞, the discrete oscillator index is replaced by
the continuous parametrization variable �. Then, ϕ(�,t)
describes the angular deviation of a respective chain segment
from the angle � at time t , so that we can write ϕi =
ϕ(�,t)|�=i �� + i ��. Replacing the discrete Laplacian by
a continuous second-order partial derivative, we arrive at

ϕ̈(�,t) = − γϕ(t) ϕ̇(�,t) + κ (��)2 ∂2ϕ(�,t)

∂�2
. (11)

We solve it through a separation of variables ϕ(�,t) =
�(�)T (t), leading to

T̈

T
+ γϕ

Ṫ

T
= κ (��)2 �′′

�
= const. ≡ −c2.

The �-depending part has solutions of the form

�(�) = �0
a sin

(
c√

κ ��
�

)
+ �0

b cos

(
c√

κ ��
�

)
,

where �0
a and �0

b are constants of integration determined
by the initial conditions. The periodic boundary conditions
(closed chain) imply that �(�) = �(� + 2π ), which restricts
the possible values of c to

c = mϕ

√
κ ��, mϕ ∈ N.

Along our line of reasoning, the value of mϕ determines the
form of the longitudinal wave pattern. We recall that �(�,t)
quantifies the angular shift between the angle � and the angular
coordinate of a chain segment assigned to �. The oscillation
of � as a function of � suggests that the chain is alternatingly
stretched and compressed in longitudinal direction compared
to the positions of the oscillators in the minimum-energy
configuration. The frequency of these variations increases with
mϕ . Figure 4 shows the emergence of five stretched and five
compressed chain sections, each one corresponding to a wave
node of �(�). Hence, this longitudinal wave has m = 5.

However, certain values of mϕ represent solutions of
Eq. (11) that are incompatible with the full system Eq. (2).
First, the Hamiltonian Eq. (1) is symmetric with respect
to rotation around the origin. Therefore, the total angular
momentum L is conserved. A longitudinal wave mode with
mϕ = 0 violates this symmetry (see Appendix B), as

|L̇| = 0 ⇔
∫ 2π

0
�(�) d� = 0 ⇔ mϕ 
= 0;

therefore, this value will be excluded. Similarly, due to the
symmetry of the initial k = 0 phonon-like mode the total
momentum P = {P x,P y} is conserved, up to corrections
of the order of the random initial perturbations, as long
as the chain remains in this setting. It does so from its
preparation until the time of the onset of the emergence of
either radial or longitudinal modes. We define this moment as
Tinit = min(�−1

ϕ , �−1
r ), with �ϕ and �r being the growth rates

of the emerging longitudinal and radial wave modes; see Fig. 5.
We do not expect longitudinal modes to break this principle.
From Appendix B one gets

Ṗ x/y(t � Tinit) ∝
∫ 2π

0
sin � sin(mϕ �) = 0 ⇔ mϕ 
= 1,

and we can therefore exclude mϕ = 1.
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Transversal Wave Modes

(a) Predicted mode number (b) Predicted growth rate

Longitudinal Wave Modes

(c) Predicted mode number (d) Predicted growth rate

FIG. 5. (Color online) Analytical results from the study of
emerging wave modes. Symbols ( ) indicate parameter
choices according to Table I. εscale = 4. No wave modes are expected
in black areas; gray parameter areas are either excluded (Fig. 1) or
their activation energy could not be determined (Fig. 11).

Finally, Eq. (11) was derived from a continuum limit.
However, the original system has a finite number of oscillators.
The boundary condition thus restricts the upper bound of mϕ

to N as the number of oscillators. In summary, one has

mϕ = 2, 3, . . . N.

In relation to Eq. (11), the time-dependent part can be
interpreted as a parametric oscillator and its term containing
the first time derivative is eliminated upon a transformation of
variables

τ (t) ≡ T (t) exp
∫ t

0

γϕ( t̃ )

2
dt̃ = T (t)

[
1 + A

r0
sin(ω0 t)

]
.

This leads to a Hill equation

τ̈ + c2

[
1 −

¨̃r 0(t)

c2 r̃ 0(t)

]
τ = 0, (12)

where c is called the natural frequency and − ¨̃r 0(t) / [c2 r̃ 0(t)]
is called pumping function.

