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Analytical solution for a class of network dynamics with mechanical and financial applications
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We show that for a certain class of dynamics at the nodes the response of a network of any topology to
arbitrary inputs is defined in a simple way by its response to a monotone input. The nodes may have either a
discrete or continuous set of states and there is no limit on the complexity of the network. The results provide
both an efficient numerical method and the potential for accurate analytic approximation of the dynamics on
such networks. As illustrative applications, we introduce a quasistatic mechanical model with objects interacting
via frictional forces and a financial market model with avalanches and critical behavior that are generated by
momentum trading strategies.
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I. INTRODUCTION

Dynamical processes on networks are used to model
a wide variety of phenomena such as the spreading of
opinions through a population [1], propagation of infectious
diseases [2], neural signaling in the brain [3], and cascading
defaults in financial systems [4]. Similar dynamical processes
on regular lattices are used for modeling phase transitions and
critical phenomena in statistical mechanics [5], avalanches and
propagation of cracks in earthquake fault systems [6], percola-
tion phenomena [7,8], crackling noise [8,9], and hysteresis
in constitutive relationships of various materials [10]. The
structure of the underlying network may strongly influence
the dynamics, the response of the network to variations of the
input and parameters, and the critical values of parameters
such as the critical temperature of the random field Ising
spin-interaction model [11], or the epidemic threshold for
disease-spread models [12–14]. Prediction of the response
of a network to variations of the input or initial state is
thus an important problem, which remains open for many
real-world and randomly generated networks (e.g., networks
with arbitrary degree distribution) [15].

Nodes of the above networks are often assumed to have a
binary response modeled by Heaviside step functions [16]. In
this paper, we consider networks with a different type of nodes
characterized as Prandtl-Ishlinskii (PI) operators.1

1The classical Prandtl-Ishlinskii model of plasticity and fric-
tion [17,18] introduced independently by Prandtl (1928) and Ish-
linskii (1944) is obtained by the linear superposition of simple
hysteresis operators (stops) that model noninteracting fibers with
possibly different physical properties. Recently, the model has
found new applications in such areas as control of sensors and
actuators [19,20]. The celebrated Preisach model used in modeling
ferromagnetism [21,22], magnetostriction [23], and porous media
flow [24] also can be considered as a nonlinear generalization of the
Prandtl-Ishlinskii model. The PI operator introduced in this paper
generalizes the classical Prandtl-Ishlinskii model by including a
possibility of discontinuous response that models avalanches. The

We present an almost explicit solution for the input-state-
output relationship for networks of PI operators at the nodes.
Essentially, we demonstrate that the network of PI nodes is also
a PI operator with, possibly, a discontinuous response. This fact
sets a limitation on the class of systems that can be modeled
by a network of connected PI nodes while simultaneously
providing us with an effective tool for mapping the network
topology to its dynamics. Two motivating examples, one with
a mechanical and one with a financial background, will be
considered.

II. MECHANICAL EXAMPLE

In a mechanical context, the PI model describes the
hysteretic relationship between strain x and stress σ in
elastoplastic materials [25]. The simplest example is Prandtl’s
elastic-perfect plastic element [17], which combines the re-
striction −r � σ � r with the assumption that Hooke’s law is
obeyed when |σ | < r . The operator Sr that transforms the input
time series x(t) into the output time series σ (t) = Sr [x](t)
of Prandtl’s element is called a stop. Figure 1(a) shows the
underlying mechanical model as a cascade connection of a
Coulomb friction element and an ideal elastic element, as
well as the parallelogram-shaped hysteresis loops in the (x,σ )
plane. In the Coulomb friction model the force σ increases
(without causing motion) until it reaches the limit value
σ = ±r , at which point motion starts and the force remains
constant.

In the general PI model stops with different limits r are
superposed so σ (t) = ∫ ∞

0 Sr [x](t) dμ(r), where μ is some cu-
mulative distribution function. According to this relationship,
a new hysteresis loop is initiated in the (x,σ ) plane each time

objective of this paper is twofold: first, to present a new method for
solving dynamics on networks (with arbitrary complex topology) and,
second, to explore how the standard models of hysteretic phenomena
which in most cases assume no interaction between elementary
hysteresis operators will be affected by the interaction of these
operators.
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FIG. 1. (Color online) (a) A mechanical analogy of the stop
operator: an ideal spring and an object on a dry surface connected in
series. When the spring stress σ is within the range (−r,r), variations
of the displacement x cause linear changes in σ while the object
remains stationary on the surface. The spring stress clamps at a value
of ±r , whereas the object moves relative to the surface following x.
(b) A mechanical model with three nodes, each attached to a fixed left
plate and a moving right plate by two elastic springs, with interactions
modeled by stop operators as in (a).

the input x makes a turning point, see Fig. 2. Like the Ising
and Preisach models [26,27], the PI model has return point
memory, which means that the moment the input repeats its
past extremum value a hysteresis loop closes and the dynamics
proceeds as if there were no such loop [17]. Moreover, the
shape of all loops is defined explicitly by the primary response
(PR) function R(x) = 2

∫ x/2
0 [μ(∞) − μ(r)]dr . Namely, for

every loop, the arc where the input increases is a shifted initial
segment of the graph of the PR function, while the arc of the
loop where the input decreases is centrally symmetric to the
arc where the input increases, see Fig. 2. These properties
allow one to map an arbitrary piecewise monotone input
x(t) to the output σ (t) graphically very simply using the PR
curve. Equivalently, one can use the sequence of running main
extrema Xk(t) of the input x(t) (see Ref. [28]),

σ (t) = R(2X1(t))
2

+
∑
k�1

(−1)kR(|Xk+1(t) − Xk(t)|), (1)

where we assume zero initial output of each stop Sr and a non-
negative input with x(0) = 0. Here the running main extrema
are defined consecutively as Xk(t) = maxτk−1�τ�t x(τ ) for odd
k � 1 and Xk(t) = minτk−1�τ�t x(τ ) for even k � 1, where
τ0 = 0 and τk is the last moment prior to t when x(τk) = Xk .

For any, possibly discontinuous, function R(x) with R(0) =
0 that has bounded variation, the input-output relationship
defined by Eq. (1) (equivalently, by Fig. 2) will be called
the PI operator IR with PR function R and will be denoted
σ (t) = IR[x](t). The stop and the PI model are PI operators.

x

σ

FIG. 2. (Color online) Loops of the PI operator obtained from the
PR curve which is shown by the thick line. Each hysteresis branch
(dotted, dashed, and solid curves) is a shifted (or shifted and rotated
by 180 degrees) image of the corresponding segment of the PR curve.

In the PI model the stops do not interact but interactions are
necessary for producing more complicated hysteresis loops.
Examples of complex hysteretic responses due to interactions
include spin-interaction models [5,6], the moving Preisach
hysteresis model [29], and networks of nonideal relays [25].
Such interactions make the models far less tractable and
the identification of model parameters extremely difficult.
Hence the absence of interactions between the elementary
hysteretic components of the model (such as stops or relays)
has been considered a necessary simplification in the majority
of phenomenological models of hysteresis. However, we will
show that networks of PI operators (including systems of
interacting stops) are analytically tractable under broad and
well-defined assumptions.

