
PHYSICAL REVIEW E 90, 032820 (2014)

Unveiling robustness and heterogeneity through percolation triggered by random-link breakdown
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It has been commonly recognized that heterogeneously connected networks are robust against random decays
but vulnerable to malicious attacks. However, little is known about measures of heterogeneity geared towards
robustness of complex networks. Here, we propose two types of percolation on general networks triggered by
random-link errors, where occupied links support the nodes to be alive. Rich resilience behaviors are observed
in terms of the percolation threshold and the (integrated) fraction of giant cluster. The discrepancy unraveled
between the two models allows us to dynamically define compact measures that have acute discrimination in
gauging network heterogeneity. The results provide a connection between network performance, structure, and
dynamics.
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Networks with complex topology epitomize many real-
world systems, whose operation essentially relies on their
robustness, i.e., the ability to maintain global interconnectivity
tolerating node and link errors [1–3]. Studies show that a
variety of natural and man-made networks have a heavy-tailed
degree distribution (that is, the distribution, pk , which governs
the probability that a node will have k edges attached to
it) following approximately a power law [4]. Such networks
(called scale-free networks), at variance with homogeneous
Erdős-Rényi (ER) networks, consist of a small number of
highly connected nodes (hubs) and a huge number of low-
degree nodes. A key observation is that such heterogeneously
connected networks are highly robust against random errors
but appear extremely fragile to deliberate attacks at hubs [5]
or edges connecting hubs [6].

By means of percolation theory [7–11], these resilience
properties have been confirmed extensively by examining,
e.g., the critical percolation threshold and the size of the
largest cluster. This raises a challenging inverse question:
Could heterogeneity be measured via percolation processes
from a robustness-centric view? Alternatively, how does one
derive a compact heterogeneity measure from percolation and
understand its consequences on network robustness? We will
show in Appendix D that the branching factor, which is a
classical measure for heterogeneity, has no implication for
network robustness. Moreover, heterogeneity is intimately
related to other crucial dynamical properties such as synchro-
nization [12], congestion [13], and spreading [14]. Thus, it
is highly desirable to “customize” heterogeneity for specific
processes over the network.

In this article, to quantify and compare the heterogeneity
of networks, we study two types of percolation, termed α

and β models, which are induced by random-link failure. In
response to the link failure, a node fails in α model when
the loss of its neighboring links exceeds a prescribed quantile
(signified by a fraction α), while it fails in β model when
the loss is above a certain quantity (signified by an absolute
number β). This is reminiscent of what goes on in the bootstrap
percolation [15], where occupied nodes, rather than links, are
used as the support to the nodes to be alive. The link-triggered
cascading failures occur in many real systems. For example,
the blackouts in power grids are often triggered by line faults,
which cause power flow redistribution onto neighboring nodes,

overburdening other generators and lines due to excessive
load [16]. Such threshold exceedance can be delineated by
α model [17,18] or β model [19] across specific applications
depending on how the failure is related to the capacity of the
node in question.

Our analysis reveals that although a scale-free network with
a degree exponent of under 3 is robust in both α and β models
in the sense that the critical removal fraction of links tends to 1,
the difference of robustness between the two models, in terms
of percolation threshold, fraction of giant cluster, robustness
index [20], etc., is much more prominent as compared with
ER networks. The discrepancy between scale-free and ER
networks makes it possible to define heterogeneity measures
based on the percolation processes, providing an intriguing tie
between network robustness, heterogeneity, and percolation.

To be concrete, we consider networks generated using the
configuration model [21,22] (a random graph with a given
degree distribution pk). Initially, we assume that each link
is occupied (intact) with probability q. For α model, a node
is occupied if at least α proportion of its attached links are
occupied, where α ∈ [0,1]. Similarly, for β model, a node
of degree k is occupied if at least min{k,β} of its attached
links are occupied, where β is a non-negative integer and min
is the minimum operator. For simplicity, we assume that the
removal of a link due to node failure does not trigger further
node failure. Thus, our models correspond to the initial stages
of a cascading failure (cf. Appendix A). This is common in
networks with a fault detection (or localization) mechanism:
An attacked node may send warning signals to nearby nodes
preventing faulty behavior from spreading [23].