The initial k = 0 phononlike chain setup produces negligi-
ble initial amplitudes of the longitudinal waves. Longitudinal
waves will only emerge in the presence of a resonant growth
in the solution of Eq. (12). We expect the emerging wave to
possess the mode number that yields the largest growth rate.
With the help of a Floquet stability analysis of the solutions of
Eq. (12) we identify this value of m. Thus, we write Eq. (12)
in the form

d

dt

(
τ̇

τ

)
=

(
0 −c2{1 − ¨̃r 0(t)/[c2 r̃ 0(t)]}
1 0

)(
τ̇

τ

)
.

The pumping function is continuous and periodic (with period
T = 2 π/ω0). Thus, Floquet theory applies and postulates the
existence of a transition matrix ρ that projects the current

state vector {τ (t),τ̇ (t)} onto the one after a period’s time
{τ (t + T ),τ̇ (t + T )}. Therefore, the eigenvalues, μk={1,2}, of ρ

determine the stability of the solution. It diverges if |μk| > 1
for at least one k. Then, the growth rate of the longitudinal
wave pattern is given by

�ϕ =
ln

(
max

k
|μk|

)
T .

To determine the transition matrix we (numerically) integrate
Eq. (12) over one period for two linearly independent initial
state vectors. Writing the initial state vectors as the columns
of matrix U0 and the state vectors after integration as
columns of U1, the transition matrix can be calculated from

U1 = ρ U0 ⇒ ρ = U1 U0
−1.

In order to determine the longitudinal mode number we
first choose a certain energy. This defines the amplitude of the
radial stimulus according to Eq. (9). Then, at each point in
parameter space we scan through the range of possible values
of m and determine the largest eigenvalue of the associated
transition matrices. This value determines the growth rate
of the longitudinal mode and the according m constitutes
its wave number; see Figs. 5(c) and 5(d). Larger energies
lead to an increase of mode numbers and their growth rates
and shrink the parameter regions where no longitudinal wave
modes are expected. The identification of these regions is
a particularly important feature of our theory because the
absence of longitudinal waves has a crucial impact on the
distribution of energy among the different degrees of freedom
(see Fig. 6) and thus on the escape behavior.

D. Interplay of transversal and longitudinal wave modes

The previous sections provide a theoretical framework
describing the emergence of distinct wave patterns arising
shortly after the initialization of the system. The associated
wave mode numbers and growth rates are represented in Fig. 5.

For the long term behavior of the system the equations of
motion Eq. (2) were integrated using a Runge-Kutta scheme of
fourth order, choosing a time step small enough (typically of
the order of 10−4) to ensure that the energy deviation remains
smaller than 10−12 throughout the entire simulation time.

Depending on the values of the parameters, we can identify
three dynamical regimes characterized by the respective
emerging wave modes, which govern how energy is transferred
into different degrees of freedom. We monitor the temporal
evolutions of the radial and longitudinal contributions to the
kinetic energy,

Ekin =
N−1∑
i=0

p2
i

2
=

N−1∑
i=0

((pi er )er + (pi eϕ)eϕ)2

=
N−1∑
i=0

(pi er )2

︸ ︷︷ ︸
E r

kin

+
N−1∑
i=0

(pi eϕ)2

︸ ︷︷ ︸
E

ϕ

kin

, (13)

as illustrated in Fig. 6.
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FIG. 6. (Color online) The background plots depict how the total
kinetic energy divides among the longitudinal (yellow) and radial
(red) contribution, E r

kin and E
ϕ

kin, as a function of time; see Eq. (13).
The insets show the temporal evolution of absolute kinetic-energy
values within the marked time frames. The three panels represent
different parameter choices (indicated by the symbols
according to Table I), which represent the three different dynamical
regimes as described in the text. Time is measured in units of
k = 0 phonon periods Tk=0 = 2π/ω0. For all choices of parameters,
εscale = 2.

The system’s behavior can be dominated by transversal
wave modes. This is the case when longitudinal wave modes
are absent [black areas in Figs. 5(c) and 5(d)] or when their
mode number is high (mϕ > 20) as the associated angular
displacement of individual oscillators remain small. In this
case (even for large integration times in the order of the
duration of many hundred phonon oscillations), energy transfer
into longitudinal degrees of freedom is prevented (see “ ” in
Fig. 6: Virtually all kinetic energy is contained in the radial
motion; due to the emergence of numerous, unsynchronized
breathers the total kinetic energy remains approximately
constant).