We now proceed with an example of a network of interact-
ing stops modeling quasistatic one-dimensional dynamics of
a mechanical system that consists of N rigid fibers elongated
along the x direction and interacting due to friction between
them. The fibers are stretched between two plates; the left
plate is fixed, and the right plate is subject to a time-dependent
quasistatic loading. In Fig. 1(b), each fiber is represented by
a node (N = 3) attached to two plates by linear springs. The
interaction between the nodes is modeled by Maxwell-slip
friction elements [30]. The balance of forces at each node can
be written as

− kiξi + k̃i(u − ξi) +
∑

j=1,...,N ; j �=i

aij Srij
[ξj − ξi] = 0, (2)

where ξi are displacements of the nodes, the displacement u

of the right plate is the time-varying input, ki and k̃i are the
stiffnesses of the springs attached to the left and right plates
respectively, and all the initial displacements and forces are
zero. According to the action-reaction principle, the matrix rij

and the adjacency matrix aij , which quantify the strength of the
interactions between the nodes via stiction and kinetic friction,
are symmetric and non-negative. The system dissipates energy
due to friction and the internal energy of the system is U =
1
2

∑
i(kiξ

2
i + k̃i(u − ξi)2) + 1

2

∑
i

∑
j<i aij (Srij

[ξj − ξi])2.
Our main observation is that if, in response to an increasing

input u each distance |ξi − ξj | corresponding to a nonzero
aij grows monotonically, then the relationship between each
displacement ξi and the input u is described by a PI operator
IRi

for all possible inputs u(t). This fact is rooted in the compo-
sition formula [31] which ensures that the cascade connection
σ = IR1 [IR2 [u]] of two PI operators with PR functions R1 and
R2, where R2 is monotone, is itself a PI operator IR1◦R2 with
the PR function (R1 ◦ R2)(u) = R1(R2(u)). Substituting the
relations ξi(t) = IRi

[u](t) in Eq. (2), using the composition
formula, and replacing PI operators with their PR func-
tions, we obtain the algebraic system k̃iu − (k̃i + ki)Ri(u) +∑

j �=i aijφrij
(Rj (u) − Ri(u)) = 0 for the PR functions Ri of

the PI operators IRi
describing the displacements of the nodes

where φr is the PR function of the stop Sr = Iφr
, see Fig. 3(a).

The Browder-Minty property [32] of these equations ensures
that all the PR functions Ri are continuous and increasing.
These functions are measurable from the system’s response to
an increasing input u since ξi(u) = Ri(2u)/2.

Monotonicity of the relative displacements ξi − ξj with
increasing u is a substantial condition for ensuring the PI rela-
tionships ξi(t) = IRi

[u](t) between the displacements of nodes
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FIG. 3. PR curves R(x) versus input x for several examples of PI
operators: (a) stop, (b) play, (c) binary PI operator, and (d) continuous
approximation of a binary PI operator.

and plates in system (2) for arbitrary inputs u(t). Even in a sys-
tem of three nodes the differences ξi − ξj can be nonmonotone
in u, in which case the relationship between ξi and u loses the
return point memory property and becomes more complex.
Figure 4 presents an example of such behavior. Here the rela-
tive displacement ξ1 − ξ2 between the nodes 1 and 2 changes
nonmonotonically when the input increases (decreases); see
the lower panel. As a result, the relationship between the input
u and displacement ξ1 time series is not of a PI form: When
the input u changes, for example, from −100 to −80 and back
to −100, the hysteresis loop does not close as shown by the
bold line in the upper panel (see Appendix A for details).

However, if all the friction forces are relatively small
compared to the forces of the springs, then the distances
ξi − ξj are monotone and ξi(t) = IRi

[u](t). For example, Fig. 5
presents a system of three interacting fibers (nodes) where
all three relative displacements |ξi − ξj | grow monotonically
in response to an increasing (decreasing) input u (see the
lower panel). Hence, the position of each node ξi is related
to the displacement of the right plate u by a PI operator
ξi(t) = IRi

[u](t). Indeed, all the hysteresis loops in Fig. 5 (see

−100 −95 −90 −85 −80 −75
−2

−1

0

1

Input u

ξ 1

−7 −6 −5 −4 −3 −2 −1 0
−1

0

1

2

3

4

Input u

ξ i
–

ξ j

ξ1 – ξ2
ξ2 – ξ3
ξ1 – ξ3

FIG. 4. (Color online) An example where ξ1 − ξ2 is nonmono-
tone for a decreasing input u (the lower panel) and so the relationship
between u and ξ1 loses the return point memory property (the
nonclosed loop shown by the bold line on the upper panel). In this
example the system consists of three fibers (nodes) as we show in
Fig. 1(b). Each node interacts with the other two and the forces
of interaction between them are 1 (i.e., all aij = 1), and all stop
operators have the same rij = 1. The left springs’ stiffness parameters
are k1 = 1,k2 = 10,k3 = 1 and the right springs’ stiffness parameters
are k̃1 = 0,k̃2 = 1,k̃3 = 10. Initially all displacements are zero. The
values of u at which stop operators saturate or desaturate (see
Appendix A, Table I) are indicated by symbols.
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FIG. 5. (Color online) An example where ξi − ξj are monotone
in u, hence ξi(t) = IRi

[u](t). The network structure, parameters
and the variation of u are the same as in Fig. 4 except that
k1 = k2 = k3 = 1. The upper panel shows variations of the position
ξ1 of the first node in response to the input u which starts at
0 and varies monotonically between the following turning points:
{0,−100,−80,−100,−90,−97,−75}. The values of u at which stop
operators saturate or desaturate (see Appendix A) are indicated by
symbols. Plots of ξ2, ξ3 against u (not shown), as well as plots of any
weighted sum of ξi , also demonstrate symmetric loops. The lower
panel shows the monotonic growth of the displacements |ξi − ξj | for
a decreasing input u starting at 0.

the upper panel) are closed and centrally symmetric, which is
the characteristic property of PI operators.

In other words, weak interactions merely correspond to
parameter changes in the Prandtl-Ishlinskii model and so
cannot induce any extra complexity in the model response.
This scenario provides a plausible explanation for why the
simplified phenomenology underlying the Prandtl-Ishlinskii
model gives good approximations across multiple applica-
tions [17–20]. However, stronger interactions generate more
complex responses as in the example in Fig. 4 which exhibits
the phenomenon of ratcheting (accumulating nonclosed hys-
teresis loops) which cannot occur in any Prandtl-Ishlinskii
model. Note that that standard models of ratcheting used, for
example, in the study of fatigue and damage (see, e.g., Section
5.4.4 of [33]), combine the Prandtl-Ishlinskii model with an
additional nonlinearity.

An algorithm for the simulation of systems such as (2) is
presented in Appendix A.

