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Predictable nonwandering localization of covariant Lyapunov vectors and cluster synchronization
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Covariant Lyapunov vectors for scale-free networks of Hénon maps are highly localized. We revealed two
mechanisms of the localization related to full and phase cluster synchronization of network nodes. In both cases
the localization nodes remain unaltered in the course of the dynamics, i.e., the localization is nonwandering.
Moreover, this is predictable: The localization nodes are found to have specific dynamical and topological
properties and they can be found without computing of the covariant vectors. This is an example of explicit
relations between the system topology, its phase-space dynamics, and the associated tangent-space dynamics of
covariant Lyapunov vectors.
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I. INTRODUCTION

Localization properties of Lyapunov vectors in spatiotem-
poral chaotic systems long have attracted interest [1–4].
Recently, this interest has been renewed due to the discovery
of algorithms for covariant Lyapunov vectors (CLVs) [5,6].
The evolution of these vectors is governed by linear equations
under chaotic forcing, so their localization can be treated
as a sort of Anderson localization [2]. The localization
sites indicate unstable areas of a system that, in particular,
are important for atmosphere dynamics prediction [7]. For
homogeneous systems the localization sites of the covariant
vectors wander irregularly so their dynamics can be described
by the stochastic equation of Kardar-Parisi-Zhang [8,9]. In
contrast, the localization positions in inhomogeneous systems
are pinned at certain fixed positions [10].

In this paper we analyze properties of CLVs for scale-
free networks of chaotic maps. We show that, due to the
presence of cluster synchronization, the CLVs are localized.
The first mechanism of the localization is related to the full
synchronization clusters, and a second one appears due to
the existence of large phase-synchronized clusters. Both of
the localizations are nonwandering, i.e., nonzero sites of the
vectors remain unchanged in the course of the dynamics.
Moreover, these nodes have specific topological and dynamical
properties so they can be identified without computing the
CLVs. This is an example of explicit relations between the
system topology, its phase-space dynamics, and the associated
tangent-space dynamics of CLVs.

The paper is organized as follows. In Sec. II we introduce
the considered network and discuss its dynamics. Section III
describes the structure of the tangent space of the network.
The mechanism of CLV localization on clusters of full
synchronization is described in Sec. IV, and in Sec. V we
discuss the localization related to phase clusters. Finally,
Sec. VI summarizes the paper results.

*Corresponding author: p.kuptsov@rambler.ru

II. MODEL SYSTEM AND CLUSTER SYNCHRONIZATION

A. Dynamical network equations and network structure

We consider a network of Hénon maps build as a general-
ization of the Hénon chain from Ref. [11] as follows:

xn(t + 1) = α − [xn(t) + εhn(t)]2 + yn(t),
(1)

yn(t + 1) = βxn(t),

hn(t) =
N∑

j=1

anj

kn

xj (t) − xn(t), kn =
N∑

j=1

ajn, (2)

where N is the number of network nodes; t = 0,1,2 . . .

is discrete time; anj ∈ {0,1}, ann = 0 are the elements of
the N × N adjacency matrix A; and kn is degree of the
nth node, i.e., the number of its connections. The parameters
controlling local dynamics are α = 1.4 and β = 0.3, and
ε ∈ [0,1] is the coupling strength. The system is time reversible
as follows: xn(t) = yn(t + 1)/β, yn(t) = −α + [yn(t + 1) +
εh′

n(t + 1)]2/β2 + xn(t + 1), where h′
n(t) = ∑N

j=1
anj

kn
yj (t) −

yn(t).
We consider random networks with scale-free structure

generated via a stochastic process described in Ref. [12]. The
process starts from two linked nodes. At each iteration we add
one node to the network and one link connecting it with one of
the existing nodes. The node to connect is chosen at random
with a probability that is proportional to its connectivity degree
kn, i.e, via a so-called preferential attachment mechanism.
After N − 1 steps we obtain a network with N nodes and
N − 1 connections. The node degree distribution for such
networks has a power-law shape, P (k) ∼ k−3. An example
of the network is shown in Fig. 5 (this figure is discussed in
detail below).

By construction, the networks under consideration do not
have loops. It means that starting from any node one cannot
return to it without moving back. The networks always have
a lot of starlike structures when one hub node is connected
with many subordinate ones, like, for example, node 10 in
Fig. 5. Moreover, these structures can form a hierarchy;
see the hub node 11 that is subordinate with respect to
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FIG. 1. (Color online) The first Lyapunov exponent vs ε for
N = 128 and 64. Each point is computed independently with a new
matrix A and initial conditions. At N = 128 and 64 there are 50 and
5 points, respectively, for each ε. Lines at ε = 0.11 and 0.25 delimit
the area of interest.

node 10. The structure of considered networks is essentially
inhomogeneous. Usually a few nodes are connected with very
many others, and many nodes have only one link. All of these
properties are found to result in a very long transient time
required for the network to arrive at stationary regime. This
will be discussed in Sec. II D.

B. The largest Lyapunov exponent

The dynamics of the network (1) is, in general, chaotic.
To characterize it we compute Lyapunov exponents using
the standard algorithm suggested in Refs. [13,14] (see also
Ref. [15] for a review).

Figure 1 shows the largest Lyapunov exponent λ1 at
different coupling strengths. At ε < 0.11 the exponent unam-
biguously depends on ε regardless of the network matrix A,
initial conditions, and the network size. This occurs because
the nodes interacts weakly with each others, so the detailed
network structure is not very important. The nodes within
this area do not demonstrate any concerted oscillations. The
area 0.11 < ε < 0.25 clearly differs from all others. The
dependence λ1(ε) is ambiguous here: Every new combination
of the network matrix A and initial conditions are characterized
with their own λ1. Another feature of this area is lower values
of λ1 with respect to the surrounding areas. This is due to
the cluster synchronization emerging here; see the discussion
below in Sec. II C. The dependence λ1(ε) remain ambiguous at
ε > 0.25, although the exponents becomes higher. At ε > 0.8
the exponents again become lower so this area is similar to the
marked area 0.11 < ε < 0.25.

