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Statistical properties of Barkhausen noise in amorphous ferromagnetic films
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We investigate the statistical properties of the Barkhausen noise in amorphous ferromagnetic films with
thicknesses in the range between 100 and 1000 nm. From Barkhausen noise time series measured with the
traditional inductive technique, we perform a wide statistical analysis and establish the scaling exponents τ , α,
1/σνz, and ϑ . We also focus on the average shape of the avalanches, which gives further indications on the
domain-wall dynamics. Based on experimental results, we group the amorphous films in a single universality
class, characterized by scaling exponents τ = 1.28 ± 0.02, α = 1.52 ± 0.3, and 1/σνz = ϑ = 1.83 ± 0.03,
values compatible with that obtained for several bulk amorphous magnetic materials. Besides, we verify that the
avalanche shape depends on the universality class. By considering the theoretical models for the dynamics of a
ferromagnetic domain wall driven by an external magnetic field through a disordered medium found in literature,
we interpret the results and identify an experimental evidence that these amorphous films, within this thickness
range, present a typical three-dimensional magnetic behavior with predominant short-range elastic interactions
governing the domain-wall dynamics. Moreover, we provide experimental support for the validity of a general
scaling form for the average avalanche shape for non-mean-field systems.
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I. INTRODUCTION

Barkhausen noise (BN) can be understood as a result of
the complex microscopic magnetization process and irregular
motion of domain walls (DWs) in ferromagnetic materials [1].
In recent years, it has attracted growing interest as one of the
best examples of response of a dynamical disordered system
exhibiting crackling noise, becoming an excellent candidate
for investigating scaling phenomena [2–5]. From this new
point of view, BN corresponds to an important playground
for the study of several systems in many situations, since,
remarkably, they present response signals, or time series, that
share common characteristic features. This is the case of, be-
sides BN in ferromagnetic materials [5–8], the seismic activity
in earthquakes [9–11], the dynamics of vortices in supercon-
dutors [12–14], the fluctuations in the stock market [15,16],
the acoustic emission in microfractures processes [17,18], the
shear response of a granular media [19,20], and propagation
of fluids in porous media [21]. The reason why the interest
is revived in this classical and old effect is mainly motivated
by a fundamental question whether there is any simple law
governing the seemingly random avalanches events.

Noise statistical analysis suggests that general systems with
avalanche dynamics can be classified into universality classes
characterized by the values of the scaling exponents [22].
A universality class of the Barkhausen noise in a sample
is commonly identified by measuring the distributions of
Barkhausen avalanche sizes and durations, average avalanche
size as a function of its duration, and power spectrum, which,
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typically, display scaling in a quite large range, with critical
exponents τ , α, 1/σνz, and ϑ , respectively [1]. In particular,
the statistical properties seem to exhibit universality, i.e., they
are independent on the microscopic details of the dynamics,
being controlled only by general properties such as the system
dimensionality and the range of the relevant interactions [21].

Large efforts have been devoted to relate experimental
scaling exponents to general properties of the avalanche
dynamics. For bulk materials, such as ribbons and sheets, well
known by exhibiting three-dimensional magnetic behavior,
there is an established and consistent interpretation of the BN
statistical properties. Despite the large number of experimental
works [23–31], for a long time, the universality seemed
difficult to be confirmed since the experimental exponents
spread in a wide range of values and did not show a good
agreement with theoretical results. However, nowadays, the
results are understood in terms of the depinning transition
of domain walls with two distinct universality classes for
amorphous and polycrystalline materials, associated to distinct
ranges of the interactions governing the DWs dynamics [31].

It is noticeable that most of the studies reported so far
are related to three-dimensional systems and bulk samples.
For two-dimensional systems and samples with reduced
dimensions, the BN statistical properties are less clear. On
the theoretical side, models and simulations [32–41] infer the
existence of two distinct universality classes, according the
range of interactions governing the DWs dynamics, as well
as indicate that three- and two-dimensional systems present
distinct exponents.

