
PHYSICAL REVIEW E 90, 032905 (2014)

Experimental investigation of chimera states with quiescent and synchronous domains
in coupled electronic oscillators

Lucia Valentina Gambuzza,1 Arturo Buscarino,1 Sergio Chessari,1 Luigi Fortuna,1 Riccardo Meucci,2 and Mattia Frasca1,*

1DIEEI, Universita degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
2CNR-Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Florence, Italy

(Received 13 December 2013; revised manuscript received 25 June 2014; published 8 September 2014)

Chimera states, that is, dynamical regimes characterized by the existence of a symmetry-broken solution
where a coherent domain and an incoherent one coexist, have been theoretically demonstrated and numerically
found in networks of homogeneously coupled identical oscillators. In this work we experimentally investigate
the behavior of a closed and an open chain of electronic circuits with neuron-like spiking dynamics and first
neighbor connections. Experimental results show the onset of a regime that we call chimera states with quiescent
and synchronous domains, where synchronization coexists with spatially patterned oscillation death. The whole
experimental bifurcation scenario, showing how disordered states, synchronization, chimera states with quiescent
and synchronous domains, and oscillatory death states emerge as coupling is varied, is presented.
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I. INTRODUCTION

Many aspects of collective dynamics of coupled oscillators
in natural (physical, chemical and biological) and artificial
systems have been investigated, including the onset of sym-
metry breaking. Symmetry-broken behaviors have been found
in populations of identical oscillators with homogeneous
coupling and patterns characterized by a decomposition of
the oscillators into one domain populated by units oscillating
in synchrony and one made of desynchronized units [1].
Such states were termed in Ref. [2] as chimera states and,
thereafter, found in many examples of complex systems [2–6].
All these works investigate coupled purely phase oscillators
and conclude that the fundamental condition for the onset of
chimera states is nonlocal coupling. Examples of the structures
of the chimera states observed in nonlocally coupled phase os-
cillators include the appearance of a coherent group of phase-
locked oscillators next to an incoherent domain of phase-
randomized oscillators in one-dimensional rings [1,2], spiral
waves with an incoherent core of phase-randomized oscillators
and an arm of phase-locked units in two-dimensional systems
[3–5], and the onset of a population displaying synchronized
oscillations and another displaying incoherent oscillations, in a
system formed by a pair of populations [6]. In the latter case the
configuration is such that each oscillator is equally coupled to
all the others in its group, and less strongly to those in the other
group.

Recent studies have pointed out that chimera states also
appear in groups of oscillators where the amplitude dynamics
is not neglected [7–11]. For these oscillators the condition
of nonlocal coupling is not strictly needed, and chimera
states also appear in globally coupled systems [8,10] or in
one-dimensional arrays with nearest neighbor coupling [11]. In
such systems chimera states with different structures have been
observed, and, consequently, several terms have been used
to refer to these phenomena. The term amplitude-mediated
chimera has been used to refer to chimera states that, with
respect to their counterpart in purely phase oscillators, also
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display temporal variations of the amplitude in the incoherent
population [7]. A chimera behavior of the oscillator amplitude,
rather than its phase, and named a amplitude chimera state has
been instead reported in Ref. [9], which also shows chimera
death states, that is, regimes characterized by coexistence of
spatially coherent and incoherent oscillation death. Finally,
another type of chimera state appearing as a pattern where
a group of synchronized units coexist with an incoherent
domain of units undergoing a spatially patterned oscillation
death (SPOD) regime is reported in Ref. [11]. Our analysis
refers to this latter type of chimera states, and, to distinguish
them from the other chimera structures reported in literature,
we refer to them as chimera states with quiescent and syn-
chronous domains (QSCS). A peculiarity of the system under
investigation is that a population of neurons is considered,
which is important, keeping in mind that chimera states have
been suggested to be in a relation with the phenomenon of uni-
hemispheric sleep, characterized by desynchronized electrical
activities in the awake side of the brain and synchronized
in the sleeping side [6]. The new chimera state observed
shows the coexistence of the two characteristic regimes of
neuronal activity of a FHN neuron, that is, the quiescent
state and the oscillatory regime. We also mention that, in
populations of neurons, multichimera states, namely, chimera
states with more than one incoherent domain, have been
observed in Ref. [12], and they have also been found in our
experiments.