In what follows we shall restrict ourselves with the area
0.11 < ε < 0.25.

C. Full and phase cluster synchronization

Though the synchronization of the whole network is
not observed, the nodes can form clusters of synchronized
oscillations. Both full and phase synchronization is possible.
The former stands for the equivalence of variables at the
synchronized nodes, and the latter implies the coincidence of
positions of minima and maxima of synchronized time series.
The fully synchronized nodes will be referred to as FS clusters,
and phase-synchronized nodes will be called Ph clusters.

The phase cluster synchronization of networks nodes is
studied in Ref. [16]. According to the approach suggested
there, one can detect the Ph clusters computing phase dis-
tances. Given a starting time t0 and a time interval T , count
at t0 � t < t0 + T the numbers νm and νn of local minima of
xm(t) and xn(t), respectively, and also find the number νmn of
simultaneous minima of xm and xn. Then the phase distance is
computed as

dmn = 1 − νmn/ max(νm,νn). (3)

When it vanishes, all the minima of xm and xn occur
simultaneously and this is the case of phase synchronization of
mth and nth nodes over the time interval T . To identify the Ph
clusters one can build an auxiliary graph whose nth and mth
nodes are linked if dmn = 0 and find the clusters as connected
components of this graph.

Nonzero dmn is a fraction of time when the nodes m and n

are not synchronized. Thus the minimum of dmn over n, i.e.,

d̃m = min{dmn|n = 1 . . . N}, (4)

can be treated as degree of the desynchronization of the mth
node with the rest of the network.

The FS clusters can be identified using the matrix of mean
absolute differences between dynamical variables over the
computation interval T ,

qmn =
T −1∑
t=0

|xm(t0 + t) − xn(t0 + t)|/T (5)

The FS clusters correspond to connected components of an
auxiliary graph whose mth and nth nodes are connected when
qmn = 0. In actual numerical simulations we considered two
nodes as synchronized if qmn < 10εm, where εm ≈ 10−16 is
the machine epsilon for double precision variables that was
employed.

The length of the interval T for which the cluster detection
is performed can influence the resulting picture. As we discuss
in this section below and in Sec. II D, there exist so-called
floating nodes that intermittently can either belong to one of the
Ph clusters or oscillate separately. With a large T we consider
clusters including only permanent nodes, while performing
a serial cluster detections with a small T we can take into
account fluctuations arising due to the floating nodes.

Figure 2 illustrates the cluster synchronization of networks
with N = 64, 128, and 256 nodes that is observed at different
ε. Figures 2(a) and 2(b) show rescaled sizes

S∗
p = Sp/N, S∗

f = Sf /
√

N (6)

of three largest Phand FS clusters, respectively. Figures 2(c)
and 2(d) represent rescaled numbers,

M∗
p = Mp/N, M∗

f = Mf /N, (7)

of nodes attached to all Phand FS clusters, respectively.
Figures 2(e) and 2(f) show rescaled numbers,

N∗
p = Np/N, N∗

f = Nf /N, (8)

of Ph and FS clusters, respectively. The clusters appears at
ε = 0.11. As one can see in Fig. 2(a) in the area 0.11 < ε <

0.25 there are two large Ph clusters whose relative sizes are
S∗

p ≈ 0.4−0.5. The rescaled curves in Fig. 2(e) plotted for
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FIG. 2. (Color online) [(a) and (b)] Rescaled sizes of three largest
Ph and FS clusters, see Eq. (6). [(c) and (d)] Rescaled numbers of
nodes attached to all Ph and FS clusters, see Eq. (7). [(e) and (f)]
Rescaled numbers of Ph and FS clusters, see Eq. (8). All values are
averaged over 25 computations with different matrices A and initial
conditions at each ε. T = 10 000. Different curves in each panel
correspond to N = 62, 128, and 256. Vertical dotted lines are plotted
at ε = 0.11 and 0.25 to delimit the area of interest.

different N do not coincide, but pure curves plotted without the
rescaling are found to be the same (not shown), i.e., the number
of Ph clusters does not depend on N . Since Sp ∼ N , see Eq. (6),
regardless of N , these clusters includes the bulk of nodes.
However, as follows from Fig. 2(c) and Eq. (7), the Ph clusters
include at any N approximately 85% of the nodes, so there are
always nodes that are not synchronized with Ph clusters.

Despite the Ph clusters, the number of FS clusters scales
as Nf ∼ N and the total number of nodes attached to all FS
clusters grows as Mf ∼ N . It presumes that the mean size of
FS nodes is constant. However, the size of the largest cluster
grows: At N = 64, 128, and 256 the sizes are Sf ≈ 6, 9, and
13, respectively. According to Eq. (6), the sizes of the largest
FS clusters scales with N as Sf ∼ √

N .
At the right boundary of the discussed area at ε = 0.25 the

large Ph clusters disintegrate into many small ones; see the
spike of N∗

p in Fig. 2(e). Moreover, in this area Np starts to
scale as Np ∼ N . As ε further grows all clusters disappears
but then their number again increases. Notice the identical
behavior of curves in Figs. 2(c) and 2(e) and Figs. 2(d) and 2(f),
respectively, around ε ≈ 0.3. It indicates the presence here
of FS clusters only. Subsequent growth of ε results in the
reappearance of the Ph clusters, but their number is still high.
At ε ≈ 0.4 the number of Ph clusters starts to decay, Fig. 2(e),
and the number of the attached nodes increases, Fig. 2(c).
Also observe the growth of the first two largest clusters,
Fig. 2(a). As for the FS clusters, their sizes, Fig. 2(b), the
number of attached nodes, Fig. 2(d), and their total number,
Fig. 2(f), remains approximately unchanged. At ε ≈ 0.8 one
again observes the situation when there are two large Ph
clusters and many small FS clusters. But, contrary to the area
0.11 < ε < 0.25, this area is much narrower and when ε gets
larger the disintegration of Ph clusters occurs within the wider

(a)

xn(t)

-1

 0

 1

(b)

xn(t)
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 0

 1
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-2

xn(t)
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 0

 1
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FIG. 3. (Color online) [(a) and (b)] Oscillations at nodes belong-
ing to two large Ph clusters. (c) Separated nodes not synchronized with
others. Vertical dotted lines delimit the interval when both separated
nodes in panel (c) are attached to the cluster represented in panel (b).
N = 128, ε = 0.17.

range of ε. As already mentioned above, we shall consider the
dynamics of the network within the area at 0.11 < ε < 0.25.