III. FINANCIAL EXAMPLE

In this section, we use PI networks (with discontinuous
PR functions) to model momentum-based trading strategies
within a financial market. We start by describing the simplest
version of the model in which traders sell (buy) when the ratio
of the price to a running maximum (minimum) of the price
hits certain threshold values. This wholly price-based strategy
is a plausible proxy for an important subset of real-world
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traders—so-called momentum traders,2 who either (a) believe
that the recent price history is signaling an upcoming change
or reversals in market “sentiment” [34,35] or (b) have been on
the wrong side of the recent price history and feel enough
pressure to have to switch their position [36]. Momentum
traders tend to act as a source of positive feedback that
exaggerates recent price moves and can induce, in a plausible
manner, both the long-term mispricings and sudden reversals
that are characteristic of financial systems.

We then generalize the model by supposing that the market
participants also have a network structure and each agent now
reacts not only to the price but to the states of their network
neighbors. Once the effect of agents changing investment
positions is allowed to feed back into the price the network
model makes full use of the results outlined in Sec. II.

A. Momentum trading strategies as PI operators

We consider N traders with the state χi of trader i being
either 1 or −1. The “long” state χi = 1 indicates that the i-th
trader owns the asset and the “short” state χi = −1 means the
trader does not own the asset.

Other traders, not modeled directly, play two important
roles. First, many operate on short time scales, comparable
with the arrival of new exogenous information, and translate
this information into price changes. This allows us to consider
the system as being slowly driven through metastable states.
Second, they provide a pool of potential trading partners
so buyers and sellers among the N traders do not need to
be matched (as occurs in kinetic theory models of financial
systems).

The following drawup-drawdown rule [34] for the N traders
mimics strategies that try to identify a nascent trend and are
used in actual trading algorithms3 (see, e.g., Ref. [35]).

After switching to the long state χi = 1 (purchasing the
asset) at time τ , the i-th trader tracks the asset price p(t)
and the running maximum maxτ�s�t p(s) since time τ . The
trader switches back to the short state χi = −1 at the first
time θ > τ when the inequality p(t)/ maxτ�s�tp(s) � α−

i is
satisfied for some threshold value α−

i ∈ (0,1). For example,
if α−

i = 0.9, then the trader sells at the moment when the
price drops from its peak value by 10%. Using the log-price
r(t) = ln (p(t)/p(0)) gives the selling condition θ = min{t >

τ : r(t) − maxτ�s�t r(s) � ln α−
i }. (Without loss of generality

we use natural logarithms in this paper.) This trader then adopts
a similar strategy for deciding when to buy again. The trader
tracks the ratio p(t)/minθ�s�t p(s) and switches to the state
χi = 1 when it exceeds a value α+

i > 1.
Following Ref. [36], the aggregated quantity σ =∑N
i=1 μiχi represents the overall sentiment of the market

where the weights μi > 0 are a measure of the market impact
of each trader.

2Fundamentalist traders, on the other hand, trade based on
calculations of whether a stock is over- or undervalued according
to some model of the fair or correct price.

3The strategy described below, or minor variations of it, are
implementable on some trading platforms by placing a trailing stop
order.

To use the results of Sec. II we must make the mild
assumption that ln α+

i = − ln α−
i := ρi for each trader. Then

the relationship between r(t) and the state χi(t) of each trader is
defined by the binary PI operator χi(t) = IHi

[r](t) whose PR
function is the shift Hi(r) = H (r − ρi) of the step function
H (r) [see Fig. 3(c)]. Moreover, the sentiment is related to
the log-price by the PI operator σ (t) = IR[r](t) with the PR
function R(r) = ∑N

i=1 μiHi(r).
So far, each agent’s PI operator reacts to the same input,

namely the log-price r(t). We now introduce coupling between
the traders by replacing the log-price r in the trading strategy of
the i-th trader with the aggregated quantity ξi = ∑N

j=1 aijχj +
bir . This leads to the network model

χi(t) = IHi

⎡
⎣ N∑

j=1

aijχj (t) + bir(t)

⎤
⎦ ; σ =

N∑
j=1

μjχj , (3)

where bi,μi � 0. The coefficients aij � 0 measure the (attract-
ing) influence of the j -th trader upon the decision making of
the i-th trader. Using the composition formula for PI operators
(as in the above mechanical example), the solution of model (3)
takes the form of the PI operator relationship χi(t) = IĤi

[r](t)
between the state of each trader and the log-price r , where the
set of thresholds of the step response functions Ĥi is a subset of
the set of thresholds ρi of the functions Hi . The composition
formula for PI operators with continuous PR functions [31]
requires justification when applied to (3) with discontinuous
Hi but can be derived using Kurzweil integral theory [37].
The PR curve R(r) = ∑N

i=1 μiĤi(r) of the PI relationship
σ (t) = IR[r](t) between the log-price and the sentiment can
be obtained by testing (3) with an increasing input r(t) [see
Fig. 6(a)] or by solving the algebraic system

Ĥi(r) = H

⎡
⎣ N∑

j=1

aij Ĥj (r) + bir − ρi

⎤
⎦ (4)
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FIG. 6. (Color online) (a) PR curve of a network (3) of binary PI
operators whose PR curves are as in Fig. 3(c) (momentum traders). To
define the adjacency matrix aij we use, as an example, an undirected
unweighted Erdős-Rényi network (i.e., a graph in which each pair of
nodes is connected by an edge with equal, independent probability) of
N = 104 nodes with mean degree 5. Threshold values ρi for the nodes
are taken from the normal distribution with mean 7 and variance 1.
Other parameters are μi = 1 and bi = 1 for all i. We start with r = 0
and all nodes in state −1; we then increase r until all nodes reach
state 1. (b) Size distribution of avalanches exhibited by the same
system. The statistics is calculated from 1000 realizations of random
networks and ρi . The spike in the distribution for large avalanche
sizes corresponds to the large jump in (a).
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derived from (3). A large jump in the PR curve in Fig. 6(a)
corresponds to an avalanche: A change in the state of one
node causes other nodes to change their states (via network
connections), triggering a cascade.

If we replace the binary PI operator χi(t) = IHi
[ξi](t) at

the nodes of model (3) by the simple input-output relation-
ship χi(t) = H (ξi(t) − ρi) (a memoryless ideal switch), the
response of the network to increasing inputs, i.e., the PR func-
tion, remains the same. Hence, the many results describing PR
functions of networks of Heaviside switches (such as the statis-
tics of avalanches and critical parameters, see, e.g., Ref. [5]) are
equally valid for PI networks (3); see Fig. 6(b). The equation
σ (t) = IR[r](t) then explicitly describes the response of the PI
network to arbitrary inputs in terms of its PR function R, while
Eq. (4) links the network topology (in terms of its adjacency
matrix) with the PR function R = ∑N

i=1 μiĤi . In particular,
the network of binary PI nodes can be set to produce the same
response to increasing inputs as any given Ising spin model.
However, the response of the Ising model to nonmonotone
inputs is more complicated than that of the PI network.