Despite the abundance of closed-form solvable models and
numerical evidences of chimera states, only a few experimental
studies have been carried out. Experiments in nonlinear optics
have revealed chimera states in a liquid-crystal spatial light
modulator [13]. The system represents a spatially extended
iterated map, where coupling and feedback are controlled by
a computer. Chimera states appear both in 1D and 2D lattice
configurations. Populations of chemical oscillators coupled
through feedback signals (controlled light intensity conditions)
were investigated in Ref. [14]. These experiments, in par-
ticular, were performed with coupled Belousov-Zhabotinsky
oscillators and also showed unexpected chimera behaviors
such as phase-cluster states. A totally analog experiment was
instead devised in Ref. [15], where a hierarchical network of
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coupled mechanical oscillators was realized. The experimental
setup consists of a set of metronomes placed on two swings
free to move in a plane: within each swing the oscillators
are strongly coupled by the motion of the support, while
springs between the two swings implement the weak coupling
between the two oscillator subpopulations. A further case
study is reported in Ref. [16] where a single Ikeda time-
delayed system is implemented to experimentally prove the
onset of virtual chimera states, that is, the coexistence of
synchronous and incoherent oscillations in a virtual space-time
representation.

In our work we experimentally investigate the onset of
chimera states in a system of coupled electronic oscillators.
Each oscillator mimics the dynamics of a FitzHugh-Nagumo
(FHN) neuron and is coupled with its nearest neighbors
in a chain configuration (we consider either a closed or
an open chain). The proposed system is totally analog and
does not require any external control, so that chimera states
appear without any fine-tuning of both the coupling and
oscillator parameters. We first discuss the appearance of
QSCS in a ring configuration and, then, show that this
new type of chimera state can also exist in an open chain
configuration.

II. EXPERIMENTAL SETUP

The core of the experimental setup is an electronic circuit
implementing the dynamics of a FHN neuron designed and
realized with off-the-shelf components [17]. The experiments
have been carried out on N = 10 circuits coupled in a chain
configuration, where each circuit is coupled with its nearest
neighbors.

The dimensionless equations describing the FHN neuron
[17] are

dxi

dτ
= xi − yi − ax3

i

(1)
dyi

dτ
= ε(xi − byi + c + fi),

where xi and yi are the fast and the recovery variable of
neuron i, with i = 1, . . . ,N , τ represents time, and a, b, c

are parameters governing the single-neuron dynamics. The
term fi is the coupling of neuron i with neurons i − 1 and
i + 1 and is given by

fi = D(yi−1 + yi+1 − 2yi) i = 1, . . . ,N (2)

for the closed chain (ring configuration) and by

fi =
⎧⎨
⎩

D(yi+1 − yi) i = 1
D(yi−1 + yi+1 − 2yi) i = 2, . . . ,N − 1
D(yi−1 − yi) i = N

(3)

for the open chain. The parameter D represents the coupling
coefficient. In Eqs. (1) the diffusive coupling involves the
recovery variable; we have determined that the diffusion of
the fast variable [xi in Eqs. (1)] leads to only two regimes
(unsynchronized or synchronized behavior) depending on the
coupling strength. Therefore, our analysis in the following is
limited to coupling as in Eqs. (1).

In our electronic implementation of Eqs. (1) each state
variable is associated with the voltage across a capacitor,
and operational amplifiers and analog multipliers are used
to implement the mathematical operations in the model.
The design follows a standard approach for nonlinear circuit
implementations [18]. In particular, at first, rescaled variables
Xi = xi

2 V0 and Yi = yiV0 with V0 = 1 V are introduced,
so that the signals in the circuit do not overcome the
power supply values, which in our case have been fixed
to ±12 V.

The scheme adopted for one FHN circuit and the coupling
circuitry are reported in Fig. 1. The nonlinearity has been
realized with two AD633 analog multipliers whose input-
output relation is given by W = (I1 − I2)(I3 − I4)/V1 + Z

with V1 = 10 V (V1 is a scaling reference of the multiplier).
In the circuit, for the first multiplier, we fixed I2 = I4 = 0 and
Z1 = R4

R3+R4
W1, so that W1 = I1I3

V1

R3+R4
R3

. Analogously, in the

second multiplier W2 = I1I3
V1

R1+R2
R1

.
The equations governing each FHN circuit are

dXi

dt
= 1

R7C1

(
Xi − R7

R9
Yi − R7

R8

R1 + R2

V1R1

R3 + R4

V1R3
X3

i

)

(4)
dYi

dt
= 1

R7C2

(
R7

R13
Xi − R7

R10
Yi − R7

R12

R15

R14 + R15
V−

+ R7

R11
Fi

)
.