Figure 3 illustrates behavior of synchronized and separated
nodes, Figs. 3(a), 3(b), and 3(c), respectively, within the
area of interest, when almost all nodes belong to two large
Ph clusters. Observe in Figs. 3(a) and 3(b) strict alternations
of maxima and minima of variables attached to Ph clusters
and irregular variations of their amplitudes. Also compare
Figs. 3(a) and 3(b): The oscillations of Ph clusters have
opposite phases. The separated nodes, Fig. 3(c), oscillate
irregularly; however, for some time they can be attached to
one of the clusters, see area 25 < t < 30 in Fig. 3(c).

If a node spends an essential part of the time being synchro-
nized with others but loses the synchronization intermittently,
it will be called “floating,” according to the notation suggested
in Ref. [16].

D. Convergence of the cluster structure

The network (1) converges very slowly to its stationary
regime. As one can see in Fig. 4, the relative numbers M∗

p and
M∗

f of nodes attached to Ph and FS clusters, respectively,
can change even after a very long evolution time. Since
in this figure the clusters are identified over the intervals
T = 100, the total evolution time of the system is t = 106.
The represented examples are not very typical in a sense
that we tried approximately 10 different matrices A and
initial conditions for each ε to show the cases with the worst
convergence. However, the convergence in other cases is not
much faster. Nevertheless, in Fig. 4 and in all other cases
that we tried the curves always behaved as if they approached
limiting values. Thus we can conjecture that the stationary
regime exists and it takes a long transient time to approach it,
ttrans = 5 × 105N/64.

Observe frequent peaks and dips on the curves for M∗
p,

see Fig. 4(a). They appear due to the floating nodes that
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FIG. 4. (Color online) Convergence of the (a) Ph and (b) FS
clusters. t ′ enumerates the cluster detection procedures performed
over the intervals T = 100 in the course of the evolution of the
system. N = 128, ε = 0.13, 0.17, and 0.22.

intermittently attach and detach the Ph clusters. The floating
nodes exist only with respect to Ph clusters; if a node gets
attached to a FS cluster it stays synchronized permanently, see
Fig. 4(b).

Curves in Fig. 4(a) can be treated as a highly fluctuating
signal. However, the observed fluctuations appear due to the
serial cluster detection with sufficiently short T . One can
change the definition of observable variables and perform the
clusters detected just once over the whole computation time.
The clusters defined in this way are stationary, but also there
are noncluster nodes oscillating chaotically. Below we shall
employ both approaches.

E. An example of the network

It is useful to enumerate the network nodes according to
the cluster structure. First, we find Ph and FS clusters and

enumerate them with indexes i ∈ [0 . . . Np] and j ∈
[0 . . . Nf ], respectively, in ascending order of their sizes,
where Np and Nf are the numbers of corresponding clusters.
The index 0 indicates trivial clusters including a single
node only. Then the nodes are assigned the indexes im and
jm in accordance to their membership in clusters, and the
desynchronization degree d̃m is computed for them, see Eq. (4).
Now the real-valued clustering index is defined as

ηm =
{−d̃m if d̃m > 0,

im + jm/(Nf + 1) if d̃m = 0.
(9)

Finally, the nodes are enumerated in the ascending order of
ηm. The negative ηm indicates that the corresponding node is
not synchronized with others, and if, in addition, ηm is very
close to zero the corresponding node is the floating one. The
integer part of positive ηm is the index of the Ph cluster to
which the node belongs and the fractional part encodes the FS
cluster index.

Figure 5 shows an example of the network structure as
well as its Ph and FS clusters that have emerged in the course
of the evolution. The nodes are enumerated according to the
ascending order of ηm that is plotted in Fig. 9(a). The cluster
detection is performed over the whole computation interval
105.

For this particular case there are five nodes that are not
synchronized with others, i.e., have ηm < 0. The first two of
them are essentially separated, η1,2 ≈ −0.16, and the nodes
3, 4, and 5 are the floating ones with very small |ηm|: η3 =
−0.00054, η4 = −0.00028, η5 = −2 × 10−5.

The bulk of nodes form two large Ph clusters. In our case,
for these clusters 3 � ηm < 4 and 4 � ηm < 5, see Fig. 9(a).
As one can see in Fig. 5, there is no visible relation between
the connectivity structure of the network and the locations of

FIG. 5. (Color online) An illustration of the clustering of network (1) with N = 64 and ε = 0.17. The nodes and edges represent the
connectivity structure and the shapes and colors of nodes indicate the states arrived in course of the evolution, see the table below the graph.
To plot this figure we collected data for the cluster identification over T = 105 steps.
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these clusters. The cluster nodes are mixed so many nodes
of the first cluster are connected with others only through
elements of the second one and vice versa. As we mentioned
above, see Figs. 3(a) and 3(b), the oscillations within these
clusters have opposite phases. Thus, in a wider sense, one can
say that all nodes of these two clusters are phase synchronized
but some with a phase shift.

Some of nodes of the Ph clusters are synchronized stronger
so they form FS clusters embedded into Ph clusters. For
these clusters ηm is fractional and ηm > 3. Observe that all
of these clusters are formed by elements of starlike structures
and all interactions inside FS clusters pass through hub
nodes. The hub nodes in turn are never synchronized with
their subordinate nodes; see, for example, the cluster {24,25}
connected through a hub 43. Moreover, the hub always belongs
to the opposite Ph cluster: observe different orientations of the
triangles representing the cluster nodes and the corresponding
hubs. This type of synchronization was first reported in
Ref. [16] for clusters of phase synchronization. The authors
called it driven synchronization. Later this mechanism was
independently described in Refs. [17,18] and referred to as
“remote synchronization.”