Experimentally, several interesting results have been ob-
tained for different ferromagnetic films through both magneto-
optical [42–52] and inductive [6,8,53] techniques. In the
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first line, Puppin et al. have reported the exponent τ ∼ 1.1
for Fe crystalline films, with thickness of 90 nm [42,43],
and, recently, have estimated τ ∼ 0.8–1.2 for amorphous
Fe73.5Cu1Nb3Si22.5B4 ferromagnetic films, with variable thick-
ness between 25 and 1000 nm [44], both results obtained
through measurements performed using a magneto-optical
elipsometer. Kim et al. [45] have presented τ ∼ 1.33 for
Co polycrystalline films, with thicknesses varying from 5
to 50 nm, and Shin et al. [46] have found τ ∼ 1.33 for Co
and MnAs films, with the same thicknesses, by measurements
using a magneto-optical microscope magnetometer, capable of
observing directly the motion of the DWs and the Barkhausen
avalanches [47]. Following the same line, Ryu et al. [48,49]
have shown for a 50-nm-thick MnAs film the crossover
between two distinct universality classes, which is caused
by the competition between long-range dipolar interaction
and the short-range DW surface tension, with τ varying
from 1.32 to 1.04, tuned by an increase of temperature from
20 ◦C until 35 ◦C. More recently, with similar experiments,
Atiq et al. [50] have obtained τ ∼ 1.02 for γ−Fe4N films
irrespective of the degree of texture of the film induced
by annealing temperature, while Lee has found τ ∼ 1.1 for
50-nm-thick NixFe1−x films, with x = 0, 0.3, 0.4, and 0.5,
independent of the film composition [51], and τ ∼ 1.33 for
NiO(tNiO)/Fe(30 nm) films with tNiO = 0, 30, 80, 100, and
150 nm [52]. Considering these reports found in literature
based on magneto-optical measurements [42–52], although
they restrict the analysis to distributions of jump sizes, when
compared to theoretical predictions, most of them do confirm
an essentially two-dimensional magnetic behavior for films,
as expected due to reduced thickness of the studied samples.

On the other side, via the traditional inductive tech-
nique [6,8,53], our group has reported results suggesting that
the two-dimensional magnetic behavior commonly verified
for films cannot be generalized for all thickness ranges. In this
sense, Santi et al. [53] have presented exponents τ ∼ 1.25 and
α ∼ 1.6 for amorphous Fe73.5Cu1Nb3Si22.5−xBx , with x = 4
and 9, ferromagnetic films in a wide range of thickness.
Papanikolaou et al. [6] have obtained a wide BN statistical
analysis for a 1000-nm-thick Permalloy polycrystalline fer-
romagnetic film and verified driving rate-dependent τ and α,
while 1/σνz and ϑ are constant critical exponents. Moreover,
as a fundamental signature of the avalanches, the average
temporal avalanche shape has been estimated and shown
to be given by a symmetric inverted parabola, providing
strong indications of the underlying physics, such as the
system dimensionality and kind and range of interactions
governing the avalanche dynamics. More recently, we have
obtained the same wide statistical analysis for Permalloy
polycrystalline ferromagnetic films with thicknesses between
100 and 1000 nm [8]. In that case, we grouped the films in
a single universality class since all films irrespective on the
thickness are characterized by the scaling exponents τ ∼ 1.5,
α ∼ 2.0, and 1/σνz ∼ ϑ ∼ 2.0 at the smallest magnetic-field
rate. Thus, by considering the two latter reports, we identify
a universal three-dimensional magnetic behavior, with pre-
dominant strong long-range dipolar interactions governing the
domain-wall dynamics, revealed by the quantitative agreement
between experimental results and the well-known predictions
for bulk polycrystalline magnets [31,36,37,54,55].