In deriving these equations we have implicitly assumed that
R5 = R6, so that the operational amplifier U2 is an inverting
stage with gain equal to −1, and that the resistor R12 is much
larger than R14 (that is, R14 and R15 work as a voltage divider).
The term Fi represents the coupling of circuit i with circuits
i − 1 and i + 1; it is given by

Fi = Rc

(
1

R18
Yi−1 + 1

R19
Yi+1 − 1

R20

R17

R16
Yi

)
i = 1, . . . ,N

(5)

for the closed chain (ring configuration) and by

Fi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rc

(
1

R19
Yi+1 − 1

R20

R17
R16

Yi

)
i = 1

Rc

(
1

R18
Yi−1 + 1

R19
Yi+1 − 1

R20

R17
R16

Yi

)
i = 2, . . . ,N − 1

Rc

(
1

R18
Yi−1 − 1

R20

R17
R16

Yi

)
i = N

(6)

for the open chain.
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FIG. 1. (Color online) Schemes of the FHN circuit including the coupling circuitry (in the red box). The following component values
have been used: R1 = 1 k�, R2 = 10 k�, R3 = 1 k�, R4 = 10 k�, R5 = 1 k�, R6 = 1 k�, R7 = 100 k�, R8 = 75 k�, R9 = 200 k�, R10 =
123 k�, R11 = 100 k� R12 = 330 k�, R13 = 50 k�, R14 = 11 k�, R15 = 1.1 k�, R16 = 1 k�, R17 = 1 k�, R18 = 10 k�, R19 = 10 k�, C1 =
3.3 nF, C2 = 39 nF. AD633 analog multipliers and TL084 have been used as integrated devices. The power supply is V+ = 12 V and
V− = −12 V. In the open chain setup, R18 for FHN 1 and R19 for FHN 10 are not used as the first and the tenth FHN are not connected to each
other. Moreover, in the open chain setup R20 = 5 k� for neuron i with i = 2, . . . ,N − 1 and R20 = 10 k� for i = {1,N}, while in the closed
chain setup R20 = 5 k� for all neurons.

The circuit equations (4) match the model equations (1)
for Xi = xi

2 V0 and Yi = yiV0 and t = κτ (where κ = R7C1 =
3.3 × 10−4s introduces a rescaling in the time axis), and for
the following relationships between the model parameters and
the circuit components:

ε = C1

C2

a = 1

4

R7

R8

R1 + R2

V1R1

R3 + R4

V1R3
V 2

0

b = R7

R10
(7)

c = − R7

R12

R15

R14 + R15

V−
V0

D = R7

R11

Rc

R
,

where in the expression of D we have taken into account that
R = R18 = R19. The ring and the open chain configurations
differ for the connection of the first and last FHN circuit. In
the ring setup the first and the last circuit are connected, so
that each FHN circuit has the same coupling circuitry with
R = R18 = R19 = 2R20. When the open chain is investigated,
the first and the last circuit are not connected each other, and
the resistances of the coupling circuitry are recalculated to
match the mathematical model. This means to choose for the
first FHN circuit R18 = 0 and R = R20 = R19, for the FHN

circuit from i = 2 to i = N − 1 R = R18 = R19 = 2R20, and
for the last FHN circuit R19 = 0 and R = R20 = R18.

In our experiments, the model parameters are fixed as
ε = 0.085, a = 0.4, b = 0.8, c = 0.33, and, correspondingly,
the component values as reported in the caption of Fig. 1. For
these parameters the single uncoupled FHN circuit exhibits
the periodic oscillations shown in Fig. 2. The oscillation
frequency of signals reported in Fig. 2 is about 81.3 Hz. In our
implementation 5% precision off-the-shelf components have
been used; due to these component tolerances, the oscillation
frequency varies from neuron to neuron with a nominal value
of 76 Hz and a 10% precision. The coupling coefficient is
experimentally controlled by the resistor Rc, which has been
varied from 0 to 10 k�, and corresponds to parameter D in the
range [0,1].