The structures mentioned so far are typical and always exist
for any A and initial conditions. In some cases, however, like,
for example, the one shown in Fig. 5, several more small FS
clusters appear that are separated from two large Ph clusters:
the nodes 6 and 7 are fully synchronized with each other but
are not embedded into Ph clusters. The same is the case for
the nodes 8 and 9.

Finally, notice that remote synchronization can also occur
when “beams” of a starlike structure include two edges. The
nodes 28 and 29 form a FS cluster, but they can interact
only through the nodes 55 and 56. The latter ones are also
synchronized. The opposite orientation of the corresponding
triangles indicates that these clusters are embedded into
different Ph clusters. This situation can be treated as remote
synchronization of the second order.

III. STRUCTURE OF THE TANGENT SPACE

A. The Jacobian matrix

The Jacobian matrix of the network (1) has a block form
being composed of N × N matrices,

J(t) =
(

F(t) I
βI 0

)
, (10)

where

F(t) = −2G(t) [(1 − ε)I + εK−1A],
(11)

G(t) = diag{xn + εhn}, K = diag{kn},
and I is the identity matrix. J(t) has a generic symplectic
structure, i.e., at any t there exists a skew-symmetric matrix
W(t) such that J(t) W(t) J(t)T = −βW(t). Systems of this
type were first introduced in Ref. [19]; however, unlike the
referenced paper in our case, W(t) is a generic skew-symmetric
matrix depending on t ,

W(t) =
[

0 −Q(t)
Q(t) 0

]
, (12)

where Q(t) is a symmetric matrix such that the product
F(t)Q(t) = M(t) is also symmetric. Q(t) can always be found
since any matrix F(t) can always be represented as the
product of two symmetric matrices, F(t) = M(t)Q(t)−1 [20].
Due to the this property the Lyapunov spectrum is
symmetric [19]:

λn + λN+1−n = log β. (13)

The Lyapunov spectra for our system are shown in Fig. 7 and
discussed below.

B. Pairwise orthogonal eigensubspaces of the tangent space

In the presence of FS clusters the tangent space of the
network (1) is split into Nf + 1 time-invariant subspaces
that are pairwise orthogonal, where Nf is the number of
FS clusters. There are Nf subspaces representing perturbations
transverse to manifolds where the FS clusters belong, and the
one that includes perturbations longitudinal to all of these
manifolds.

Consider a toy network, see Fig. 6. Its first and second nodes
are linked with the third one to form a starlike structure and
the first FS cluster. The fifth, sixth, and seventh nodes form
the second FS cluster. The top left block of the corresponding
Jacobian matrix has the following form, see Eq. (10):

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1ε
′ 0 G1ε 0 0 0 0

0 G1ε
′ G1ε 0 0 0 0

1
3g3ε

1
3g3ε g3ε

′ 1
3g3ε 0 0 0

0 0 1
4g4ε g4ε

′ 1
4g4ε

1
4g4ε

1
4g4ε

0 0 0 G2ε G2ε
′ 0 0

0 0 0 G2ε 0 G2ε
′ 0

0 0 0 G2ε 0 0 G2ε
′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(14)

where ε′ = 1 − ε, gi are elements of the matrix (−2G), see
Eq. (11), and g1 = g2 = G1, g5 = g6 = g7 = G2 correspond
to FS clusters.

Due to the special form of F there exist vectors of three
types, whose structure is preserved under the mapping with F

1

3

2

4

5

6

7

FIG. 6. (Color online) A toy network with two starlike struc-
tures. The orange color marks the nodes subjected to the remote
synchronization.
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as follows:

�v (0) = (
v

(0)
1 ,v

(0)
2 ,v

(0)
3 ,v

(0)
4 ,v

(0)
5 ,v

(0)
6 ,v

(0)
7

)T
,

(15)
v

(0)
1 = v

(0)
2 , v

(0)
5 = v

(0)
6 = v

(0)
7 ,

�v (1) = (
v

(1)
1 ,v

(1)
2 ,0,0,0,0,0

)T
, v

(1)
2 + v

(1)
1 = 1, (16)

�v (2) = (
0,0,0,0,v

(2)
5 ,v

(2)
6 ,v

(2)
7

)T
, v

(2)
5 + v

(2)
6 + v

(2)
7 = 0.

(17)

The subspaces spanned by these vectors, Fj = span{�v (j )},
where j = 0,1,2, are invariant with respect to F and thus
form the eigensubspaces of F. Moreover, any vector of the
form �v (1) and �v (2) is the eigenvector of F with the eigenvalues
G1,2(1 − ε). Notice that all these three subspaces are pairwise
orthogonal, i.e., the orthogonal are any two vectors from these
subspaces.

The full Jacobian matrix J, see Eq. (10), also has three
eigensubspaces Jj = span { �w (j )} spanned by the following
block vectors:

�w (j ) =
(

�v (j )
x

�v (j )
y

)
, (18)

j = 0,1,2. Here �v (j )
x and �v (j )

y are the vectors with the
structures (15)–(17), related to perturbations to x and y

components of the system. The dimensions of these subspaces
are twice the dimensions of the eigensubspaces of F. One
can find explicitly a couple of corresponding eigenvectors for
subspaces J1 and J2,

�w (j )
± = �v (j )

(
1

β/μ
(j )
±

)
, (19)

where �v (j ), j = 1,2, are arbitrary vectors with the struc-
ture (16) and (17), respectively, and μ

(j )
± are the corresponding

eigenvalues,

μ
(j )
± = (

Gj (1 − ε) ±
√

G2
j (1 − ε)2 + 4β

)
/2. (20)

For the considered toy network the eigenvalues μ
(1)
+ and μ

(1)
−

both have the multiplicity 1, and the multiplicity of μ
(2)
+ and

μ
(2)
− is 2.