In this paper we report an experimental evidence for a three-
dimensional magnetization dynamics, governed by short-
range elastic interactions of the DWs, in amorphous ferromag-
netic films having different thickness from 100 to 1000 nm.
We investigate the statistical properties of Barkhausen noise
time series measured with the traditional inductive method. By
applying the traditional statistical treatment employed for bulk
materials, we analyze the scaling behavior in the distribution
of Barkhausen avalanche sizes, the distribution of avalanche
durations, the average avalanche size as a function of its
duration, and the power spectrum and establish the exponents
τ , α, 1/σνz, and ϑ . Here, we go beyond power laws and
also focus on the average shape of the avalanches due to
the irregular and irreversible motion of the domain walls
in a disordered ferromagnet, verifying that avalanche shape
depends on the universality class. Through this wide statistical
analysis and the comparison to theoretical predictions, we
group the amorphous films with distinct thicknesses in a
single universality class, providing further information on the
DWs dynamics in systems with reduced dimensions and the
role of structural character and film thickness on the scaling
behavior in the BN statistical properties in ferromagnetic films.
Moreover, we provide experimental support for the validity of
a general scaling form for the average avalanche shape for
non-mean-field systems.

II. EXPERIMENT

For the study, we analyze experimental Barkhausen noise
time series measured in a set of FeSiB amorphous ferro-
magnetic films with nominal composition Fe75Si15B10 and
thicknesses of 100, 150, 200, 500, and 1000 nm. The films
are deposited by magnetron sputtering onto glass substrates,
covered with a 2-nm-thick Ta buffer layer. The deposition
process is performed with the following parameters: base
vacuum of 10−7 Torr, deposition pressure of 5.2 mTorr with a
99.99% pure Ar at 20 sccm constant flow, and dc source with
current of 50 mA and 65 W set in the rf power supply for the
deposition of the Ta and FeSiB layers, respectively. During
the deposition, the substrate with dimensions of 10 × 4 mm2

moves at constant speed through the plasma to improve the
film uniformity, and a constant magnetic field of 1 kOe is
applied along the main axis of the substrate during the film
deposition in order to induce a magnetic anisotropy and define
an easy magnetization axis. X-ray-diffraction results calibrate
the sample thicknesses and verify the amorphous structural
character of all films. Quasistatic magnetization curves are
obtained with a vibrating sample magnetometer, measured
along and perpendicular to the main axis of the films, in order
to verify the magnetic behavior.

The Barkhausen noise in ferromagnetic materials corre-
sponds to the time series of voltage pulses detected by a sensing
coil wound around a ferromagnetic material submitted to a
slow-varying magnetic field [1,5,56,57]. The noise is produced
by sudden and irreversible changes of magnetization, mainly
due to the irregular motion of the domain walls in a disordered
magnetic material, a result of the interactions between the DWs
and pinning centers, such as defects, impurities, dislocations,
and grain boundaries [1,57–60].
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We record Barkhausen noise time series using the tra-
ditional inductive technique in an open magnetic circuit.
Sample and pickup coils are inserted in a long solenoid with
compensation for border effects, to ensure a homogeneous
applied magnetic field on the sample. The sample is driven
by a 50 mHz triangular magnetic field, applied along the main
axis, with an amplitude high enough to saturate it magnetically.
BN is detected by a sensing coil (400 turns, 3.5 mm long,
4.5 mm wide, and 1.25 MHz resonance frequency) wound
around the central part of the sample. A second pickup coil,
with the same cross section and number of turns, is adapted
in order to compensate the signal induced by the magnetizing
field. The Barkhausen signal is then amplified, filtered, and,
finally, digitalized. All BN measurements are performed under
similar experimental conditions: 100 kHz low-pass filter set in
the preamplifier and signal acquisition with sampling rate of 4
million samples per second. The time series are acquired just
around the central part of the hysteresis loop, near the coercive
field, where the domain-wall motion is the main magnetization
mechanism [55,57,60] and the noise achieves the condition of
stationarity [61].

The Barkhausen noise statistical properties are mea-
sured following the procedure discussed in detail in
Refs. [6,8,30,31,62]. For each experimental run, the statistical
properties are obtained from 150 measured Barkhausen noise
time series, by averaging the distributions over 105–106

avalanches. First of all, due to the reduced intensity of
the signal, we employ a Wiener deconvolution [6], which
optimally filters the background noise, removes distortions
introduced by the response functions of the measurement
apparatus in the original voltage pulses, and provides us
reliable statistics. Having established a sophisticated method
of extraction of the BN avalanches and by considering a
threshold value vr to properly define the beginning and end
of each Barkhausen avalanche, the universality class of the
Barkhausen noise is characterized primarily by measuring
the distributions of Barkhausen avalanche sizes [P (s)] and
durations [P (T )], the average avalanche size as a function of
its duration [〈s(T )〉vsT ], and the power spectrum [S(f )].