III. ANALYSIS

The experimental setup described in Sec. II was operated
in a totally analog way, by manually (and simultaneously
for each FHN circuit) varying the coupling resistors Rc, to
run experiments at different coupling values. We start our
discussion by considering the ring setup.

Several dynamical regimes have been identified in the
system: a disordered state where all neurons oscillate in-
dependently and with their own phase; a regime of phase
synchronization of all the FHN units, where all frequencies
are locked and the phase differences between units remain
constant in time; a SPOD regime, that is a regime, where

032905-3



LUCIA VALENTINA GAMBUZZA et al. PHYSICAL REVIEW E 90, 032905 (2014)

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87
−1

−0.5

0

0.5

1

t (s)
(a) (b)

X
i,Y

i

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X2 (V)

Y
2 (

V
)

FIG. 2. (Color online) Behavior of a single uncoupled FHN circuit (in particular, circuit 2). (a) Trend of the variables X (solid blue line)
and Y (dashed green line). The x-axis unit is expressed in seconds. (b) Plane X-Y . The signals are acquired with a sampling frequency equal
to fs = 15 kHz.

all the neurons reach a steady state, which, however, varies
from neuron to neuron forming an inhomogeneous pattern;
and QSCS, where coherent oscillations in a part of the ring
coexist with a spatially patterned stationary state for a subset of
the neurons. As in many other systems showing chimera states,
the appearance of a given dynamical regime is a function of the
coupling. One important finding is that, for the same coupling
strength but different set of initial conditions, more than one
dynamical state are simultaneously possible and stable (for the
same value of the coupling either the phase synchronized state

and QSCS or SPOD and QSCS are observed), and, in addition,
different patterns of the same type (e.g., SPOD or QSCS) have
been found.

When coupling is varied, usually the probability of finding
one state rather than another changes. In our experiments, for
zero or low coupling the disordered state appears with oscil-
lators running at their own frequency [Fig. 3(a) and Fig. 4(a)],
which as mentioned above is slightly different from neuron to
neuron. When coupling is increased, neurons become phase
synchronized [Fig. 3(b) and Fig. 4(b)]. Higher values of
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FIG. 3. Experimental spatiotemporal behavior of the ring of N = 10 FHN circuits at different values of the coupling coefficient:
(a) unsynchronized oscillations, D = 0; (b) phase synchronized oscillations, D = 0.3; (c) QSCS, D = 0.5; (d) SPOD, D = 0.675.
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FIG. 4. (Color online) Trend of the state variable Yi for the
four dynamical states observed as in Fig. 3: (a) unsynchronized
oscillations, D = 0; (b) phase-synchronized oscillations, D = 0.3;
(c) QSCS, D = 0.5; (d) SPOD, D = 0.675.

coupling lead to the appearance of QSCS [Fig. 3(c) and
Fig. 4(c)], where oscillating neurons coexist with neurons
exhibiting almost stationary states, and to SPOD states
[Fig. 3(d) and Fig. 4(d)], where all the neurons are at a
space-dependent steady state. After that, the SPOD regime

is maintained, even if the coupling is further increased.
These regimes are also confirmed by numerical simulations
of Eqs. (5) and (1) (see Fig. S7 in the Supplemental
Material [19]).

Referring to the experimental results of Fig. 3(c), it is
interesting to note that in chimera-like states, contrarily to
partial synchronization, the oscillators forming the coherent
group are not those having the closest natural frequencies.
In fact, oscillators 5 and 6 are phase synchronized, but their
natural frequencies are 78.86 Hz and 81.44 Hz, while that of
oscillator 4 is 78.52 Hz.

