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Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights
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We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can
be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach
allows random walks with long-range dynamics providing a general framework for anomalous diffusion and
navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the
stationary probability distribution, the average fractional return probability, and a global time, showing that the
efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random
walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return
probabilities follow a long-range power-law decay, leading to the emergence of Lévy flights on networks. Our
general fractional diffusion formalism applies to regular, random, and complex networks and can be implemented
from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion
on networks.
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I. INTRODUCTION

The recent burst of work around the idea of networks
can be explained by the importance of this concept in
a vast range of fields, which includes both the structural
features and the functional properties of networks [1–5]. In
particular, we are interested in random walks taking place
on networks, such as regular [6–8], random and complex
networks [9], and more recently temporal [10–12], multiplex
[13–15], and interconnected networks [16,17]. Random walks
are useful to analyze problems of searching and navigability
on networks, with applications to many different fields, such
as the propagation of epidemics, traffic flow, and rumor and
information spreading [4,5]; for a recent survey, see Ref. [18].

In a recent paper, the usual navigation strategy of transitions
to nearest neighbors is generalized by allowing long-range
navigation on complex networks using Lévy random walks
[19]. This generalization allows transitions not only to nearest
neighbors but to second-, third-, or n-nearest neighbors. This
new strategy was inspired by the study of Lévy flights, where
the lengths of random displacements obey asymptotically a
power-law probability distribution [20]. These Lévy flights
generate anomalous diffusion [21] and have been used as
searching and navigation strategies by animals [22–28] and
also in human mobility and behavior [28–37].

On the other hand, it is well known that one can study
anomalous diffusion, and in particular Lévy flights, using a
fractional calculus approach [8,20,38]. Likewise, we introduce
in this paper a fractional approach applied directly to the
dynamics on networks to address the problem of anomalous
diffusion and long-range navigation. Our fractional analysis
applied to general networks provides us with a framework to
deal with a richer dynamics on complex networks that includes,
among other things, Lévy flights [19].

This generalized long-range navigation can consider some
common situations in real networks. For instance, in social
networks one can use the knowledge of the network beyond
our first direct contacts or acquaintances. Currently, using
social networks sites, one can identify the friends of your
acquaintances (second-nearest neighbors) or the friends of the

friends of your acquaintances (third-nearest neighbors) and so
forth to search for information, a job, an expert opinion, etc.
In this fashion, one can contact people two or three degrees
away of your friend directly, without the intervention of your
friend. This situation, which we all use almost on a daily basis,
corresponds to a long-range navigation on a network: a social
network in this case. We illustrate this dynamics in Fig. 1,
where we depict a general network of nodes and links among
them. A random walker performing long-range transitions
can move directly from node i to node j with a transition
probability given by w

(γ )
i→j (the index γ refers to a fractional

dynamics described below). The nodes are three degrees apart,
that is, the geodesic distance is three, as indicated by the dashed
line. The geodesic distance is the integer number of steps of
the shortest path connecting two nodes. In this long-range
fractional dynamics on networks one can contact directly
long-distance nodes without the intervention of intermediate
nodes and without altering the topology of the network.

We start with an overview of the formalism associated with
diffusion processes and normal random walks on networks.
Then, we extend the formalism to the case of fractional
diffusion on networks and obtain a random walker defined
by a transition probability matrix that allows a long-range
dynamics. We deduce the stationary probability distribution
of this process and, in order to study the efficiency of the
random walker, we calculate the average return probability to
a node and the average global time associated to the capacity
to explore the network.

II. DYNAMICS ON NETWORKS

We consider undirected connected networks with N nodes,
described by the adjacency matrix A with elements Aij =
Aji = 1 (where i, j = 1, . . . ,N) if there is a link between
node i and node j , and Aij = Aji = 0 otherwise. We take
Aii = 0 to avoid loops in the network. The degree of the node
i is given by ki = ∑N

l=1 Ail . The Laplacian matrix L is defined
as Lij = δij ki − Aij , where δij denotes the Kronecker δ; this
matrix L is interpreted as a discrete version of the operator
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FIG. 1. (Color online) A random walker performing long-range
transitions on a network can move directly from node i to node j

with a transition probability given by w
(γ )
i→j (the index γ refers to

a fractional dynamics described in the text). The nodes are three
degrees apart, that is, the geodesic distance is three, as indicated by
the dashed line. The geodesic distance is the integer number of steps
of the shortest path connecting two nodes. Using this long-range
dynamics one can contact directly long-distance nodes without the
intervention of intermediate nodes and without altering the topology
of the network.