We observe that the measured P (s), P (T ), and 〈s(T )〉vsT
avalanche distributions follow a cutoff-limited power-law
behavior and they can be, respectively, fitted as [63]

P (s) ∼ s−τ e−(s/s0)ns

, (1)

P (T ) ∼ T −αe−(T/T0)nT
, (2)

〈s(T )〉 ∼ T 1/σνz

[
1

1 + (T/T0)nav(1/σνz−1)

]1/nav

, (3)

where s0 and T0 indicate the position where the function
deviates from the power-law behavior, and ns , nT , and nav are
fitting parameters related to the shape of the cutoff function.
The analysis of the statistical properties is done with the soft-
ware BESTFIT [64], which is a simple python script to perform
data fitting using nonlinear least-squares minimization [65].
The software may be applied to many multivariable problems,
fitting experimental data to theory functions. Here, it allows us
to fit them at the same time, respecting a well-known scaling

relation between the exponents [55,66],

α = (τ − 1)/σνz + 1. (4)

Although the power spectrum has not been considered for
the fitting procedure, we observe that the measured S(f ) also
follows a power-law behavior at the high-frequency range of
the spectrum and it can be described by [61]

S(f ) ∼ f −ϑ . (5)

We confirm the theoretical prediction of 1/σνz = ϑ , indicat-
ing that the same scaling exponent can be employed to describe
the relation between the average avalanche size and its duration
as well as the power spectrum at high frequencies [67,68].

Moreover, we also focus the analysis on the measurement
of the average avalanche shape, a sharper tool for comparison
between theory and experiments, going far beyond power laws,
and being more informative than slopes [1,2,5,22,29,67–69].
The average avalanche shape has been estimated for a
wide variety of systems, as planar crack front propagation
experiments [70,71], plastically deforming crystals [72],
earthquakes [11], and Barkhausen noise [6,29,69]. Here, we
consider the average temporal avalanche shape, considering all
the avalanches of a given duration T and averaging the voltage
signal at each time step t , as well as the average avalanche
shape for a given size s or magnetization, when considering
all the avalanches of a size s and averaging the BN signal at
each size step S.

Recently, Laurson et al. [22] have suggested that the general
scaling form for the average temporal avalanche shapes for
non-mean-field systems can be described by

〈V (t |T )〉 ∼ T 1/σνz−1

[
t

T

(
1 − t

T

)]1/σνz−1

, (6)

in which the exponent 1/σνz is considered, resulting in a
consequent evolution of the average avalanche shape with
the universality class. Similarly, the general scaling form to
avalanches of a given size can be written as

〈V (S|s)〉 ∼ s1−σνz

[
S

s

(
1 − S

s

)]1−σνz

, (7)

suggesting similar dependence.

III. RESULTS AND DISCUSSION

Here we show why the studied amorphous films present
a typical three-dimensional magnetic behavior, with predom-
inant short-range elastic interactions governing the domain-
wall dynamics.

A. Structural and quasistatic magnetic characterization
of the films

First of all, we characterize the films from the structural
and quasistatic magnetic point of view.

Figure 1 shows a high angle x-ray-diffraction pattern for
the FeSiB film with thickness of 1000 nm. For the films with
distinct thicknesses, similar behavior is obtained. In particular,
the pattern clearly indicates the amorphous state of the film,
as depicted from the broad peak with low intensity, around
2θ ∼ 44◦, and the absence of thin peaks with high intensity.
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FIG. 1. (Color online) High angle x-ray-diffraction pattern for
the FeSiB film with thickness of 1000 nm. The diffraction pattern
confirms the amorphous character of the film. The films with distinct
thicknesses present similar behavior.