If α = 0, α model reduces to the case of uniform bond
percolation [7]. So does β model for β = 0. For α > 0 (resp.,
β � 1), α model (resp., β model) becomes a nonindependent
joint bond and site percolation, which is often difficult to tackle
analytically [11]. By � we indicate the maximum degree of
the network. Then, α model for α = 1 is equivalent to β model
for any β � �. The two identifying extremes together with the
revealing fact that the two models are equivalent for k-regular
graphs under relation α = min{k,β}/k will later give us a good
clue for the development of heterogeneity measures.

To proceed, we adopt the probability generating function
method [22]. For α model, a node of degree k is occu-
pied with probability

∑(1−α)k
i=0 (ki)(1 − q)iqk−i via binomial
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distribution [24]. Thus, the probability generating function for
occupied node degree distribution [7] is given by

F
(α)
0 (x) =

∞∑
k=0

(1−α)k∑
i=0

pk

(
k

i

)
(1 − q)iqk−ixk. (1)

For β model, likewise we have

F
(β)
0 (x) =

∞∑
k=0

k−min{k,β}∑
i=0

pk

(
k

i

)
(1 − q)iqk−ixk. (2)

Suppose that we follow a randomly chosen edge, and the node
reached is denoted by v0. For α model, the probability that v0

and the selected edge are both occupied is q[
∑(1−α)k

i=0 (k − 1
i )(1 −

q)iqk−1−i], where the first term q is due to the occupation of
the edge and the second term is due to the occupation of v0

given it has degree k and the incoming edge is occupied [25].
Therefore, the distribution of the number of edges leading out
of v0 (called the excess degree distribution [22]) is generated by

F
(α)
1 (x) =

∑∞
k=1

∑(1−α)k
i=0 kpk

(
k−1

i

)
(1 − q)iqk−ixk−1

〈k〉 , (3)

where 〈k〉 = ∑∞
k=0 kpk is the average degree. Similarly, for

the β model,

F
(β)
1 (x) =

∑∞
k=1

∑k−min{k,β}
i=0 kpk

(
k−1

i

)
(1 − q)iqk−ixk−1

〈k〉 . (4)

Noting that F1(x) �= F ′
0(x)/〈k〉 [26], our percolation models

are different from ordinary joint bond and site percolation [7].
Let H

(α)
1 (x) and H

(β)
1 (x) be the generating functions, in

α and β models, respectively, for the distribution of the
sizes of percolation clusters that are reached by choosing a
random edge and following it to its end, say, v0. As ordinary
percolation, a percolation cluster here is defined as the set of
occupied nodes which are mutually reachable along occupied
edges. Therefore, H1(x) satisfies the self-consistent condition

H1(x) = 1 − F1(1) + xF1[H1(x)], (5)

where 1 − F1(1) is the probability that the cluster contains
zero nodes (either v0 is unoccupied, or the selected edge
is deleted), and the term xF1[H1(x)] takes into account an
occupied v0 with k other edges leading out of it, distributed
according to F1(x) [7]. The probability distributions of the size
of the percolation cluster to which a randomly chosen node
belongs are analogously generated by H

(α)
0 (x) and H

(β)
0 (x),

respectively, in the two models, where

H0(x) = 1 − F0(1) + xF0[H1(x)]. (6)

One can check that (6) reproduces [7, Eq. (7)] (the uniform
bond percolation case) when α = 0 or β = 0.