We now compute an example of the network model (3) for
interacting momentum traders, see Fig. 6 for the parameters
of the network. Figure 6(a) presents the PR curve of the
PI relationship σ (t) = IR[r](t) between the logarithmic asset
price and the market sentiment (a solution of the model). This
PR curve has been obtained simply by testing system (3) with
an increasing input r(t). The histogram in Fig. 6(b) shows
statistics of avalanche sizes for the PR curve calculated from
1000 realizations of random networks and node thresholds.
A large jump in the PR curve corresponds to a big avalanche
involving many nodes.

We stress that (large) jumps of the network PR curve R

are due to avalanches (caused by interactions between nodes)
rather than the discontinuity of the response function Hi at the
nodes. A similar discontinuous PR curve R can be generated
by a network of the PI nodes with continuous states, where
each node has the continuous PR curve shown in Fig. 3(d) (PI
models of investment (supply) strategies with a continuous PR
curve, such as the one shown in Fig. 3(b), have been proposed
in the economics literature [38]). The counterpart of Eq. (4)
for a network model with such nodes can result in a PI operator
with a discontinuous response caused by avalanches.

It is worth noting that the PR function of the stop operator
shown in Fig. 3(a) generates clockwise hysteresis loops. This is
in contrast to the counterclockwise hysteresis loops produced
by the play operator whose PR function is shown in Fig. 3(b).
PI operators of momentum traders [Fig. 3(c)] can generate
loops with either orientation.

B. Pricing models

We can now feed changes in the overall sentiment back
into the price to generate asset pricing models. We start with a
simple mean-field feedback case where the following simpli-
fying assumptions allow us to compute analytical solutions and
describe how the transition from continuous to discontinuous
PR curves dramatically changes the market dynamics.

It is reasonable to reinterpret r(t) in the definition of ξi as
being an exogenous Brownian information stream rather than
the log-price. The log-price, now denoted r∗(t), is assumed to

be modified by the sentiment in a proportional way leading to
r∗(t) = r(t) + κσ (t), where the parameter κ > 0 quantifies the
effect of momentum traders on the price (if, say, more momen-
tum traders enter the market, then κ will increase). We choose
μi = 1/N, aij = κ/N , and bi = 1 so χi(t) = IHi

[r∗](t) and,
as before, the traders react solely to the price. Finally, the
thresholds ρi are chosen uniformly from an interval [c,a].
Plausible ranges of the parameters a and c can be estimated
as follows. A momentum trader reacting to price changes on
the order of, say, 1% would trade too frequently, incurring
significant transaction costs, with most of the trading being
driven by random fluctuations rather than actual changes in the
price trend. Conversely, thresholds of the order of 50% would
result in very infrequent trading that misses many moderately
sized trends. The parameter κ can be estimated by considering
the total influence of momentum traders on the asset price. A
reasonable estimate of the difference in price between a market
with maximum positive sentiment (σ = 1) and negative senti-
ment (σ = −1) is 20–50% ceteris paribus (although it may go
much higher during an asset bubble as new speculators enter
the market: During such an event the distribution of threshold
values may also move lower as traders’ investing time horizons
shorten). The values [a,c] = [0.05,0.45] that have been used
in computations for N = 10 000 agents presented in Fig. 7 are
consistent with these estimates.

Explicit calculations are possible in the continuum limit
N → ∞ (the details are available in Appendix B). The PR
curve R of the PI operator σ = IR[r] that relates the Brownian
input r to the log-price r∗ = r + κσ becomes a step function
at the critical value κc = (a − c)/2.

The supercritical case κ > κc exhibits extreme jumps
between σ = ±1 when all the traders change their state
simultaneously [see Fig. 7(d)], resulting in a bimodal price
change distribution. However, in reality, these systemwide
avalanches are unlikely to occur as some of the modeling
assumptions will break down. In particular, the market will
no longer function with sufficient liquidity (counterparties to
a desired transaction may not be available) and the full impact
of the avalanche will be spread out over time. A more detailed
discussion of such illiquid markets in a related agent-based
model can be found in Ref. [36].

The subcritical case κ < κc is more relevant to normal
market conditions and also more subtle. Here the continuous
PR curve of the operator σ = IR[r] has the shape shown in
Fig. 3(d). The dynamics can be reformulated as a random
walk of a particle on a closed rectangular domain with motion
along the right (left) boundary corresponding to increasing
(decreasing) σ and motion on the interior and upper and
lower boundaries corresponding to constant σ (see Fig. 9
in Appendix B). For a fixed κ < κc this model provides an
analytic approximation (see Appendix B) to the distribution
of log-price changes over a given time interval such as can
be seen in Fig. 7(c). The tails of these distributions in actual
markets are often claimed to be power laws [39] but here
they are in fact close to a sum of different Gaussian and error
functions.4 For completeness of the mathematical analysis we

4A critique of the naive use of linear regression to claim evidence
of power laws can be found in Ref. [40].
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FIG. 7. (Color online) (a) Time series of the log-price r∗(t) (dashed red line) and the exogenous Brownian information stream r(t) (solid
blue line). (b) Daily increments of the log-price r∗(t) (dashed red line) and r(t) (solid blue line). Plots (a) and (b) were obtained for N = 10 000
traders with thresholds uniformly distributed over the interval [c,a] = [0.05,0.45] for κ = 0.15. (c) Histogram of the daily log-price increments
(red dots) and the exogenous Brownian information stream (blue squares) obtained from 50 simulations with the same parameters as in (b).
The black curve is the analytic approximation for r∗(t) (see Appendix B). (d) Same as (c) but for κ = 0.21, which is slightly above the critical
κc = 0.2.

note that as κ approaches κc, the distribution becomes bimodal
as in Fig. 7(d), where the smaller mode corresponding to large
changes of the price separates from the main Gaussian mode.

The existence of a critical value together with the possibility
of κ varying in time suggests a mechanism for extreme market
volatility and the associated bubbles and crashes and fat tails.
As a particular asset class receives increased attention or is
perceived to be undergoing some fundamental positive change,
the price will rise and attract more momentum traders and
short-term speculators. This will cause κ to increase through
the critical value and the system to evolve with σ at or close
to +1 until changes in the process r∗(t) trigger the drawdown
process and a systemwide downward cascade.

It is not our aim here to match the fat tails generated by
the simple model above with the approximate power laws
measured in real, highly complex, financial markets. Rather,
we have demonstrated theoretically a plausible mechanism
for generating fat tails. The model also predicts that as the
proportion of traders who use such a strategy increases,
the system will pass through a critical point beyond which
a systemic market failure is inevitable. We believe that
this model, due to its simplicity and theoretical tractability,
complements other heterogeneous agent-based models (see
Ref. [41] for examples) that also generate cascades and fat
tails but rely solely on numerical simulations.