In the opposite case, where radial wave modes are absent
or of high wave number (mr > 20), the system’s behavior
will be dominated by longitudinal wave modes. As found
in the previous section, these modes arise due to a resonant
excitation from the initial phonon mode. With the growth of
the longitudinal mode the system energy is transferred from
the radial into the longitudinal degrees of freedom. However,
once the phonon oscillations are attenuated the longitudinal
modes can no longer be fed. Moreover, their amplitude will
decrease, thereby leading the system back into the phononlike
state. This again triggers the reemergence of the longitudinal

TABLE I. Parameter choices.

λ κ ��2 Description

0.85 1.25×10−4 Dominant radial mode, mr ≈ 18
0.4 1.00 Dominant longitudinal mode, mϕ = 2
0.2 1.10 Dominant longitudinal mode, mϕ = 3
0.4 5.00×10−3 Disordered regime

wave. The system therefore resides in an oscillatory regime;
see “ ” in Fig. 6. (In periodically repeating intervals nearly
all of the kinetic energy is transferred into the longitudinal
motion. Both the phonon and longitudinal mode cause a
synchronous oscillation between kinetic and potential energy
for each oscillator. This causes the oscillations of the total
kinetic energy.)

In the simultaneous presence of radial and longitudinal
wave modes, the system will develop a state of mode
mixing leading to irregular long-term behavior. The resulting
disordered state comprises a more homogeneous distribution
of the system energy into all degrees of freedom; see “ ” in
Fig. 6. (After some initial longitudinal oscillations, the energy
distribution approaches equipartition.)

Parameter choices that represent the three different regimes
can be found in Table I.

III. DETERMINISTIC ESCAPE

So far this analysis has focused on the description of
emerging wave modes. However, we recall that the chain
is initially placed in a metastable state. Ultimately, we are
interested in the escape of the ring chain beyond the potential
barrier into the unbounded regime.

A. Transition states and escape channels

In the context of the Hamiltonian dynamics with its fixed
amount of total energy it is essential to know the minimal
energy necessary for the system to leave the potential-energy
basin for another region in configuration space, in other words
the minimum energy needed for an escape event. This question
leads to the search for first-order saddle points of the potential-
energy surface. From the definition of the Hamiltonian, Eq. (1)
follows the expression of the potential energy

U ({qi}) =
N−1∑
i=0

⎡⎣κ

2
(qi − qi+1)2 −

√
q2

i + cos

⎛⎝
√

q2
i

λ

⎞⎠⎤⎦ .

Thus, we solve ∇U ({qi}) = 0, such that the Hessian matrix
of U has only positive eigenvalues except for a single negative
one. An algorithm originating from theoretical chemistry,
the dimer method [15–18], proved effective to solve this
numerically difficult task. It identifies a set of different saddle
points of which most have no relevance to our study because
they are either high-energy configurations, unattainable by our
setting, or configurations that have already escaped from the
metastable initial setting. There remain three transition state
types, examples of which are shown in Fig. 7.

The existence of these transition states entails two different
types of escape mechanisms. The escape related to transition

032919-6



MODULATIONAL INSTABILITY AND RESONANT WAVE . . . PHYSICAL REVIEW E 90, 032919 (2014)

type I type IIa type IIb

FIG. 7. Relevant transition state types.

state type I, as shown in Fig. 8, indicates a process in which
a few oscillators surmount the potential barrier, are driven
further down the outer slope of the potential barrier, and
thereby pull out the entire chain from the metastable state.
An escape of type II, depicted in Fig. 9, describes the process
in which the chain first surmounts the central potential hump,
passing the transition state of type IIa, and then overcomes
the potential barrier in the way indicated by transition state
type IIb.

The minimal energy necessary for an escape through
channel I is the energy content of the transition state of type
I. For an escape through channel II it is the larger one of
the transition states energies of type IIa and IIb because the
phase-space trajectory will have to pass through the vicinity
of both transition states in order to leave the bounded regime.

Let us thus compare the energy values of different transition
states (Fig. 10). This enables us to determine the minimal es-
cape energy (Fig. 11), which will be referred to as the activation
energy, EAct. It is determined by the energy difference between
the associated transition state and that of the minimum-energy
configuration E0. Thus, EAct = H ({p = 0} , {q = q∗}) − E0,
where {q∗} denotes the relevant transition state configuration.
With this notion we define the energy scaling parameter:

εscale = E − E0

EAct
.