With relations (5) and (6) in hand, the mean size of cluster
to which a randomly chosen node belongs, in the absence
of giant clusters, can be calculated as 〈s〉 = H ′

0(1) = F0(1) +
F ′

0(1)F1(1)[1 − F ′
1(1)]−1. This expression diverges at F ′

1(1) =
1, which corresponds to the critical percolation threshold qc

where a giant cluster first emerges, yielding
∑∞

k=2 k(k − 1)pk

∑(1−α)k
i=0

(
k−1

i

)(
1 − q(α)

c

)i(
q(α)

c

)k−i

〈k〉 = 1 (7)
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FIG. 1. (Color online) Percolation thresholds q (α)
c and q (β)

c for
networks of 106 nodes from numerical simulations with α = 0 or
β = 0 (circles), α = 0.5 (squares), α = 0.9 (diamonds), β = 5 (right
triangles), β = 10 (left triangles), and exact solutions (solid lines): (a)
for ER graphs with 〈k〉 = λ, (b) for scale-free networks with degree
exponent γ = 2.5 and exponential cutoff κ , and (c) for scale-free
networks with κ = 60 and degree exponent γ .

for α model, and respectively,

∑∞
k=2 k(k − 1)pk

∑k−min{k,β}
i=0

(
k−1

i

)(
1 − q

(β)
c

)i(
q

(β)
c

)k−i

〈k〉 = 1

(8)

for β model. For a network with pure power-law distribution
pk ∼ k−γ , as shown in the Appendix C, q(α)

c → 0 for any
α ∈ [0,1] when 1 � γ < 3. This suggests that such a network
remains robust in α model—encompassing a special case of
α = 0, which recovers the “robust against random decay”
paradigm of Cohen et al. [8,27]. Analogously, we have
q

(β)
c → 0 for any β when 1 � γ < 3.

In Fig. 1 we show the critical occupation probabilities
q(α)

c and q
(β)
c for different values of α and β in ER graphs

with a Poisson degree distribution pk = e−λλk/k! (k � 0) and
scale-free graphs with a truncated power-law distribution pk ∼
k−γ e−k/κ (k � 1), featuring various real-life networks [4,22].
Throughout the article, plots for α and β models are shown
in red and blue, respectively. The algorithm is given in
Appendix B.

The agreement between the simulations and theory is
excellent. For any given λ, κ , or γ , the models undergo a
smooth transition from mild random breakdown with small
q(α)

c ,q
(β)
c (corresponding to small α,β) to extremely harmful

degree-dependent cascading failure with large q(α)
c ,q

(β)
c (cor-

responding to large α,β). Moreover, q(α)
c ∼ 1 and q

(β)
c ∼ 1

for small λ [in ER graphs; see Fig. 1(a)] and for small κ or
large γ [in scale-free networks; see Figs. 1(b) and 1(c)] when α

approaches 1 and β approaches �, respectively [28]. However,
when it comes to a scale-free network without cutoff (κ → ∞
and γ < 3), as we mentioned above, q(α)

c ,q
(β)
c ∼ 0 even for
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FIG. 2. (Color online) Percolation thresholds q (α)
c (squares and

circles) and q (β)
c (left and right triangles) as functions of α and β/�,

respectively, for the same systems used in Fig. 1: (a) ER graphs
with λ = 3,10; (b) scale-free networks with κ = 15,80 and γ = 2.5;
(c) scale-free networks with γ = 1.5,3 and κ = 60. Points are the
simulation results and lines are the exact solutions. The insets show
the dependence of the heterogeneity index A on (a) λ, (b) κ given
γ = 2.5, and (c) γ given κ = 60.

large α,β. This highlights the importance of identifying correct
degree distribution in realistic networks [29], which could
markedly affect the structural robustness.