Finally, we examine and compare some PR curves for a
scale-free network model. We also show that the use of the
theoretical results from Sec. II, together with a numerically
computed PR curve, can achieve significant computational
savings. We create an undirected unweighted network of
N = 10 000 nodes (agents) by taking node degrees from the
truncated power-law distribution,

Pk =
{
βk−2.5, 3 � k � 50

0, otherwise
(5)

(with the normalization constant β such that
∑

k Pk = 1), and
then randomly connecting pairs of nodes to obtain the network.
Let aij be the network adjacency matrix. We assign a threshold
to each agent from the Gaussian distribution with mean (a +
c)/2 and variance 1/20, but we only take values between c and
a from this distribution. All the agents are assigned the same
weight μi = 1/N , see (3).

The input of the i-th agent is given by

ξi(t) = r(t) + κσ (t) + κ̃Si(t), (6)

where r(t) is the external Brownian input to the system,
σ (t) = ∑

j μjχj (t) is the sentiment of the market, and Si(t) =∑
j aijμjχj (t)/

∑
j aijμj is the peer pressure for agent i.

We define the log-price of an asset at time t as r∗(t) =
r(t) + 0.12σ (t), which means that when κ = 0.12 and κ̃ = 0,
the agents make their decisions based solely on the price.
When κ̃ > 0, the agents additionally take into account the
states of their network neighbors so by varying κ and κ̃ we
can change weights of the components involved in agents’
decision making.

Figure 8(a) presents PR functions for a networked system
with three different pairs of values of κ and κ̃ . In order to
obtain the PR curves, we start with all agents in state −1 and
gradually increase the external input r from 0 until all agents
are in state +1. For each increment of r , we let the system
reach its stationary state (recall that switching of some agents
may increase the input of other agents above their threshold
and cause them to switch as well). Once the stationary state is
reached, we record the value of σ = σ̂i and the corresponding
value of r = ρ̂i (we record these values only if there were any
switches). Once all agents switched to +1, the set of recorded
pairs of r and σ gives us the piecewise constant PR curve R.

The operator σ (t) = IR[r](t) that maps the time series of the
Brownian information stream to the time series of the market
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FIG. 8. (Color online) (a) PR functions for a random network of
10 000 agents with degree distribution (5) for three different pairs of
values of κ and κ̃ (we chose the values such that all three PR curves
reach the saturation value 1 at the input value 0.2). (b) Histograms of
the daily log-price increments r(t) + 0.12σ (t) (thick curves) obtained
from 1000 simulations using the corresponding PR curves in (a).
The thin curve shows the distribution of the absolute values of the
increments for the exogenous Brownian information stream r(t). The
values of other parameters are the same as in Fig. 7 unless specified
otherwise in the text.

sentiment for the network model can now be understood, and
implemented numerically using the above PR curve R, as
an equivalent system of independent effective agents χ̂i . The
number of such agents is equal to the number of discontinuity
points in R (which is generally smaller than the number of
original agents). Thresholds of independent effective agents
are given by the discontinuity points ρ̂i of the PR function,
while the weight of the i-th agent is equal to half the change
in the value of the PR function at the i-th discontinuity point,
μ̂i = (σ̂i − σ̂i−1)/2 (that is, μ̂i is the sum of the weights of
all the agents in the network that switch collectively as the
input increases through the value ρ̂i). All effective agents are
independent of each other, i.e., the input of each effective
agent is just the Brownian information stream r(t) [cf. Eq. (6)].
When we replace all agents of the original networked model
with the effective agents, the system σ (t) = ∑

i μ̂i χ̂i(t) that
we obtain will be equivalent to the original networked system
(both systems produce the same output σ in response to any
variation of the input r). In other words, we no longer need to
consider the network structure because its effect is embedded
in the thresholds and weights of the effective agents. This gives
us a substantial computational advantage: Not only the number
of agents is reduced, but there is no need for computationally
expensive calculation of peer pressure, and since the system no
longer exhibits cascades of activations it immediately reaches
a stationary state for each value of r .

Figure 8(b) presents histograms of the daily log-price incre-
ments for the network model; they correspond to the PR curves
shown in Fig. 8(a). We define log-price as r(t) + 0.12σ (t) and
run 1000 simulations [here we calculate the increments using
the system of independent effective agents and not the original
system of interacting agents as in Fig. 7(c)]. In this example,
the fattest tail of the log-price returns distribution is achieved
when the pressure of network neighbors has the strongest
effect on the decision making of the agents (the largest κ̃).
The least-fat tail occurs when the network structure is absent
and agents react solely to the price.

IV. CONCLUSIONS

To summarize, we have considered input-driven dynamics
on networks with PI operators at the nodes. Examples of such
nodes are provided by models of plasticity and friction and
some common trading strategies. We have shown that no
matter how complex the network, its response to arbitrary
variations of the input is described by an effective PI operator
and hence can be deduced in a simple and explicit way
from the network’s response to a monotonically increasing
input. Using these results we have shown that one-dimensional
models of friction and plasticity with interacting elastic and
dry friction elements can be reduced, in case of not-too-strong
coupling, to the standard PI model without interactions. We
have also derived the analytical form of the fat-tailed price
returns induced by momentum-based trading in a financial
market. Extending the analysis to allow for the varying
influence of momentum traders (the parameter κ) may yield
new insights into the approximate power-law scalings claimed
for actual markets. Finally, the numerical method used for our
simulations provides a computationally efficient alternative for
solving the dynamics on arbitrarily complex networks of PI
operators and with arbitrary inputs.
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APPENDIX A: SIMULATION OF THE
MECHANICAL MODEL

In this section we consider in more detail the mechanical
model schematically illustrated in Fig. 1(b) and described
by Eq. (2). This model can be used to represent a bunch of
one-dimensional rigid fibers [shown as nodes in Fig. 1(b)]
elongated along the horizontal axis, whose left and right ends
are attached (by springs) respectively to the left and the right
plates. The displacement of fiber i relative to the left plate
is ξi . We assume perfect elastic interactions between each
fiber i and the left (and the right) plate with coefficients ki

(and k̃i correspondingly). Furthermore, we assume that each

032822-7
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fiber is in contact with some other fibers along its length and
there is Maxwell friction when they move with respect to one
another. We model the friction force acting on the i-th fiber
due to its relative displacement with respect to the j -th fiber
by aijSrij

[ξj − ξi], where fiber interaction strengths aij are
non-negative and Srij

denotes the stop operator of half-width
rij � 0 [see Fig. 1(a)] with input ξj − ξi . Initially, all forces
and displacements in the system are 0. The time-varying input
of the system is the displacement u of the right plate relative to
its initial position [see Fig. 1(b)]; the left plate does not move.
All the motions are quasistatic.

Equation (2), which describes the balance of forces for fiber
i, can be written as

(ki + k̃i)ξi +
∑
j∈Ni

aij Srij
[ξi − ξj ] = k̃iu, (A1)

where Ni denotes the set of indices j for which aij > 0 (i.e.,
Ni is the set of fibers interacting with fiber i or, using different
terminology, the set of neighbors of node i in the network with
the adjacency matrix aij where each fiber is represented by a
node).