Figure 2 shows the quasistatic magnetization curves,
measured with the in-plane magnetic field applied both along
and perpendicular to the main axis, obtained for the FeSiB
films with selected thicknesses. When analyzed as a function of
the thickness, the magnetization curves indicate the existence
of a thickness range, between 200 and 500 nm, which splits
the films in two groups according to the magnetic behavior,
similar to the one observed and discussed in details in
Refs. [8,53,73–77]. In this case, for films with thicknesses
below 200 nm, the angular dependence of the magnetization
curves indicates a uniaxial in-plane magnetic anisotropy,
induced by the magnetic field applied during the deposition
process. However, for films above 500 nm, the curves exhibit
isotropic in-plane magnetic properties, with an out-of-plane
anisotropy contribution, a behavior related to the stress stored
in the film and/or to a columnar microstructure as the thickness
is increased.

B. Barkhausen noise and statistical properties

Here, as a fingerprint of the crackling noise in magnetic
systems, the response of a ferromagnetic system to a smooth
and slow external magnetic field is the Barkhausen noise,
characterized by a series of discrete and irregular avalanches,

FIG. 2. (Color online) Normalized quasistatic magnetization
curves for the FeSiB films with the thicknesses of 100 and 1000 nm,
obtained with the in-plane magnetic field applied along (‖) and
perpendicular (⊥) to the main axis of the films. The change of
magnetic behavior is observed in the thickness range between 200
and 500 nm.

due to sudden and irreversible jumps of the magnetization,
with a broad range of sizes and duration times, separated by
quiescent time intervals.

From the Barkhausen noise time series measured for our
films, we perform the traditional statistical treatment employed
for bulk materials. Figure 3 shows the distributions of
Barkhausen avalanche sizes and durations, average avalanche
as a function of its duration, and power spectrum obtained
for the FeSiB films. In particular, the statistical properties are
found to exhibit a cutoff-limited power-law behavior for all
films, and they can be characterized by the exponents τ , α,
1/σνz, and ϑ , respectively.

In this study, we estimate the scaling exponents by fitting
the experimental BN statistical properties using the software
BESTFIT [64]. The results of the fits for the exponents are
reported in Table I and also shown in Fig. 3. In particular, the
fitted values of ns , nT , and nav fall in the interval 1.2–3.0. At
a first moment, we determine the values of τ , α, and 1/σνz

independently by fitting P (s), P (T ), and 〈s(T )〉vsT separately,
as usually performed to analyze the BN statistical properties.
The exponents’ values obtained following this procedure are
close to the ones shown in the table. However, here, we
determine the three critical exponents presented in Table I by
jointly fitting the distributions. By fitting them at the same time,
the scaling relation between the exponents τ , α, and 1/σνz,
given in Eq. (4), is respected. Moreover, this scaling relation
is also experimentally verified through the agreement between
the fittings and experimental results. The power spectrum has
not been considered for the fitting procedure; however, we
confirm the theoretical prediction of 1/σνz = ϑ , indicating
that the same scaling exponent can be employed to describe
the relation between the average avalanche size and its duration
as well as the power spectrum at high frequencies [67,68], as
can be verified in the same figure.

Based on these experimental statistical functions, the results
show that the scaling behavior of Barkhausen avalanches for
the FeSiB films has similar scaling exponents, suggesting
that they belong to a single universality class. These films
do not show any noticeable dependence of the exponents
on the field rate, in agreement with earlier findings for
several amorphous samples [1,31]. Moreover, similar to the
features previously verified for polycrystalline films [8], the
exponents are independent on the film thickness, at least at
this whole range of thickness, and present clear stability,
despite the expected increase of the whole sample complexity
with thickness, and large variations of the magnetic properties
occurring between 200 and 500 nm. Thus they corroborate the
fact that the exponents are universal and independent of the
microscopic details of each sample.

Regarding the actual values of the scaling exponents,
the amorphous FeSiB ferromagnetic films with thicknesses
between 100 and 1000 nm are characterized by scaling
exponents τ = 1.28 ± 0.02, α = 1.52 ± 0.3, and 1/σνz =
ϑ = 1.83 ± 0.03. To make easier the analysis of the measured
exponents and the comparison with the ones experimentally
measured or predicted by severalmodels, Tables II and III
present, respectively, a summary of the main experimental and
theoretical results found in literature.