The difference between α and β models is better appreciated
when turning to the results reported in Fig. 2. With α and β/�

sharing the same domain [0,1] [30], the two curves q(α)
c and

q
(β)
c form a closed contour for a given network as expected from

model construction. When β = α�, a node with degree k < �

in a network under β model is more likely to be deleted than
that in a network under α model (This can be discerned from
Fig. 2, where the curve q

(β)
c is always above the curve q(α)

c ).
Thus, we propose a network heterogeneity measure based on
percolation threshold as [31]

A =
∫ 1

0

(
q(β)

c (α�) − q(α)
c (α)

)
dα, (9)

which is equivalent to the area within a contour as shown in
Fig. 2 (yellow and green areas), and gives the value 0 for a
regular graph. A heterogeneous network generally corresponds
to a large A value—the insets of Fig. 2 reveal that ER graphs
keep a low A value about 0.075; in scale-free networks with
γ = 2.5, an increase in the cutoff κ (meaning a longer tail in
degree distribution) systematically yields an increase in A [cf.
Fig. 3(d) inset]; given cutoff κ = 60, A decreases from above
0.3 to vanishing values with the increase of γ , leading to a
more homogeneous degree distribution.

Next, we investigate the fraction of giant cluster, which
will help us better understand the fragmentation process on
the network. Denote by S(α) and S(β) the fraction of nodes in
the giant cluster in α and β models, respectively. Since H0(x)
generates the size distribution of nongiant clusters, we obtain
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FIG. 3. (Color online) Top row [(a) and (b)]: fractions of giant
clusters S(α) and S(β) as functions of q for α = 0 or β = 0 (circles),
α = 0.5 (squares), α = 0.9 (diamonds), β = 5 (right triangles),
β = 10 (left triangles). Bottom row [(c) and (d)]: robustness indices
R(α) (circles) and R(β) (right triangles) as functions of α and β/�,
respectively. Left column [(a) and (c)] is for ER graphs with λ = 10.
Right column [(b) and (d)] is for scale-free networks with κ = 60
and γ = 2.5. The insets show the dependence of the heterogeneity
indices (c) A∗ on λ, and (d) A∗ and A on κ and γ . The same systems
are used as in Fig. 1, points are the simulation results, and lines are
the exact solutions.

H0(1) = 1 − S [22]. Based on (5) and (6),

S = 1 − H0(1) = F0(1) − F0(u), (10)

where u = H1(1) is the smallest non-negative solution
of the self-consistency equation u = 1 − F1(1) − F1(u).
The normalized mean size of nongiant clusters becomes
〈s〉 = H ′

0(1)/H0(1) = {F0(u)[1 − F ′
1(u)] + F ′

0(u)F1(u)}(1 −
S)−1[1 − F ′

1(u)]−1 with a special case of S = 0 and u = 1,
as obtained above, corresponding to the regime before the
formation of a giant cluster.

A novel measure is recently put forward by Schneider
et al. [20,32] to quantify network robustness under malicious
attacks. It is regarded to be more reflective of the entire
fragmentation process than the critical threshold qc. Following
their work, we here propose a robustness measure based on our
models as (cf. Appendix E)

R = 1

E

1∑
q=1/E

S(q) ∼
∫ 1

0
S(q)dq, (11)

where E is the total number of edges and S(q) = S is given
by (10). A second heterogeneity measure in analogy to (9) is
defined as

A∗ =
∫ 1

0
[R(α)(α) − R(β)(α�)]dα, (12)

where R(α)(α) = R(α) and R(β)(β) = R(β) are the measures
defined in (11) taking α and β models, respectively, into
account.
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Figure 3 displays the variations of the fraction of giant
cluster with the occupation probability q, and the integrated
changes gauged by the robustness and heterogeneity measures.
The results gathered in Fig. 3 allow us to draw several
interesting conclusions. First, the simulated results agree
with their analytical counterparts. The phase transition points
at S(α) ∼ 0 and S(β) ∼ 0, as expected, coincide with the
critical probabilities q(α)

c and q
(β)
c in Fig. 1, respectively.

Compared to bootstrap percolation, the continuous transition
found here is nontrivial because it is an outcome of two
competing factors—more links but less nodes are deleted (cf.
Appendix A).