Equation (A1) represents a piecewise linear system, which
we can solve in each of the linear regimes while tracking
the transitions from one linear regime to another. A switch
between linear regimes occurs when any of the stop operators
Srij

saturates (i.e., when the magnitude of the friction force
between any pair of fibers i and j achieves its maximal possible
value rij ) or desaturates (the magnitude of the friction force
becomes smaller than rij ); we describe this by saying that link
ij saturates or desaturates. Before we consider the transitions
between linear regimes in more detail, let us write Eq. (A1) in
the form of a linear matrix equation

Mξ̄ = K̃u + D̄, (A2)

where ξ̄ = {ξ1, . . . ,ξn} and K̃ = {k̃1, . . . ,k̃n}. The matrix M

and vector D̄ take specific values [given by Eqs. (A5) and (A6)
below] for each of the linear regimes.

We introduce a new quantity Oij which denotes the current
reference point (the origin) for the interaction Srij

[ξi − ξj ]
between nodes i and j . Specifically, Oij is the value of
ξi − ξj at which Srij

[ξi − ξj ] = 0, provided that the relative
displacement ξi − ξj approaches the value Oij monotonically
from its current value. Notice that Oij = −Oji . We also
introduce a binary quantity lij to represent the current state
of link ij (interaction between fibers i and j ),

lij =
{

1 , if link ij is unsaturated

0 , if link ij is saturated
. (A3)

We assume that initially Oij = 0 for all the links and lij = 1
(all links are unsaturated). These quantities will be updated
according to the rules described below when the variations in
the input parameter u become sufficiently large.

If a link ij is unsaturated (lij = 1), then the value of Srij
is

given by (ξi − ξj − Oij ). In the case when link ij is saturated
(lij = 0), the value of Srij

is given by rij sgn(ξi − ξj − Oij ).
Therefore, using the notation Oij and lij , we can rewrite
Eq. (A1) as

(ki + k̃i)ξi +
∑
j∈Ni

lij aij (ξi − ξj − Oij )

+
∑
j∈Ni

(1 − lij )aij rij sgn(ξi − ξj − Oij ) = k̃iu. (A4)

Equation (A4) can be written in matrix form (A2) where the
elements of M and D̄ are given by

Mij =
{

−aij lij , if i �= j

ki + k̃i + ∑
j∈Ni

aij lij , if i = j
. (A5)

and

D̄i =
∑
j∈Ni

aij (lijOij − (1 − lij )rij sgn(ξi − ξj − Oij )). (A6)

For example, if we consider three fibers connected as in
Fig. 1(b), then Eq. (A2) takes the form

⎛
⎜⎜⎜⎝

k1 + k̃1 + ∑
j∈N1

a1j l1j −a12l12 −a13l13

−a21l21 k2 + k̃2 + ∑
j∈N2

a2j l2j −a23l23

−a31l31 −a32l32 k3 + k̃3 + ∑
j∈N3

a3j l3j

⎞
⎟⎟⎟⎠

⎛
⎜⎝

ξ1

ξ2

ξ3

⎞
⎟⎠

=

⎛
⎜⎝

k̃1

k̃2

k̃3

⎞
⎟⎠ u +

⎛
⎜⎝

∑
j∈N1

a1j [l1jO1j − (1 − l1j )r1j sgn(ξ1 − ξj − O1j )]∑
j∈N2

a2j [l2jO2j − (1 − l2j )r2j sgn(ξ2 − ξj − O2j )]∑
j∈N3

a3j [l3jO3j − (1 − l3j )r3j sgn(ξ3 − ξj − O3j )]

⎞
⎟⎠ . (A7)

Suppose we want to calculate the values of ξi as the input
u varies. The solution of Eq. (A2) is given by

ξ̄ = M−1(K̃u + D̄). (A8)

However, we need to update M and D̄ each time a link saturates
or desaturates.

The condition for the saturation of an unsaturated link
ij is ξi − ξj = Oij ± rij . We note that when we check this
condition for all pairs of i and j , then it is sufficient to consider

only one of the two cases, for example,

ξi − ξj = Oij + rij , (A9)

since the other case is captured due to Oij − rij = −(Oji +
rji). Using the link saturation condition (A9) and Eq. (A8) we
obtain the values of uij at which the link between nodes i and
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TABLE I. Table presenting the sequence of input values u, and
the corresponding ξ1 values, at which stop operators Srij saturate or
desaturate for the example shown in the upper panel of Fig. 4. Each
saturation or desaturation creates a corner point of the piecewise linear
trajectory. Steps 4 through 10 correspond to the nonclosed loop shown
by the bold line. The sequence of saturations for the lower panel of the
same figure is as follows: Sr23 (at u ≈ −1.56), Sr13 (at u ≈ −2.02),
Sr12 (at u = −33).

Step u ξ1 Comments

0 0 0 u starts decreasing
1 − 1.56 − 0.5 Sr23 saturates to +r23

2 − 2.02 − 0.65 Sr13 saturates to +r13

3 −33 −2 Sr12 saturates to +r12

4 −100 −2 u changes direction,
Sr12 remains saturated

5 − 96.97 − 0.77 Sr23 saturates to −r23

6 − 95.2 0 Sr13 saturates to −r13 causing
subsequent desaturation of Sr12

7 −80 0.66 u changes direction
8 − 83.11 − 0.35 Sr23 saturates to +r23

9 − 84.04 − 0.65 Sr13 saturates to +r13

10 −100 − 1.34 u changes direction
11 − 96.89 − 0.33 Sr23 saturates to −r23

12 − 96.12 − 0.08 Sr12 saturates to +r12

13 − 95.93 0 Sr13 saturates to −r13 causing
subsequent desaturation of Sr12

14 −90 0.26 u changes direction
15 − 93.11 − 0.75 Sr23 saturates to +r23

16 − 94.04 − 1.05 Sr13 saturates to +r13

17 −97 − 1.18 u changes direction
18 − 93.89 − 0.17 Sr23 saturates to −r23

19 − 92.96 0.13 Sr13 saturates to −r13

20 −75 0.91 end of simulation

j saturates,

uij = Oij + rij + (M−1D̄)i − (M−1D̄)j
(M−1K̃)i − (M−1K̃)j

. (A10)

Hence, we can calculate ξi from Eq. (A8) for all u (without
the need to update M and D̄) until u passes through any of
uij values. When u reaches any of uij , this will indicate that
we transition to a new linear regime and thus have to calculate
new M and D̄ as lij changes from 1 to 0 at this point.