From now on, energies will only be expressed in terms of
εscale, which is the ratio of the system’s energy to the activation
energy for a given set of parameters. This will not only allow

time: 90.00 time: 99.45 time: 99.90

FIG. 8. Snapshots of an escape process of type I. Parameters:
λ = 0.8, κ ��2 = 0.08.

time: 29.55 time: 33.15 time: 33.80

time: 35.20 time: 35.60 time: 37.45

FIG. 9. Snapshots of an escape process of type II. Arrows indicate
the chain movement. Parameters: “ ” according to Table I.

us to evaluate the significance of the energy value with respect
to the escape process but also to meaningfully compare energy
values for different choices of parameter values.

B. Escape times and characteristics

Figure 10 shows that for the largest portion of the relevant
parameter space (red and blue areas) an escape through channel
II is energetically more favorable. However, Sec. II revealed
how different parameter values lead the system into different
dynamical regimes which in turn influence the escape behavior.
For a quantitative assessment of the deterministic escape we
measure the escape times for the set of parameter choices given
in Table I, as they represent a broad spectrum of the possible
dynamical regimes.

To this end, we prepare ensembles of systems with equal
parameter values and energies. The random perturbations of
their initial conditions create different chain realizations that
produce a statistical ensemble of escape times. The latter

FIG. 10. (Color online) Comparison of the energies of different
transition state types (white, no energy values determined; gray,
excluded from parameter space).
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FIG. 11. (Color online) Activation energy corresponds to
εscale = 1 (white, no energy values determined; gray, excluded from
parameter space).

are represented as cumulative escape time distributions in
Fig. 12, which depicts the fraction of chains out of the total
number of chain realizations, NT = 103, that have escaped up
until a certain time. The escape time is defined as the time
it takes from the system’s initialization until all oscillators
have surpassed the potential barrier. To make escape times
comparable between different sets of parameters we will
measure them in units of Tk=0 = 2π/ω0, that is, the duration
of k = 0-mode phonon-like oscillations.

From Fig. 12 it is evident that different dynamical regimes
relate to a different escape behavior. When the system’s
dynamics comprises a dominant transversal wave mode ( ), it
forms breathers that promote an escape of type I, as shown,
e.g., in Fig. 3. Just as was observed in previous studies on
deterministic escape of oscillator chain systems [7,19–22],
breathers have the tendency to concentrate energy in small
chain segments. The creation of these highly excited segments
can produce critical oscillator elongations in radial direction

0

1

0

1

10 100 1000
0

1

FIG. 12. Cumulative escape time distributions. Parameters
( : mr ≈ 18, : mϕ = 2, : mϕ = 3, : disordered regime)
according to Table I.

beyond the potential barrier that trigger an efficient escape of
type I.

In the presence of dominant longitudinal modes ( , )
we observe an entirely different behavior with significant
distinctions depending on the wave number mϕ . In general, an
escape of type I is not expected because of the lack of energy
concentration into critical radial elongations. However, we see
an enhancement of an escape of type II if mϕ = 2 ( ). In such
a case the chain is strongly stretched in between the two wave
nodes. It tends to reduce the tension by decreasing the length
of the stretched sections, which makes these more straight
and they thereby surmount the central potential hump. The
initial perturbations can break the symmetry of the longitudinal
pattern, which can cause one of the two stretched segments to
overcome the potential hump. Exactly this can be observed
in the first three snapshots of Fig. 9. The first two snapshots
show the two wave nodes (first vertically then horizontally
aligned) and the third displays how the upper part of the
stretched chain segment is carried over the potential hump.
Generally, the subsequent trespass over the potential barrier is
directly achieved due to the inert motion of the segment that
was accelerated down the potential hump (this is because the
energy of transition state type IIb is small whenever mϕ = 2).
All in all, this mechanism triggers an enhanced escape of
type II.

For dominant longitudinal modes of other wave numbers—
already for mϕ = 3 ( )—we no longer find this special
geometry of the longitudinal wave and even for large energies
an escape is inhibited. We do see initial escapes in this case,
but those are only due to a high initial regular dynamics. When
the mϕ = 3 mode is still mostly unperturbed it can cause some
oscillator elongations in radial direction, which can initiate
an escape of type I. Later on, when the longitudinal mode is
more irregular, those escapes do not occur anymore so that the
cumulative escape distribution (of ) completely saturates in
the long run.