The measured exponent τ obtained here is distinct
of the ones found in experimental works obtained with
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FIG. 3. (Color online) Traditional Barkhausen noise statistical properties measured for the FeSiB films with different thicknesses. (a)
Distributions of Barkhausen avalanche sizes. The solid lines are cutoff-limited power-law fittings obtained using Eq. (1). (b) Similar plot for
the distributions of Barkhausen avalanche durations, in which the solid lines are cutoff-limited power-law fittings obtained using Eq. (2). (c)
Average avalanche size as a function of its duration, where the solid lines are cutoff-limited power-law fittings obtained using Eq. (3). (d)
Finally, the power spectrum measured for the very same FeSiB films. To guide the eyes, the solid lines are power laws with slopes ϑ = 1/σνz,
the same exponent measured from the average avalanche size as a function of its duration for each film. The distributions are shifted on
vertical scale, to avoid superposition and make clearer the visualization. The best-fit τ , α, and 1/σνz exponents for FeSiB films with different
thicknesses are given in Table I.

magneto-optical techniques for films with DWs dynamics
governed by short-range interactions [48,49], since the studied
films are thinner than 50 nm and the known two-dimensional
magnetic behavior is expected, and for amorphous films

TABLE I. Values of τ , α, and 1/σνz exponents for the experi-
mental distributions measured for FeSiB amorphous ferromagnetic
films with thicknesses of 100, 150, 200, 500, and 1000 nm. The fits
of P (s), P (T ), and 〈s(T )〉vsT were performed simultaneously using
Eqs. (1), (2), and (3), respecting the scaling relation between the
exponents, Eq. (4).

Thickness (nm) τ α 1/σνz

100 1.30 ± 0.04 1.54 ± 0.07 1.80 ± 0.07
150 1.30 ± 0.04 1.55 ± 0.07 1.84 ± 0.07
200 1.28 ± 0.03 1.52 ± 0.05 1.86 ± 0.05
500 1.26 ± 0.03 1.47 ± 0.04 1.80 ± 0.03
1000 1.27 ± 0.02 1.50 ± 0.03 1.86 ± 0.02

with variable thickness [44]. For the last case, the difference
between the reported results and the ones presented here
may be due to the limited penetration depth of the visible
light in metals, around 10 nm, restricting the probed depth
of the material when considered magneto-optical techniques
and defining the study to the magnetic properties of the film
surface.

On the other hand, the values of the scaling exponents
are compatible with those obtained for several bulk amor-
phous magnetic materials, τ = 1.27 ± 0.03, α = 1.5 ± 0.1,
and 1/σνz ∼ ϑ ∼ 1.77 [31], as well as to the ones previously
reported by our group measured for amorphous FeCuNbSiB
films in a wide range of thickness, τ ∼ 1.25 and α ∼ 1.6 [53],
indicating a possible three-dimensional magnetic behavior
even at the smallest thicknesses (see Table II).

Several theoretical models have been proposed to explain
the DW dynamics and the BN statistical properties [1].
These works indicate the universality of the exponents
and its dependence on the system dimensionality, although
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TABLE II. Main experimental results measured for bulk samples and ferromagnetic films with distinct structural character.

Thin films Bulk samples/Thick films

τ α 1/σνz τ α 1/σνz

Crystalline ∼1.33 [45,46,48,49] 1.50 ± 0.05 [6,8,31] 2.0 ± 0.2 [6,8,31] ∼2 [6,8,31]
Amorphous ∼1.1 [48,49] 1.27 ± 0.03 [31,53] 1.5 ± 0.05 [31,53] ∼1.77 [31]

the predicted exponents vary according to the theory [1].
Summarizing the theoretical predictions, for three-
dimensional systems with the dynamics governed by long-
range interactions, the scaling exponents are τ = 1.50, α =
2.0, and 1/σνz = 2 [54,55], while for systems governed by
short-range interactions and same dimensionality, τ = 1.27,
α = 1.5, and 1/σνz = 1.77 [36,37,54,55]. On the other side,
for two-dimensional systems, although there is not a complete
agreement between theoreticians on the real values, the models
indicate τ ∼ 1.33, α ∼ 1.5, and 1/σνz ∼ 1.5 for the long-
range interaction problem [32–34,78], while τ ∼ 1.06 for the
short-range interaction one [36,37,78]. In the last case, α and
1/σνz are still not predicted (see Table III).