The desaturation of a saturated link ij occurs when ξi − ξj

has a turning point (passes through a local maximum or
minimum value). There are two ways this can happen. First,
due to complex interactions between the nodes, a link ij

may desaturate due to the saturation of another link mn (this
happens in the example shown in Fig. 4 as described in steps
6 and 13 of Table I). Second, saturated links may desaturate
when the input u has a turning point. (Interestingly, saturated
links may remain saturated when u makes a turning point; this
happens in the example shown in Fig. 4 as described in step
4 of Table I where Sr12 does not desaturate.) In both cases,
we need to determine whether ξi − ξj has a turning point by
evaluating the sign of the derivative of ξi − ξj with respect to
u. The derivative is obtained from Eq. (A8) and is given by

(ξi − ξj )′u = (M−1K̃)i − (M−1K̃)j . (A11)

In the first case, we need to evaluate the sign of (ξi − ξj )′u
before and after the saturation of mn. Moreover, a change in lij
will affect matrix M and therefore further changes in (ξi − ξj )′u
(and thus in lij ) are possible. This means that we need to iterate
the evaluation of (ξi − ξj )′u, lij and M until lij reaches a steady
state.

In the second case, we need to find a partition of previously
saturated links into a set of links that remain saturated and
a set that becomes desaturated. These sets should ensure the
consistency condition on (ξi − ξj )′u when u makes a turning
point that (ξi − ξj )′u should change the sign for links that
remain saturated and not for links that become desaturated.
Similarly to the first case, finding the set of desaturating links
may be not straightforward because of the dependency of
(ξi − ξj )′u on lij . However, this can be done numerically by
simply looping through all possible partitions and finding the
one that leads to consistency.

Finally, for the resulting set of links that became desaturated
we calculate the new Oij from ξi − ξj , rij , and the current Oij

as follows:

Onew
ij = ξi − ξj − sgn(ξi − ξj − Oij )rij . (A12)

The above algorithm has been used to produce Figs. 4 and 5.
For example, Table I presents the sequence of input values u

at which stop operators Srij
saturate or de-saturate for the

example shown in Fig. 4.

APPENDIX B: ANALYSIS OF THE PRICING MODEL

In this section we discuss in more detail the pricing model
r∗(t) = r(t) + κσ (t), where r∗ is the log-price of the asset, r

is the exogenous Brownian information stream, the parameter
κ quantifies the effect of momentum traders on the price, and
the sentiment of the market σ is defined as the arithmetic mean
of the states χi of momentum traders,

σ = 1

N

N∑
i

χi(t). (B1)

Dynamics of the states are driven by the log-price according
to the PI input-output relationship, χi(t) = IHi

[r∗](t), which
closes the model. Here the PR function Hi(r∗) = H (r∗ − ρi)
is the step function with threshold ρi chosen uniformly from
[c,a].

Testing the system with an increasing input, we see that in
the continuum limit N → ∞ the exogenous Brownian input
and the variables σ and r∗ are related by the formulas

σ (t) = IR̂[r + κσ ](t), r∗(t) = r(t) + κIR̂[r∗](t), (B2)

where the PR function of the PI operator IR̂ has the profile
shown in Fig. 3(d) with ρ1 = c and ρ2 = a. According to our
results, these relationships can be easily solved explicitly,

σ (t) = IR[r](t), r∗(t) = r(t) + κσ (t) (B3)

and two cases are possible. In the subcritical case, κ < κc =
(a − c)/2, the PR function R in these relationships also has
the shape shown in Fig. 3(d) with the same ρ1 = c but with a
smaller ρ2 = a − 2κ > ρ1. In the supecritical case κ > κc, the
function R is the step function with the threshold c. That is, in
the supercritical case, due to a global avalanche, all the traders
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FIG. 9. Rectangular random walk (w,σ ). At each time step, a
particle makes one of two possible moves with equal probability as
shown by arrows. It moves either to a neighboring node or, if it is at
the upper right or lower left corner, possibly to the same node.

switch their state simultaneously causing σ to jump between
the values ±1. The statistics of the intervals between jumps
can be found by solving an exit time problem.

We first consider the subcritical case which is more
relevant to normal market conditions and more interesting.
Our objective is to calculate the profile of the daily log-price
increments histogram shown in Fig. 7(c). For this purpose, we
first find the stationary distribution of the stochastic process
σ (t) = IR[r](t). The shape of the PR curve R allows us to
describe this process as a random walk of a particle in a
rectangle, where the vertical coordinate of the particle is σ ,
while the horizontal coordinate is an auxiliary variable w, see
Fig. 9. The motion of the particle (w(t),σ (t)) is driven by the
Brownian input r(t). For simplicity, we describe the random
walk in a discrete time and state setting. In this case, the particle
lives on a rectangular mesh with nx columns and ny rows and
the Brownian input is represented by a random walk r which
at every time step with equal probability makes one step left
or one step right along a uniform mesh on the real line. First,
assume that the input r moves left at some moment. Then, if
the particle was not on the left side of the rectangle (left column
of the mesh), it also moves one step left to a neighboring node;
it moves one step down from any node of the left side, except
from the lower corner; and, if the particle was in the lower
left corner of the rectangle, it remains there. Similarly, when r

moves right, so does the particle if it was not on the right side
of the rectangle; it moves one step up from any node of the
right side, except from the upper corner; and it remains in the
upper right corner if it was there (see Fig. 9). In this model,
the horizontal and vertical step of the rectangular mesh are
related by |�w| = (κc − κ)|�σ |, the horizontal step equals
the step of the input mesh, |�w| = |�r|, and the number
of rows and columns in the rectangular mesh are related
by cny = 2(κc − κ)nx . These relationships ensure that the
increment of the log-price equals �r∗ = �r + κ�σ , where

�r and �σ are the increments of the input and the vertical
coordinate of the particle at the same time step, respectively.

A simple calculation shows that the probability density of
the stationary distribution for the random walk (w,σ ) linearly
decreases on the lower (upper) side of the rectangle from the
lower left to the lower right (upper right to upper left) corner
and is uniform on the rest of the rectangle. In the continuous
time or state limit (nx,ny → ∞), when the input r(t) becomes
the continuous Brownian motion, the density function of
the stationary probability distribution for the random process
(w(t),σ (t)) on the rectangle 
 = {0 � w � c, 0 � σ � 2} is

ρst (w,σ ) = (c − w)δ(σ ) + wδ(σ − 2) + κc − κ

c(a − 2κ)
, (B4)

where δ denotes the Dirac δ function. We note that in the
continuum limit the process w becomes the reflected Brow-
nian motion on the interval [0,c] (with reflecting boundary
condition at both ends).

Calculations of the profile of the histogram for daily log-
price increments �r∗

n = r∗(tn + τ ) − r∗(tn), where τ = 1 day
is a fixed time interval and tn = nτ , will be performed in the
continuous time or state setting. Assuming ergodicity, statistics
of the increments �rn obtained from a typical long trajectory
of the processes r , and (w,σ ) can be approximated by the
probability density function of the random variable

�r∗ = r∗(τ ) − r∗(0) = r(τ ) + κ(σ (τ ) − σ (0)), (B5)

where the stationary process (w(t),σ (t)) bounded by the
rectangle 
 is driven by the Brownian input r(t) [with
r(0) = 0] and has the law (B4). The following calculations
are based on the assumption that the maximal increment of
the Brownian input r during 1 day remains bounded by the
quantity c/2 with a probability close to 1,

P
(

max
0�t�τ

|r(t)| � c/2
)


 1. (B6)

For the plots shown in Fig. 7, the variance of the Brownian
input r(T ) at the end of the time interval T = 40 years (with
250 trading days per year) has been set to 1. Hence, for
one trading day r(τ ) ∼ N (0,�2) with the standard deviation
� = 0.01. Since c/2 = 2.5� for these plots, P (|r(τ )| �
c/2) = 0.988, which agrees with (B6). We will consider only
those input trajectories that satisfy |r(t)| < c/2 on the whole
time interval 0 � t � τ . The corresponding trajectories of the
process (w,σ ) cannot reach both left and right sides of the
rectangle 
 during the same time interval. Trajectories for
which this occurs will be disregarded.