Second, there is a pronounced difference on the convexity
of S curves between ER graphs and scale-free networks when
α and β are small. This phenomenon is rooted in the fact that
low-degree nodes are much more likely to be deleted for small
α and β. When q is large, ER networks experience fairly mild
error due to its homogeneity (most nodes have degrees close
to 〈k〉), suggesting a sigmoidal variation of S with respect to
q [Fig. 3(a)]; however, in scale-free networks, the deletion of
low-degree nodes constantly depreciates the hubs breaking the
giant cluster apart, which explains the considerable decrease
of S [Fig. 3(b)]. For large α and β, S for both ER and scale-free
networks exhibits a rapid drop, even at high level of q because
of the serious cascading effect.

Third, although the change of robustness index R with
respect to α and β for ER graphs [e.g., from nearly 0.8 to
0; see Fig. 3(c)] is typically more pronounced than that for
scale-free networks [e.g., from nearly 0.2 to 0; see Fig. 3(d)],
we find a quite different story in terms of A∗, the integrated
difference between R(α) and R(β) (pink areas in Fig. 3): ER
graphs maintain a relatively low A∗ value of about 0.132 (the
nondependence on λ probably roots in their nearly regular
degrees: the change of density contributes equivalently to R in
α and β models.), while scale-free networks generally possess
higher A∗—which decreases as γ increases and increases as
κ grows—in analogy to A. For example, a scale-free network
with γ = 2 and κ = 60 yields A∗ ≈ 0.28, more than double
that of an ER graph. It is worth mentioning that the curve R(α)

is higher than R(β) [see Figs. 3(c) and 3(d)] because a node with
degree k < � in β model is more likely to be deleted than that
in α model when β = α�. Such different sensitivity to degree
distribution for α and β models offers a unique insight on
how heterogeneous the network is overall—granting a regular
network A∗ = A = 0.

In summary, we presented a way of understanding the
role of heterogeneity in a complex network and the conse-
quences on its robustness. Two bootstraplike models were
introduced and solved analytically with generating func-
tions. A wealth of robustness behaviors of ER and scale-
free networks under failures triggered by random-link error
are shown. Furthermore, two measures for heterogeneity
were introduced with implications on network robustness.
The modeling approach also offers us the possibility of a
quantitative study of the heterogeneity of arbitrary networks,
predicting the resilience of real systems. To further assess
heterogeneity in some more universal way than via the degree
distribution, application of our methods to empirical and real
networks (probably with varied structural features) would be
helpful.

APPENDIX A: COMPARISON BETWEEN α, β MODELS
AND BOOTSTRAP PERCOLATION

There are two main differences between our model and
the bootstrap percolation [15]. First, unlike the bootstrap
percolation, we use occupied links, rather than nodes, as the
support to the nodes to be alive. In bootstrap percolation, all
links are intact. Second, we do not consider subsequent failures
of nodes caused by node failure. The bootstrap percolation is
an incremental process; nodes are deleted iteratively.

If we consider subsequent node failures in our model, it
becomes analogous to the bootstrap percolation (both are
incremental processes), and what is more, additional links
are deleted in our model (note that no links are deleted in
bootstrap percolation). Therefore, the “attack” would become
more harmful than the bootstrap percolation; we are then in
a good position to infer that an avalanche should happen.
Moreover, it is reasonable to anticipate a first order transition,
as is the case in [15,33,34], due to the analogy of bootstrap
percolation. Of course, this last point is worth a more thorough
investigation and is out of the scope of the present paper.

APPENDIX B: ALGORITHM IN SIMULATIONS

The network model used here is the configuration model,
which can be generated using the software NETWORKX (see
http://networkx.github.io/ ). For example, the following code
is used to generate a scale-free graph with γ = 2, κ = 20, and
N = 106:

>>>import networkx as nx

>>>N = 100 000 0

>>>a = [k**(-2)*2.718 28**(-k/20) for k in range(N)[1:N]]

>>>z = nx.utils.discrete sequence(N,distribution = a)

>>>G = nx.configuration model(z)

>>>import matplotlib.pyplot as plt

>>>nx.draw(G) >>> plt.show()

The algorithm used in generating Fig. 1 can be described
as follows. We begin with q = 1 and delete each link in
a network independently with probability 1 − q. All nodes
remain occupied (i.e., intact) so far. For each node (say, its
initial degree is k) of the network, we check whether its current
degree is bigger than (1 − α)k in α model, or k − min{k,β} in
β model. If so, we do nothing; otherwise, we mark the node.
After checking all nodes, we delete those having a mark. We
then calculate the fraction S of the giant cluster. We decrease
q by 10−4 and repeat the above process until S < 10−3. The
final output is qc.