The subspaces J1 and J2 include perturbations transverse
to invariant manifolds of FS clusters. The dimensions of these
subspaces are 2 and 4, respectively. All vectors from J0 contain
identical values at sites corresponding to the same FS cluster,
see Eq. (15). It means that these vectors describe perturbations
longitudinal to FS-cluster manifolds also affecting noncluster
nodes. The dimension of J0 is 8. All three subspaces are
orthogonal to each other.

In the general case the tangent space of the dynamical
network under consideration is split into a set of eigensub-
spaces Jj of J, where 0 � j � Nf , and Nf is the number
of FS clusters. These subspaces are time invariant and
pairwise orthogonal. The subspaceJj , where j � 1, represents
perturbations transverse to the j th cluster. It is spanned by
vectors having only 2Sj nonzero sites corresponding to x

and y variables at cluster nodes, where Sj is the size of the

cluster. Since the sums along x and along y sites have to
be zero, the dimension of this subspace, i.e., the number of
independent vectors, is 2(Sj − 1). The subspace J0 is spanned
by vectors of longitudinal perturbations to FS clusters. These
vectors have identical values at sites corresponding to each
node and independent values at other sites. The dimension
of this subspace is 2(N − Mf + Nf ), where Mf is the total
number of nodes belonging to all FS clusters.

IV. NONWANDERING LOCALIZATION OF CLVs
ON FS CLUSTERS

A. The mechanism of localization

Let �(t) be a 2N × 2N matrix whose columns are CLVs at
time t . By the definition, this is a unique set of vectors such
that for any t the Jacobian matrix J(t) maps �(t) to [C(t +
1) �(t + 1)], where C(t) is a diagonal matrix logarithms of
whose elements are finite time Lyapunov exponents [15]. In
other words, the tangent-space operator, which is J for discrete
time systems, maps each CLV at t to the stretched or contracted
CLV at t + 1.

The direct sum of the subspaces Jj , 0 � j � Nf , is equal to
the whole tangent space, and the subspaces are time invariant
and, moreover, pairwise orthogonal. Thus each of them holds
a set of CLVs related to perturbations to individual clusters
or to noncluster nodes. The number of these vectors is equal
to the dimension of the corresponding subspace Jj . These
CLVs can freely evolve only within their subspaces and never
leave them. Let us assume that this is not the case and there
exists a probe CLV not fully belonging to one of the subspaces
Jj . This vector can always be decomposed into a linear
combination of vectors from Jj . In the course of the evolution
the vectors of this decomposition grow or decay exponentially,
on average, but always stay within their subspaces. The rates
of this growth or decay are the Lyapunov exponents. One of
the vectors with the largest Lyapunov exponent will always
dominate all others so our probe CLV will fall into the
corresponding subspace. Thus each CLV indeed belongs to
one of Jj . In principle, however, the Lyapunov exponents from
different subspaces can coincide. In this case the corresponding
CLVs will be linear combinations of vectors from these
subspaces.

The CLVs related to transverse perturbations of FS clusters
have nonzero elements only at sites corresponding to the
cluster nodes. Since the considered FS clusters are small,
the corresponding CLVs are highly localized. Moreover, this
localization is nonwandering, i.e., the nonzero vector elements
always have a fixed location.

Localization of CLVs is a well-known phenomenon. How-
ever for chainlike systems whose nodes have identical patterns
of connections the localization sites wander around irregularly
from node to node [8,9]. The nonwandering localization of
CLVs is known to occur due to the inhomogeneous structure
of a system. It was already reported for a disordered medium
in Ref. [10]. From a general point of view the nonwandering
localization of CLVs in our system also occurs because the
system is highly inhomogeneous, namely due to the starlike
structures when there are highly connected hubs and low
connected subordinate nodes.
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FIG. 7. (Color online) Lyapunov spectra of the network (1) with
various coupling strengths, ε = 0.13, 0.17, and 0.22. The upper dotted
line marks zero, while the lower one is the symmetry axis at (log β)/2.
The arrow points an example of anomalous behavior. N = 64.

B. Defects of Lyapunov spectra

Let us consider the Lyapunov spectra of the network (1),
see Fig. 7. Observe the symmetry of the curves, emerging
due to the generic symplectic structure of the Jacobian matrix,
see Eq. (13). The theory behind the algorithm for Lyapunov
exponents [13,14] is based on the hierarchy of domination
of tangent vectors obeyed by different Lyapunov exponents.
During the computation we evolve a set of tangent vectors
mapping them with the Jacobian matrix and thus allowing
alignment along the most expanding available directions. To
exclude the alignment of all the vectors along the same
directions, we periodically orthogonalize them. So the first one
points to the most expanding direction, and the second one,
as well as all others, are orthogonal to it and can only align
along the second expanding direction, and so on. The average
exponential growth rates of these vectors are the Lyapunov
exponents. Obviously they have to appear in a nonascending
order.

However, in our case the nonascending order can be broken;
see the arrow in Fig. 7. Notice the absence of the symmetrical
defect on the second part of the spectrum. This abnormal
behavior is related to the splitting of the tangent space into
the orthogonal subspaces Jj . Right after the start of the
iterations, the tangent vectors have random directions. If the
local expansion rates for some of the subspaces Jj highly
deviate from the corresponding Lyapunov exponents, this
subspace can attract wrong vectors. In the “normal” situation
the wrong orientation of vectors is fixed after a transient time
when the influence of local rates decays. But in our case, since
the subspaces Jj are time invariant, the vectors can be trapped
within inappropriate subspaces. As a result, we observe the
broken order of Lyapunov exponents as shown by the arrow in
Fig. 7.

One can try to avoid this trapping by adding a small noise
to tangent vectors after each iteration. The noise is expected to
push out the vectors from their traps, giving them a chance to
arrive at the appropriate subspace. Our tests showed that even
very small noise of the order 10−10 can smoothen the defects of
Lyapunov spectra. However, instead of the pushing out of the
trapped vectors, the noise destroys the splitting of the tangent
space at all. The vectors no longer gain the structures described
by Eqs. (15)–(17). Thus this is an inappropriate approach since
the existence of the tangent subspaces Jj is one of the essential
features of our system.