Thus, let us consider trajectories (w(t),σ (t)) corresponding
to different realizations of the Brownian r(t) on the time
interval 0 � t � τ and different initial data (w(0),σ (0)),
restricting our attention to initial data from the right half of
the rectangle 
, i.e., with c/2 � w(0) � c, 0 � σ (0) � 2.
(Trajectories starting at the left half of 
 can be treated
similarly). Since we assume that r(t) > −c/2 for all 0 � t � τ

[other inputs are disregarded due to (B6)], a trajectory starting
from the right half of 
 never reaches the left side of the
rectangle. For such trajectories, the log-price increment (B5)
can be easily expressed in terms of the variables w(0), σ (0),
r(τ ), and m(τ ) = max0�t�τ r(t), the maximum input value,
where the probability density of the joint distribution for the
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Brownian motion and its running maximum is defined by the
relation

ρbr (r,m) =
{

2(2m−r)
τ
√

2πτ
e− (2m−r)2

2τ , m � 0,m � r,

0, otherwise.
(B7)

The two-dimensional random variable (r(τ ),m(τ )) and the
two-dimensional variable (w(0),σ (0)), which has the law (B4),
are independent. As the expression for �r∗ depends on
relations between these variables, we classify trajectories into
a few groups.

If σ (0) = 2, then the trajectory remains on the upper
boundary of the rectangle 
 all the time (σ (t) = 2 for all
0 � t � τ ), hence the log-price increment (B5) equals the
increment of the input, �r∗ = r(τ ). Since r(τ ) is normally
distributed, so is �r∗ for such trajectories,

ρ(�r∗ = y,σ (0) = 2) = 3c

8(a − 2κ)

e− y2

2τ√
2πτ

, (B8)

where P = 3c/(8(a − 2κ)) is the total probability to find the
point (w(0),σ (0)) on the right half of the upper side of the
rectangle, see (B4).

Another class consists of trajectories that start below the
upper side of the rectangle 
 and never reach its right side
during the day. This class is defined by the relations

0 � σ (0) < 2; c/2 � w(0) < c − m(τ ). (B9)

For such trajectories, σ (t) = σ (0) for all 0 � t � τ and
hence �r∗ = r(τ ), as in the previous case. Integrating the
product of the probability densities ρst(w,σ )ρbr(r,m) over
domain (B9) with respect to the variables w(0) = w, σ (0) = σ ,
and m(τ ) = m, we obtain the probability density function of
the log-price increment for this class of trajectories. After some
manipulations, this probability density can be presented as the
integral

ρ(�r∗ = y,σ (0) < 2,w(0) < c − m(τ ))

= 1

2c(a − 2κ)

∫ c/2

max{0,y}
ρbr (y,m)

(
c

2
− m

)

×
(

c

2
+ m + 4(κc − κ)

)
dm, (B10)

which can be expressed explicitly in terms of the Gaussian and
the error function.

The next set of conditions,

m(τ ) + w(0) > c;
m(τ ) + w(0) − c

κc − κ
< 2 − σ (0), (B11)

ensures that a trajectory reaches the right side but not the upper
side of the rectangle 
. For such trajectories,

�r∗ = r(τ ) + κ

κc − κ
(m(τ ) + w(0) − c). (B12)

Hence, we obtain the probability density function ρ(�r∗ = y)
of the log-price increment for this class by integrating the
product ρst(w,σ )ρbr(r,m), where r = r(τ ) is related to the
variables w = w(0),σ = σ (0),m = m(τ ) by formula (B12)
with �r∗ = y kept fixed; relations (B11) define the domain
of integration in the product of the domain 
 of the pair (w,σ )

and the line m. The resulting triple integral can be reduced to
the sum of the following two terms:

ρ(�r∗ = y,0 < σ (0) < σ (τ ) < 2)

= c0

∫ 2

max{0,(y−c/2)/κc}
(2 − p) dp

×
∫ c/2

max{0,y−κcp}
ρbr (y − κp,q + (κc − κ)p) dq, (B13)

ρ(�r∗ = y,0 = σ (0) < σ (τ ) < 2)

= c0

κc − κ

∫ 2

max{0,(y−c/2)/κc}
dp

×
∫ c/2

max{0,y−κcp}
q ρbr (y − κp,q + (κc − κ)p) dq,

(B14)

where c0 = (κc − κ)2/(c(a − 2κ)).
Finally, there are trajectories starting below the upper side

of the rectangle that reach the upper side during the day. This
class is defined by the conditions

0 < 2 − σ (0) <
m(τ ) + w(0) − c

κc − κ
(B15)

and the corresponding log-price increment equals �r∗ =
�r + κ(2 − σ (0)). For the subcritical parameter set we con-
sider, the probability of having such trajectories is small
and their contribution has almost no effect on the profile
of the probability density plot. Hence, we have discarded a
correction to the probability density function of �r∗ due to
such trajectories.

Thus, denoting the sum of contributions (B8), (B10), (B13),
and (B14) from different classes of trajectories starting in the
right half of 
 by ρr (y), the symmetrized sum

ρ(�r∗ = y) = ρr (y) + ρr (−y) (B16)

provides an analytic approximation to the probability density
function of the log-price daily increments, see the theoretical
curve in Fig. 7(c). The term ρr (−y) accounts for trajectories
starting in the left half of 
.

We now look at the critical value κ = κc. In the critical
case, each trajectory that reaches the right side of the rectangle
immediately jumps to its upper side. Hence, ρr (y) is the sum
of expressions (B8) and (B10) only [with no terms of the
form (B13) and (B14)]. The symmetrized sum (B16) describes
the main central mode of the probability density distribution
shown in Fig. 7(d). One small side mode appears due to
trajectories that start on the lower side of the rectangle and
reach (jump to) the upper side, that is, trajectories that have
been disregarded in the subcritical case. The profile of the side
modes is described by the left and right shifts ρside(±(y + 2κ))
of the function

ρside(y) = 1

2c2

∫ c/2

max{y,0}
m2ρbr (y,m) dm. (B17)

Hence, the central mode and side modes can be explicitly
expressed as a combination of the Gaussian and the error
function.
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In the supercritical case κ > κc, the central mode is the
same as in the critical case, while the side modes have the

same shape as in the critical case but shift further to left and
right.
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