Finally, a system that evolves toward a highly irregular
state ( ), due to the mixing of longitudinal and transversal
modes, also disperses the energy into all degrees of freedom
(see bottom plot in Fig. 6). Thus, there is neither an energy
concentration into transversal degrees of freedom causing an
escape of type I nor the special geometry of the longitudinal
mode bringing about an escape of type II. Again, we find
initial escape events that take place before the modes have
mixed, their type depending on which mode has a larger growth
rate (here mostly escape type I). But once the chaotic state is
attained, only on rare occasions can critical elongations drive
the chain beyond the potential barrier. Hence, the escape is
clearly inhibited compared to all other dynamical regimes.

IV. SUMMARY

We have studied the dynamics of a ring chain of interacting
units and its escape over the brim of a Mexican-hat-like
potential under microcanonical conditions. We have identified
and analyzed the emergence of radial breather modes and
longitudinal resonant wave modes emerging from a flat initial
low-energy state. Depending on the parameter values we have
classified the following three dynamical regimes: The system
can either be dominated by one of the modes or will evolve
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toward a highly irregular state. As demonstrated, this has a
crucial impact on typical escape times.

Escape can be realized via two escape channels, which
are related to different transition states. The escape through
either of these channels is enhanced by breather modes.
They efficiently accumulate energy into single radial degrees
of freedom rendering single oscillators to pass over the
potential’s brim and subsequently pull the entire chain out
of the metastable configuration. The second possibility is that
the chain first overcomes the central potential hump and then
surpasses the brim as a bundle. This escape path strongly
relies on the presence of longitudinal resonant wave modes
with wave number mϕ = 2. Notably, in both of these cases
early escapes occur already for energy values in the order of
a few times of the activation energy. Contrarily, the irregular
dynamical regime practically prevents escape events, even for
significantly larger energies.

In a more general context, this work shows that nonlinear
cooperative effects among interacting units, which crucially
impact the escape behavior, are not an inherent property of
highly idealized systems but remain relevant for complex
potential landscapes as well.
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APPENDIX A: STABILITY OF MINIMUM-ENERGY
CONFIGURATION

The full-chain system as described by Eq. (2) has a fixed
point, which is found for the coordinates (expressed in polar
coordinates) ϕi = i ��, ri = r0, with r0 defined in Eq. (5)
(minimum-energy configuration), and momenta pi = 0. Let
us examine its stability through a linear stability analysis. We
thus investigate the system for small displacements |εi,1| � 1
of the coordinates from the minimum-energy configuration
and for small momenta |εi,2| � 1. Neglecting all displacement
terms of higher order, the linearized system can be written in
block matrix form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε̇x
1,1

ε̇y
1,1

ε̇x
2,1

...
ε̇y

N,1

ε̇x
1,2

...
ε̇y

N,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
...

. . .
... 12N

0 · · · 0
0 · · · 0

J f
...

. . .
...

0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

≡ M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εx
1,1
...

εy
N,1

εx
1,2
...

εy
N,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A1)

where the Jacobi matrix J f is defined as the matrix of all first
partial derivatives of the right-hand side of Eq. (2) with respect
to the coordinates, which takes the form

J f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℵx,1 �1 κ 0 0 · · · κ 0

�1 ℵy,1 0 κ 0 · · · 0 κ

κ 0 ℵx,2 �2 κ 0 0 · · · 0

0 κ �2 ℵy,2 0 κ 0 · · · 0
...

κ 0 0 · · · κ 0 ℵx,N �N

0 κ 0 · · · 0 κ �N ℵx,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with,

ℵx,i = −2 κ + q
y

i

0
q

y

i

0

r0 r0 r0

(
1 + 1

λ
sin

r0

λ

)
+ qx

i
0 qx

i
0

λ2 r0 r0
cos

r0

λ

ℵy,i = −2 κ + qx
i

0 qx
i

0

r0 r0 r0

(
1 + 1

λ
sin

r0

λ

)
+ q

y

i

0
q

y

i

0

λ2 r0 r0
cos

r0

λ

�i = qx
i

0 q
y

i

0

λ r0r0

[
− 1

r0

(
1 + sin

r0

λ

)
+ 1

λ
cos

r0

λ

]
.