(a)

forward
backward

λ

-0.5

-0.25

 0

1 i8 16 24 32 40 48 56

(b)

forward
backward

i8 16 24 32 40 48 56

FIG. 8. (Color online) Lyapunov spectra computed in parallel
with computation of CLVs via the (a) IR and (b) LU methods. Two
curves in the panels correspond to the exponents computed in course
of forward- and backward-time stages. The arrows show the essential
deviations of the curves from each other.

C. Structure of CLVs

Now we turn to the CLVs. There are two numerical methods
for computing CLVs that have been published simultaneously.
The method reported in Ref. [5] shall be referred to as the
IR method (the abbreviation stands for “Iterations with R
matrices”). It computes CLVs in the course of iterations
backward in time with inverted upper triangle matrices R
previously obtained on the forward-time stage as a result of
so-called QR matrix decompositions. The other method first
reported in Ref. [6] was later improved in Ref. [9] and then
it was reformulated in a more efficient form in Ref. [15].
This method shall be referred to as the LU method since it
computes CLVs as a result of LU decomposition of matrices
of scalar products of orthogonal Lyapunov vectors computed
in the course of forward- and backward-time procedures.

Both of the methods for CLVs include the iterations with
tangent vectors forward and backward in time. To compute
CLVs correctly, these iterations have to provide the identical
orderings of tangent vectors, even if this does not correspond to
the nonascending order of the Lyapunov exponents. Unfortu-
nately the trapping of vectors within inappropriate subspaces
Jj can occur independently and thus differently on forward
and backward stages. These situations can be identified by
comparing Lyapunov exponents computed in parallel with
forward and backward stages; see Fig. 8. One can see that,
besides natural small and smooth deviations, related to an
unavoidable numerical noise, there are points marked by
arrows where the orders of the exponents do not coincide.
It indicates that the forward- and backward-time data do not
exactly match so the corresponding CLVs are not quite correct.
These abnormal deviations of the curves are found to be is less
pronounced for the IR method, and below we shall use it for
computing CLVs.

Figure 9(b) shows CLVs averaged in time. Since two
variables are associated with each node, we consider the
node-related CLVs pni = γ 2

2n−1,i + γ 2
2n,i , where γji is the

j th element of the ith CLV, i,j = 1, . . . ,2N , n = 1, . . . ,N .
Because each CLV has a unit length,

∑N
n=1 pni = 1 for any i.

Figure 9 corresponds to the network shown in Fig. 5. The nodes
of the network are enumerated according to the ascending
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FIG. 9. (Color online) (a) Clustering index ηn, see Eq. (9). The
nodes are enumerated according to the ascending order of ηn. Gray
labeled stripes indicate FS clusters. (b) Average node-related CLVs.
(c) Distributions of τn, see Eq. (23). For all panels n is the node
number and i is the vector number. N = 64, ε = 0.17. The matrix A
and initial conditions are the same as in Fig. 5.

order of ηn, see Eq. (9). The curve ηn is shown in Fig. 9(a).
Gray stripes in this panel mark FS clusters.

According the discussion above, there are CLVs localized
in FS clusters. The most clear examples correspond to the
clusters 3, 4, 7, 8, 10, 12, and 13. The number of vectors has
to be 1 less then the number of nodes in the cluster (notice that
only the first part of the symmetric spectrum is shown, and
one more set of vectors also exist in the second part). Thus
each of the two-node clusters 3, 4, 8, and 10 produces a single
localized CLV. The three-node clusters 7 and 12 generate pairs
of CLVs. Finally, the five-node cluster 13 is characterized by
four CLVs.

The two-node clusters 5 and 11 generate two CLVs,
localized simultaneously on both of these clusters. These
clusters includes the nodes {28, 29} and {55,56}, respectively.
As we already discussed above, they demonstrate remote
synchronization of the second order, since the nodes 28 and 29
are synchronized through the nodes 55 and 56, see Fig. 5. Due
to this reason the exponential growth rates in the subspaces
corresponding to these two clusters are always identical and
no one of them dominates. The resulting CLVs are linear
combinations of vectors localized on these clusters.

The clusters 1, 2, 6, and 9 are problematic. The two-node
cluster 2 has two localized CLVs instead of the expected one,
and the clusters 1, 6, and 9 do not have any clearly localized
CLVs. We addressed the issues regarding the failure of the
numerical methods due to the trapping of tangent vectors
within inappropriate subspaces Jj above.

All CLVs not localized on FS clusters belong to J0, repre-
senting longitudinal perturbations to these clusters. It means
that they have to have identical values at sites corresponding
to FS clusters. One can see that this requirement is fulfilled
well even for problematic clusters.

V. NONWANDERING LOCALIZATION OF CLVs ON
NODES SEPARATED FROM Ph CLUSTERS

A. Properties of localized vectors

Besides the localization on FS clusters one can also observe
in Fig. 9(b) that the first six vectors are localized on nodes 1,
2, and 6–9. The common property of these nodes is that they
do not belong to Ph clusters, see Fig. 5.

To clarify it, we shall detect the clusters at T = 20. Since
the oscillations of phase-synchronized nodes are very close
to periodic with the period 2, see Fig. 3, this short T is
the smallest reasonable value required to identify intermittent
attachments and detachments of nodes to Ph clusters. Running
over the computation interval and performing serial detections
of Ph clusters we assign to each node at each time step a flag
signalling whether this node belongs to a Ph cluster or not.
Also we compute CLVs and for each vector at each time step
using the flags we find a sum,

ps(t) =
Ms (t)∑
n=1

pni(t), (21)

where Ms(t) is the number of nodes separated from the
Ph clusters. The nodes in this equations are assumed to be
enumerate in a such a way that the separated nodes go first.
Since

∑N
n=1 pni = 1, ps indicates what a fraction of nonzero

CLV elements belongs to the separated nodes. The upper limit
ps = 1 tells that all nonzero CLV elements are localized on
separated nodes, while ps = 0 shows that all nonzero CLV
elements are localized on Ph clusters.