Thereby, we identify that the scaling exponents measured
here for the FeSiB films are compatible with the exponent
values predicted by the model proposed by Cizeau, Zapperi,
Durin, and Stanley (CZDS model), if dipolar interactions
are neglected [54,55], τ = 1.27, α = 1.5, and 1/σνz = 1.77,
and by the model originally introduced by Urbach, Madi-
son, and Marker (UMM model) [26] and investigated by
de Queiroz [36,37], τ = 1.27. More than an experimental
evidence to show that the CZDS and UMM models can be
extended to describe the BN statistical properties in films,
the scaling exponents also corroborate the universality class
of amorphous alloys under stress, related to short-range
interactions, as proposed in Ref. [31].

After all, we interpret the concordance between experiment
and theory as a clear indication that the FeSiB amorphous
films, within this range of thickness, present a typical three-
dimensional magnetic behavior with predominant short-range
elastic interactions governing the DW dynamics.

Finally, as a refined tool to characterize materials and
test universality classes, we focus on the measurement of
the average avalanche shape. Figure 4 shows the average
shapes measured for different avalanche durations and sizes
for the 500-nm-thick FeSiB film, as a representative example
of the experimental results obtained for the studied films. The
theoretical predictions for the scaling form for the average
temporal avalanche shapes and shape of avalanches of a given

size, given by Eqs. (6) and (7), respectively, obtained when
the best-fit exponent 1/σνz is considered, are also shown
in Fig. 4. In the scaling regime verified in the curve of the
average avalanche size as a function of its duration, this film is
characterized by the exponent 1/σνz = 1.80 ± 0.03. Notice
the striking quantitative agreement between experiment and
theoretical predictions, including three important features:
symmetric shapes, the exponent 1/σνz, and the exact form
of the average avalanche shapes.

Regarding the symmetry of the shapes, the average shapes
are not characterized by any evident leftward asymmetry, as
observed in amorphous and polycrystalline bulk samples [1].
Doubts about asymmetry of the shapes were resolved when
eddy currents were shown to be responsible for the it [69], i.e.,
the asymmetry is devoted to the noninstantaneous response
of the eddy field to the wall displacement, a direct signature
of the negative effective mass associated with the domain wall
moving under the action of the external field [5]. Besides, it has
been verified for bulk samples that the asymmetry depends on
the avalanche duration and encodes important information on
the characteristic time of the underlying dynamics. Experimen-
tally, the asymmetry is dependent on the material parameters,
as the magnetic permeability μ and conductivity σ , as well
as geometrical dimensions of the sample, as the thickness.
Here, by employing films with intermediate thickness, the
characteristic time scale for relaxation [69] is of ∼ ns, a
value smaller than the range of the avalanche durations, above
∼ μs. For this reason, the domain-wall dynamics seems to be
not affected by eddy current effects, resulting in symmetric
average shapes, undistorted by eddy currents.

On the form, average avalanche shape depends on the
universality class of the avalanche dynamics [22]. In mean-
field systems, such as polycrystalline films with intermediate
thicknesses [6,8], with 1/σνz ∼ 2.0, the average temporal
avalanche shape is known to be given by an inverted parabola,
while the average shape for different sizes is given by
a semicircle. Here, the average avalanche shapes are in
quantitative agreement with theoretical predictions proposed
in Ref. [22]. Thus it indicates that the best-fit exponent obtained

TABLE III. Exponents predicted by theoretical models and simulations for two- (d = 2) and three-dimensional (d = 3) systems with
long-range and short-range interactions governing the domain-wall dynamics. Just the exponents τ , α, and 1/σνz are presented, since it is
known that 1/σνz = ϑ , indicating that the same critical exponent can be employed to describe the relation between the average avalanche size
and its duration as well as the power spectrum [67].