The stability of Eq. (A1) can be inferred from the eigenvalues
ν of M. Its associated characteristic polynomial is defined
as det(M − ν · 14N ) = 0. The evaluation of the determinant
can be simplified due to the block matrix structure of M.
As J f and (ν · 12N ) commute, we can reduce the problem
to the eigenvalue problem for J f (this can be seen from
Leibniz formula for determinants) det(J f − ν2 · 12N ) = 0. J f

is symmetric and real. Therefore, its eigenvalues ν2 are real as
well. If any of them is positive the resulting pair of eigenvalues

of M, ±|ν|, includes a (real) positive eigenvalue and the fixed
point is thus unstable. For the case ν2 < 0, the eigenvalues of
M are purely imaginary and linear stability analysis fails to
make predictions on the system’s stability. However, recalling
that the system is conservative a stability statement can yet
be made. The Jacobi matrix J f equals the (negative of the)
Hessian matrix of the potential-energy function U (external
potential plus coupling energy), and thus the eigenvalues ν2

correspond to the negative curvature of the potential-energy
surface along the eigenvectors. When all ν2 are negative, the
potential-energy surface has a minimum at the minimum-
energy configuration. As the fixed point entails vanishing
kinetic energy and energy is conserved, all phase-space trajec-
tory in the vicinity of the fixed point are bound to the potential
basin. Thus, in the case ν2 < 0 the fixed point is Lyapunov
stable. The numerical solution of the eigenvalue problem of
J f for N = 100 yields Fig. 1. Decreasing the number of
oscillators steadily enlargens the stable parameter region (e.g.,
N = 10: for λ = 0.8 the minimum-energy configuration is
stable for coupling constants up to κ��2 = 2.45). However,
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increasing the number, N > 100, does not significantly alter
the regions of stability compared to N = 100.

APPENDIX B: TIME DERIVATIVE OF THE TOTAL
(ANGULAR) MOMENTUM FOR THE
LONGITUDINAL WAVE SOLUTION

The time derivative of the absolute value of the total angular
momentum for N unit mass particles with polar coordinates
ri and ϕi , writes |L̇| = ∑N−1

i=0 ri(2ṙi ϕ̇i + ri ϕ̈i). To evaluate
this expression for the longitudinal wave solutions we have
to take the continuum limit and apply the expression for the
radial components expressed in Eq. (10) and the solutions of
Eq. (11) for the angular components. According to the earlier
definitions this yields ri(t) → r̃ 0(t) and ϕi(t) → ϕ(�,t) =
�(�) T (t). Thus, the summation over all oscillators becomes
an integral over �, such that

|L̇| = r̃ 0

(
2 ˙̃r 0 Ṫ

∫ 2π

0
�d� + r̃ 0 T̈

∫ 2π

0
�d�

)
,

⇒ |L̇| = 0 ⇔
∫ 2π

0
�d� = 0 ⇔ mϕ 
= 0.

For the time derivative of the total momentum we find

Ṗ =
N−1∑
i=0

(
r̈i − ri ϕ̇

2
i

) (cos ϕi

sin ϕi

)

+
N−1∑
i=0

(2 ṙi ϕ̇i + ri ϕ̈i)

(− sin ϕi

cos ϕi

)
.

The conservation of the total momentum holds (up to cor-
rections in the order of the initial random perturbations) as
long as the chain resides in the k = 0 phonon-like state,
in which ϕi = i ��. After its initial preparation, the chain
remains in such a setting until the onset of either radial or
longitudinal wave modes. Thus, we can define a point in time
Tinit = min(�−1

ϕ , �−1
r ) up until which the total momentum is

conserved.
Taking the continuum limit and replacing the factors of the

above equation by the according expressions in Eqs. (3) and
(4), the initial total angular momentum writes

Ṗ(t � Tinit) =
∫ 2π

0
d�

[
1 + 1

λ
sin

(
r̃ 0(t)

λ

)](
cos �

sin �

)

+
∫ 2π

0
d�

[
−κ (��)2 r̃ 0(t)

∂2ϕ(�,t)

∂�2

]

×
(− sin �

cos �

)

∝
∫ 2π

0
d�

[
�0

a sin(mϕ �) + �0
b cos(mϕ �)

]
×
(− sin �

cos �

)
Ṗ(t � Tinit) = 0 ⇔ mϕ 
= 1.
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