The distributions of ps are found to have two maxima,
one at ps = 0 and the other at ps = 1, and they decay fast
towards to the middle area. Figure 10 plotted for the network
in Figs. 5 and 9 shows that the decays near both edges are
obeyed to power laws. Notice that the orders of the curves
representing different vectors differ at the left and right edges.
For the vector i = 1 ρ(0) < ρ(1). It means that this vector is

(a) i= 1
i= 6
i= 7
i=10
i=16

ρ(ps)

10-3

10-2

10-1

ps10-2 10-1

(b) i= 1
i= 6
i= 7
i=10
i=16

1-ps10-2 10-1

FIG. 10. (Color online) Power-law decays of ρ(ps) (a) near ps =
0 and (b) near ps = 1. Double logarithmic scales are used for both
axes. The vector numbers are shown in the legends. The matrix A and
initial conditions are the same as in Figs. 5 and 9.
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FIG. 11. (Color online) Distributions ρ(ps) at N = 128, ε = 0.22.

preferably localized on nodes not attached to the Ph clusters.
This is also the case for all vectors up to the sixth one, while for
the seventh vector we observe ρ(0) > ρ(1). Starting from this
vector, all other CLVs are preferably localized on the nodes
attached to the Ph clusters.

Figure 11 shows the distributions ρ(ps) at N = 128 and
ε = 0.22. One again observes the power laws near the edges
and preferable localization of the vectors 1 � i � 22 on the
nodes not attached to the Ph clusters, since for these vectors
ρ(0) < ρ(1). Also notice the essential deviation from the
power law of the distribution for i = 1 near the right edge,
see Fig. 11(b). This is the result of the approaching of ε to
the right boundary of the area of our consideration marked in
Figs. 1 and 2. We tested more distributions at ε = 0.24 and
observed that the deviation from the power law near ps = 1
gets higher. But, nevertheless, we still can distinguish the CLVs
localized on separated nodes by comparing the edge values of
the distributions ρ(0) and ρ(1).

Thus the first CLVs, whose number we denote as Vs , are
preferably localized on the nodes not synchronized with the
Ph clusters. Notice that due to the symmetry there are more Vs

localized vectors in the opposite end of the spectrum.
Since these CLVs have nonzero values mainly on a limited

and permanent set of nodes whose number we denote as Ms ,
the number of these vectors have to be at least approximately
equal to the number of these nodes, Vs ≈ Ms . To verify it we
generate different matrices A and find the separated nodes for
it. Then we find CLVs and compute the relative frequency
P (ps > 0.5), where ps is computed as discussed above, see
Eq. (21). The vector is treated as localized on the separated
nodes when P > 0.5. The number of such vectors Vs as a
function of the number of separated nodes Ms is plotted in
Fig. 12. Since Ms and Vs are integers, the points of the plot
will overlap each other. To avoid it and show the areas where
the points fall more often as dense clouds we add random
numbers ξ ∈ (−0.2,0.2) to data: Ms + ξ and Vs + ξ . Panel (a)
shows nine data sets computed at ε = 0.13, 0.17, and 0.22
for N = 64, 128, and 256. The points are fitted very well by
the straight line Vs = Ms that confirms the expected relation
between the number of localized vectors and the number of
separated nodes.

Figure 12(b) illustrates the scaling of Ms and Vs with the
network size N . One sees that though different matrices A
result in different Ms and Vs , the scaling

M∗
s = Ms/N, V ∗

s = Vs/N, (22)

64,0.13
64,0.17
64,0.22

128,0.13
128,0.17

Vs

 0

 5

 10

 15

 20

 25

 30

Ms 0  5  10  15  20  25  30

128,0.22
256,0.13
256,0.17
256,0.22

N=64
N=128
N=256

V*
s

 0

 0.05

 0.1

 0.15

M*
s 0  0.05  0.1  0.15

(a) (b)

FIG. 12. (Color online) (a) The number of nodes nonsynchro-
nized with the Ph clusters Ms vs the number of CLVs Vs localized
on them. The legend shows the values of N = 64, 128, and 256 and
ε = 0.13, 0.13, and 0.22. (b) Rescaled values M∗

s vs V ∗
s , see Eq. (22)

for N = 64, 128, and 256 at ε = 0.17.

results in the gathering of points within the same ranges.
It means that the number of nodes separated from the Ph
clusters as well as the number of localized on them CLVs grow
with N as Ms ∼ N and Vs ∼ N . Notice that this agrees with
previously discussed scaling of the number of nodes attached
to the Ph clusters, see Eq. (7).

We also checked the signs of Lyapunov exponents cor-
responding to the localized CLVs. In all cases the local-
ized CLVs had positive Lyapunov exponents and the total
number of positive Lyapunov exponents was always higher
then Vs .

B. Properties of localization nodes

The separated nodes where the first CLVs are localized have
common specific feature related to the instantaneous square
deviations of a node from its neighborhood,

τn(t) = h2
n(t). (23)

where hn(t) is given by Eq. (2). Figure 9(c) shows the
distributions of τn. One can see that the distributions at nodes
1, 2, and 6–9 have the maximum in zero and they decay
monotonically. On contrary, the distributions at nodes with
numbers n � 10 differ markedly: All of them are separated
from zero, and in some cases they are multimodal.

Since nodes 3, 4, and 5 are the floating ones, as indicate
corresponding values of ηn in Fig. 9(a), the forms of cor-
responding distributions of τn are ambiguous. On the one
hand, the distribution at node 4 looks as that in nonfloating
ones. However, the distributions in nodes 3 and 5 correspond
to the situation when a node belong to a Ph cluster at
n � 10.