APPENDIX C: PROOF FOR q(α)
c → 0 IN NETWORKS WITH

DEGREE DISTRIBUTION pk ∼ k−γ

We rewrite Eq. (7) as

q(α)
c

∑∞
k=2 k(k − 1)pk

∑(1−α)k
i=0

(
k−1

i

)(
1 − q(α)

c

)i(
q(α)

c

)k−1−i

〈k〉 = 1

(C1)
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by extracting one factor q(α)
c . For any α ∈ [0,1], q(α)

c > 0, and
k � 2, there exists some constant A = A(α) > 0 such that

0 < A �
(1−α)k∑

i=0

(
k − 1

i

)(
1 − q(α)

c

)i(
q(α)

c

)k−1−i � 1.

Hence, using (C1) we obtain

q(α)
c A

〈k2〉 − 〈k〉
〈k〉 = q(α)

c

A
∑∞

k=2 k(k − 1)pk

〈k〉 � 1.

For a network with pure power-law distribution pk ∼ k−γ , we
know that 〈k2〉/〈k〉 → ∞ for 1 � γ < 3 [22]. Therefore, we
are led to the conclusion that q(α)

c → 0. The result q
(β)
c → 0

can be shown in parallel.

APPENDIX D: INAPPROPRIATENESS OF BRANCHING
FACTOR

In this section, we explain why the classical branching
factor is not appropriate when robustness is taken into account.

As mentioned above, for a “pure” scale-free network
with exponent 1 � γ < 3, the branching factor 〈k2〉/〈k〉 − 1
diverges. For an ER graph with average degree 〈k〉 = λ, the
branching factor equals λ, which can be made arbitrarily large
(i.e., a very dense graph) for an infinite graph. For finite-size
systems, the branching factors for both types of networks
can also be made very close to each other. In other words,
the branching factor assimilates a scale-free network with
1 � γ < 3 to a dense ER graph. However, as seen in this work
and many others, ER graphs (dense or sparse) have distinct
robustness behaviors from scale-free networks. Hence, the
branching factor does not have correct implication for network
robustness.

For similar reasons, other traditional measures such as the
variance of the degree and the difference of the spectral radius
with the mean degree do not have appropriate robustness
implications either.

APPENDIX E: USEFULNESS OF ROBUSTNESS INDEX R

The measure R was first developed in [20] to deal with
targeted attacks. Since then it has been applied and extended
in several interesting cases in network science. It is defined
as [20]

R = 1

N

N∑
Q=1

S(Q),

where N is the number of nodes and S(Q) is the fraction of
nodes in the largest connected cluster after removing Q =
qN nodes. Hence, R = 1/N for star networks and R = 0.5
for fully connected networks. For random node percolation
R ≈ 0.5 for star and fully connected networks. However, for
random-link percolation, the damage is mild. Thus, R modified
as in (11) can be above the expected values of node percolation.
This agrees with the observation in Fig. 3(c).

On the other hand, since R is a compact measure which
essentially integrates S over q [see (11)], it is more reflective of
the whole or average robustness of the network. The measure is
also very convenient since for each network we have a number
R as compared to a “cumbersome” curve S(q). With this
measure, it is easy to understand our heterogeneity measure
A∗ that is more appropriate for this process than the branching
factor.

According to the above comments, the heterogeneity
measure A∗ tends to be more comprehensive but requires even
more calculations, as compared toA. Therefore, when it comes
to characterizing empirical large-scale networks, the measure
A might be more appealing.
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