We have experimentally verified that, when D is fixed so
that QSCS are found, distinct patterns are simultaneously
possible. The patterns typically differ for the composition
of the coherent and incoherent domain (number of units
belonging to each domain, position of the domain in the chain),
which is a function of the initial conditions. An example is
shown in Fig. 5 where two different QSCS and two SPOD
at D = 0.575 are shown. Different initial conditions have
been simply obtained by turning off and then on again the
power supply; therefore, they are totally random and not
controllable. Several other examples have been registered
[19] (Figs. S1–S3 show experimental results illustrating
this finding, and Figs. S4–S6 the corresponding numerical
simulations). The same consideration holds for SPOD, where
patterns differing for the specific value of the steady state
reached by each neuron may be observed at the same value of
D, provided that they respect the symmetry of the system.
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FIG. 5. (a)–(b) Two chimera states; (c)–(d) two SPOD obtained in the ring for different initial conditions at the same value of the coupling
coefficient D (D = 0.575).

032905-5



LUCIA VALENTINA GAMBUZZA et al. PHYSICAL REVIEW E 90, 032905 (2014)

For a more systematic characterization of the system
behavior, we have performed a set of acquisitions by varying
Rc from 0 � to 10 k� at steps of 250 �, which corresponds
to change D from 0 to 1 at steps of 0.025. For each value
of the coupling coefficient, we have registered 20 different
acquisitions, each time by switching off the power supply,
waiting for 3–4 s and then turning on the power supply and
registering the data. Data, in particular the waveform of the
Yi variable for all the circuits, have been acquired by using an
acquisition board (National Instruments NI-USB6255) with a
sampling frequency of 15 kHz, and recording 50 000 samples
for each acquisition. The protocol, aimed at registering the
results of different initial conditions for each value of the
coupling, has been thus repeated for 41 values in the interval
from Rc = 0 � to Rc = 10 k� (D from D = 0 to D = 1), so
that for all 820 acquisitions have been done for each set.

The distinct regimes have been classified by monitoring
the temporal variance of Yi , σ 2

t (Yi) as in Ref. [11] and the
Kuramoto order parameter defined below. The first parameter
is used to classify the neurons as oscillating or not, with low
values of σ 2

t (Yi) indicating neurons at a steady state. Based on
this, the number of nonoscillating neurons Nno is defined and
SPOD states are identified as regimes with Nno = N , while
chimera as states with 0 < Nno < N .

When Nno = 0, all the neurons are oscillating. To evaluate
their level of phase synchronization, we use the Kuramoto
order parameter computed as follows. For each acquired
signals Yi , the following phase variable is defined:

θ (t) = 2π

(
k + t − τk

τk+1 − τk

)
(8)

where τk is the peak time. The Kuramoto order parameter
rnm = |〈ei[θn(t)−θm(t)]〉t | is then calculated to monitor phase
synchronization between circuit n and circuit m, and, the
global level of synchronization of the system is evaluated by
averaging rnm among all the possible pairs of circuits, that is,

r = 1

N (N − 1)

N∑
n,m=1;n�=m

rnm. (9)

Oscillators are synchronized when r > 0.8. The complete
experimental characterization of the system behavior is re-
ported in Fig. 6. The characterization is performed with respect
to the coupling coefficient D, derived as D = Rc

R
. For each

value of D we report the percentage of states classified as
phase synchronized (PS), unsynchonized (US), QSCS, and
SPOD.

When D is low, the system is not synchronized. Synchro-
nized oscillations are observed starting from D � 0.2. QSCS
systematically appear in the range of D from 0.4 to 0.6, which
corresponds to Rc varying from Rc = 4000 � to Rc = 6000 �.
For D ∈ [0.6,1] the regime is mostly characterized by SPOD
states.

The analysis of Fig. 6 confirms that two or more dynamical
states of the same type (that is, two or more QSCS for instance)
or of different types (a synchronous state and a QSCS, for
instance) may coexist at the same values of the coupling
and, in general, the regions in which the specific dynamical
states appear overlap. For example, for D = 0.425 either
synchronous states or QSCS, depending on initial conditions,
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FIG. 6. (Color online) Probability of states for the closed chain
(ring) of N = 10 FHN circuits with respect to the value of the
coupling coefficient D. For each value of D, 20 different acquisitions
have been performed, and the percentage of states classified as SPOD,
QSCS, PS, or unsynchronized states (US) is reported. As coupling
is increased, the system behavior changes from a disordered state to
synchronization, QSCS, and SPOD.

are found, while for D ∈ [0.425,0.725] QSCS and SPOD with
different probability along the range are observed.