This can be clarified by finding the clusters at short intervals,
T = 20. Performing the serial cluster detections with this T
for the network in Figs. 5 and 9, we found that the separated
nodes 1 and 2 as well as the nodes of the small FS clusters 6–9
can sometimes be attached to a Ph cluster, but approximately
90% of time they oscillate separately. Contrary to this, the
floating node 3 is not synchronized with the Ph clusters only
0.0008% of time steps, and node 5 is separated 0.0002% of
time steps. However, node 4 remains separated from Ph clus-
ters during 0.0022% of time steps. Though this is still a very
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FIG. 13. (Color online) Distributions ρ(τ ) at N = 128, ε = 0.13
at different nodes n. The nodes are enumerated according to the
growth of ηn, see Eq. (9). Panel (a) shows the separated nodes,
while panel (b) corresponds to the nodes attached to the Ph clusters.
Panels (c) and (d) demonstrate distributions at the floating nodes
n = 9 and 10, respectively, computed independently when the node
is separated (labeled “Sep” in the figure) and attached to the Ph
clusters (label “Ph”).

small value, it is one order higher than for nodes 3 and 5. Thus
the form of the distribution of τn depends on the percentage
of time that the node spends being not synchronized with the
Ph clusters.

Figure 13 exemplifies the typical forms of the distributions
of τn in more detail. A network generated to plot this figure
had eight purely separated nodes and two floating ones. The
nodes are assumed to be enumerated according to the growth of
clustering index ηm, see Eq. (9). In Fig. 13(a) one can see that
the distributions of τn at the separated nodes have a power-law
shape near the origin and right after that it decays to zero, and,
moreover, the shapes of the distributions in all of these nodes
are almost identical. On the contrary, the distributions at the
Ph cluster nodes are well separated from zero and can have
multiple maxima, see Fig. 13(b). To plot the distribution for
floating nodes in Figs. 13(c) and 13(d) we collected the data
in two arrays; one was used when the node was attached to
a Ph cluster, and the other when it was separated. One can
see that, oscillating separately, the floating node demonstrates
the power-law distribution of τn. The exponent coincides with
the exponents of the distributions for purely separated nodes,
cf. the slopes of the curves in Fig. 13(a) with the slopes of
the corresponding curves in Figs. 13(c) and 13(d). When
the floating node is attached to a Ph cluster its distribution
corresponds in bulk to the distributions at purely cluster nodes,
cf. the curves in Fig. 13(b) with the corresponding curves in
Figs. 13(c) and 13(d). However, a remnant power-law tail near
the origin can also be observed in Fig. 13(d).

One can see in Fig. 5 that each of the separated nodes where
the first CLVs are localized has only one connection. This is
typical for the localization nodes. Computing the connectivity
degrees kn in parallel with the data for Fig. 12, we found
that, in most cases, kn = 1, though rarely it can be higher.
Nevertheless, the average connectivity degree of the separated
nodes where CLVs are localized is less then 2.

Altogether, the first Vs CLVs are localized on Ms nodes.
These nodes have specific properties: They are not synchro-
nized with large Ph clusters, in most cases they have only
one connection, and the distributions of τn at these nodes
have identical power-law shapes. The core set of these nodes
remains unchanged in course of the dynamics (however, there
can exist a few so-called floating nodes). It means that this
localization of CLVs is nonwandering. Since the localization
nodes can be found without the straightforward computation
of CLVs, we can predict where the first Vs CLVs are localized.

VI. SUMMARY AND CONCLUSION

In this paper we found that CLVs for a dynamical network
can demonstrate nonwandering localization on nodes that can
be found without the computation of CLVs. This is an example
of explicit relations between dynamics of a system and the
associated tangent-space dynamics.

Random scale-free dynamical networks of Hénon maps are
considered. The networks are generated using a preferential
attachment mechanism, and the resulting network always has
N nodes and N − 1 connections.

The dynamics of such network is chaotic. Though the syn-
chronization of the whole network is not observed, the nodes
can form synchronized clusters. Full chaotic synchronization
as well as phase synchronization are possible. The number of
clusters depends on the coupling strength. We limit ourselves
to a range of coupling strengths where there are two large
phase clusters, including almost all nodes, and many small
fully synchronized clusters. Most of the them are embedded
into the phase clusters while few of them can be separated.

Due to the presence of clusters, covariant Lyapunov vectors
are found to be localized. Each cluster of Sf fully synchronized
nodes is associated with 2(Sf − 1) covariant vectors, all of
whose sites are strictly zeros except for the nodes correspond-
ing to the clusters. This localization is nonwandering and
predictable since we can find nonzero vector sites without
computing the covariant vectors. However, it is unclear which
vector will be localized on the particular cluster.

One more mechanism of localization is related to the phase
clusters. The first Vs CLVs are localized on Ms nodes that
oscillate separately from the phase clusters. This localization
is not quite as strict as the previous one, and the vectors can
have nonzero sites on nodes attached to the phase clusters.
But the probability of localization on separated nodes is
always higher and this is the criterion for distinguishing these
vectors. The number of vectors Vs and the number of separated
nodes Ms are equal; however, since the localization is not
strict, this equality is approximate. As well as the localization
of clusters of full synchronization this is the nonwandering
and predictable localization. Finding the nodes oscillating
separately from the phase clusters we can say in advance
where the first CLVs will be preferably localized and what
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will be their number. The nodes of localization have specific
features: They have few connections (only one connection, in
the cases), and they demonstrate identical power-law distribu-
tions of square deviations of dynamical variables from their
neighborhood.

The a priori knowledge about the localization of the
covariant vectors opens perspectives of wider utilization of
these vectors. By the definition these vectors we show how
the development of perturbations occurs. When the locations
of areas of the most intensive development is permanent and
predictable, an interesting problem arises regarding how to
organize an effective low-energy forcing to the system using
this areas.

Computing CLVs for the dynamical networks with full
synchronization clusters, we found that both known methods
can be not quite correct due the splitting of the tangent space
into a set of time-invariant pairwise orthogonal subspaces.
In view of the great interest of research into the dynamical
networks a challenging task emerges regarding modification
of the numerical methods for CLVs to fix this problem.
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