d = 2 d = 3

τ α 1/σνz τ α 1/σνz

Long-range �1.33 [32–34,78] � 1.5 [32–34,78] � 1.5 [32–34,78] 1.50 [54,55] 2.0 [54,55] 2.0 [54,55]
Short-range �1.06 [36,37,78] 1.27 [36,37,54,55] 1.5 [54,55] 1.77 [54,55]
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FIG. 4. (Color online) Experimental average avalanche shapes
measured for the 500-nm-thick FeSiB film and theoretical predictions
for the average avalanche shapes for non-mean-field systems. (a)
Average temporal avalanche shape for different avalanche durations
T , rescaled to unit height and duration. Different symbols correspond
to different durations of the avalanches, while the solid line is the
theoretical prediction according to Eq. (6) with the best-fit 1/σνz

exponent measured from the curve of the average avalanche size as
a function of its duration. (b) Similar plot for the average avalanche
shape for different avalanche sizes s, rescaled to unit height and size.
Symbols correspond to distinct sizes of the avalanches, and the solid
line is the theoretical prediction according to Eq. (7) with the very
same best-fit 1/σνz exponent.

through the average avalanche size as a function of its duration
and the parabola and semicircle with corrections in which
the 1/σνz is considered are appropriate to describe these
amorphous films. Thus we provide experimental support for
the validity of a general scaling form for the average avalanche
shapes for non-mean-field systems.

IV. CONCLUSION

In summary, in this paper we investigate the statistical
properties of the Barkhausen noise in amorphous ferro-
magnetic films in a wide range of thicknesses, from 100
to 1000 nm. From Barkhausen noise time series measured
with the traditional inductive technique, we perform a wide
statistical analysis and establish the scaling exponents τ , α,
1/σνz, and ϑ , as well as focus on the average shape of the
avalanches.

Through this wide statistical analysis, we group the amor-
phous films with distinct thicknesses in a single universality
class, characterized by scaling exponents τ = 1.28 ± 0.02,
α = 1.52 ± 0.3, and 1/σνz = ϑ = 1.83 ± 0.03. The mea-
sured scaling exponents are compatible with that obtained for
several bulk amorphous magnetic materials and amorphous
films in a wide range of thickness, as well as with the
predictions of two theoretical models: the CZDS model, if
dipolar interactions are neglected [54,55], and the UMM
model [36,37]. Our films are thinner than ribbons and
sheets [31], known to exhibit three-dimensional magnetic
behavior, but thicker than previously studied two-dimensional
films [42–52]. We interpret these results as a clear evidence
that these amorphous films, within this thickness range,
present a typical three-dimensional magnetic behavior with
predominant short-range elastic interactions governing the
domain-wall dynamics.

In addition, when we consider the average avalanche
shape, experimental results are in quantitative agreement with
theoretical predictions [22]. In our amorphous films, we find
striking symmetric shapes, undistorted by eddy currents, in
which the average avalanche shape for different durations
and sizes are respectively described by a parabola and a
semicircle with corrections in which the exponent 1/σνz is
considered. Besides we verify that the average shape corre-
ponds to a powerful tool to characterize classes, and provide
experimental support for the validity of a general scaling
form for the average avalanche shapes for non-mean-field
systems.

These results obtained for the Barkhausen noise statistical
properties for amorphous films in a wide range of thicknesses,
associated to the ones measured for polycrystalline films
previously reported in Ref. [8], provide a further insight
on the DW dynamics in ferromagnetic films and the role
of structural character on the scaling behavior in the BN
statistical properties. In particular, we verify that materials
can be classified in different universality classes, and confirm
that the classes proposed in Ref. [31] for bulk samples can
be extended for films, even with thickness down to 100 nm,
corroborating the link between material microstructure and the
BN statistical properties is still valid in systems with reduced
dimensions. The next step here resides basically in extending
the studies to wider ranges of film thicknesses. Experiments
and analyses on the domain-wall dynamics in thinner films are
currently in progress.
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[66] I. Ràfols and E. Vives, Phys. Rev. B 52, 12651 (1995).
[67] M. C. Kuntz and J. P. Sethna, Phys. Rev. B 62, 11699 (2000).
[68] G. Durin and S. Zapperi, J. Magn. Magn. Mater. 242–245, 1085

(2002).
[69] S. Zapperi, C. Castellano, F. Colaiori, and G. Durin, Nat. Phys.

1, 46 (2005).
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