The set of acquisitions from D = 0 to D = 1 has been
repeated several times by exchanging the position of some
circuits in the ring, in order to investigate the effect of circuit
tolerances. The result is that the qualitative behavior of the
system is robust to such changes. In all of these experiments
the four dynamical regimes (unsynchronized state, phase
synchronization, QSCS, and SPOD) have been observed in the
same order, although the transition from one dynamical regime
to another one may be shifted left or right. Furthermore, from
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FIG. 7. (Color online) Probability of the states for the open chain
of N = 10 FHN circuits with respect to the value of the coupling
coefficient D. For each value of D, 20 different acquisitions have
been performed and the percentage of states classified as SPOD,
QSCS, PS, or unsynchronized states (US) is reported. As coupling is
increased, the system behaviors changes from a disordered state to
synchronization, QSCS, and SPOD.
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FIG. 8. Two chimera states obtained in the open chain for different initial conditions at the same value of the coupling coefficient D

(D = 0.7).

one acquisition set to another the observed QSCS differ for
the composition of the coherent and incoherent domain. The
mechanism leading to chimera states as well as to SPOD states
is driven by symmetry breaking: in our circuits it is influenced
by the component tolerances, so that the general feature of the
phenomenon are preserved but the specific patterns observed
vary from one acquisition set to another.

To further investigate this new type of chimera states, an
open chain configuration of N = 10 FHN circuits has been
also implemented and characterized. The experimental setup
has been realized by disconnecting the last neuron (circuit 10)
to the first neuron of the chain (circuit 1) and rearranging the
resistances of the coupling circuitry as described in Sec. II.
The behavior of the system has been studied by monitoring
the same measures used for the ring under the same operating
conditions (20 different acquisitions for each value of D,
varied in the range [0,1] at steps of 0.025). The experimental
characterization of the open chain configuration is reported in
Fig. 7.

Also in this case, QSCS appear in a region of the parameter
space between those of synchronized and SPOD behavior. In
particular, two examples of QSCS obtained for the same value
of D (D = 0.7), but different initial conditions (obtained by
turning off and then on again the power supply), are reported in

Fig. 8. We notice that the state reported in Fig. 8(a) actually is
a multichimera state as the units are split into three domains:
two coherent close to the boundaries and one incoherent in
the middle of the array. Another example of simultaneously
possible QSCS is reported in Fig. S8 [19], along with the
corresponding numerical simulations shown in Fig. S9.

The comparison of the experimental results obtained with
the closed and the open chain configuration clearly shows
that the boundary conditions do not impact the onset of the
dynamical regimes that can be observed, as all the four states
are found in both setups. The phenomenon of coexistence
between different dynamical regimes is more evident when
the two extreme FHN circuits are connected: we attribute this
to the different basins of attractions of the dynamical states in
the closed and in the open chain.

To investigate size effects, we have numerically studied
the closed and the open chain with a larger number of FHN
units. N has been increased up to 1000, while monitoring the
percentage of QSCS (over 20 initial conditions) as a function of
the coupling coefficient D. The results are reported in Fig. 9,
which shows that the region of QSCS is independent from
the system size. However, as the system size increases, the
probability of QSCS is higher, that is, at a given value of
coupling, the occurrence of QSCS increases for larger systems.
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FIG. 9. (Color online) Occurrence of QSCS for the closed (a) and open chain (b) of FHN neurons with different sizes N as function of the
coupling coefficient D. For each value of D and N , 20 simulations, starting from different initial conditions, have been considered, and the
percentage of QSCS over these runs is reported.
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IV. CONCLUSIONS

The abundance of theoretical and numerical studies on
chimera states calls for experimental investigations of such
states on real systems. In this work we have proposed a totally
analog system of coupled electronic oscillators exhibiting
chimera states with quiescent and synchronous domains. The
proposed system does not require any external control by
computers or other digital processors: coupling is varied
through resistors, and then experiments at different coupling
values are performed. The results allow to conclude that
chimera states appear without any fine-tuning of both the
coupling and oscillator parameters. Furthermore, we have
found that these states are quite robust to the boundary

conditions (both closed and open chain configurations have
been investigated) and to the system size. The emergence of
chimera states with quiescent and synchronous domains has
been also found in different sets of acquisitions where the
position of the circuits in the chain was varied (so varying
the asymmetries due to component tolerances), although the
specific pattern observed depends on the circuit position.
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