(−∇2) [1]. Hence, the diffusion equation in a network takes
the form [1,4,7]

L|ψ(t)〉 = − d

dt
|ψ(t)〉. (1)

The vector |ψ(t)〉 describes the system at time t , |ψ(t)〉 =∑N
m=1 am(t)|m〉, where {|m〉}Ni=1 represents the canonical base

of RN [39]. On the other hand, random walks on networks are
defined in terms of the modified Laplacian L with elements
Lij = Lij

Lii
= δij − wi→j , where wi→j = Aij

ki
are the elements

of the transition matrix W of the normal random walk on a
network, describing transitions only to nearest neighbors with
equal probability [6,9]. For continuous time, the dynamics of
the random walker is determined by the master equation [4],

dpij (t)

dt
= −

N∑
l=1

Llj pil(t), (2)

where pij (t) denotes the probability to find the random walker
in the node j at time t starting from the node i at t = 0.
The master equation, Eq. (2), describes a Markovian process
with a stationary distribution p∞

j = limt→∞ pij (t), i.e., the
probability for a walker to be in node j in the limit of large
times. For a normal random walk is given by p∞

j = kj∑N
m=1 km

[4,9]. Another important quantity in the study of the diffusive
transport is the average return probability defined by p0(t) =
1
N

∑N
i=1 pii(t) [4,39,40]. From Eq. (2) it can be shown that

p0(t) = 1
N

∑N
m=1 exp[−ζmt], where {ζi}Ni=1 are the eigenvalues

of the modified Laplacian L [4].

III. FRACTIONAL DYNAMICS ON NETWORKS

Having defined the Laplacian matrix L and the modified
Laplacian matrix L related to normal random walks, we

introduce a generalization of these concepts in order to study
the fractional diffusion on networks. For recent reviews of
the fractional calculus approach to anomalous diffusion, see
Refs. [8,20,38].

We are interested in studying a generalization of Eq. (1)
that reads

Lγ |ψ(t)〉 = − d

dt
|ψ(t)〉 0 < γ < 1, (3)

where Lγ is the Laplacian matrix L to a power γ , where γ is
a real number (0 < γ < 1).

In the limit where γ → 1, we recover Eq. (1). In the
following part we study the consequences of this definition and
the characteristics of the random walks behind this dynamical
process.

Since L is a symmetric matrix, using the Gram-Schmidt
orthonormalization of the eigenvectors of L, we obtain a set
of eigenvectors {|�j 〉}Nj=1 that satisfy the eigenvalue equation
L|�j 〉 = μj |�j 〉 for j = 1, . . . ,N and 〈�i |�j 〉 = δij , where
μj are the eigenvalues, which are real and nonnegative.
For connected networks, the smallest eigenvalue μ1 = 0 and
0 < μm for m = 2, . . . ,N [41]. We define the orthonormal
matrix Q with elements Qij = 〈i|�j 〉 and the diagonal matrix
� = diag(0,μ2, . . . ,μN ). These matrices satisfy L Q = Q �,
therefore L = Q�QT , where QT denotes the transpose of Q.
Therefore, we have [42]

Lγ = Q�γ QT =
N∑

m=2

μγ
m|�m〉〈�m|, (4)

where �γ = diag(0,μ
γ

2 , . . . ,μ
γ

N ). In this way, Eq. (4) gives the
spectral form of the fractional Laplacian matrix, and therefore,

Lγ |�j 〉 = μ
γ

j |�j 〉 for j = 1, . . . ,N. (5)

This result indicates that in order to treat the fractional
dynamics we can simply calculate the spectrum {μj }Nj=1 and
then calculate {μγ

j }Nj=1.
On the other hand, in analogy with the matrix L, we define

the modified fractional Laplacian matrix L(γ ) with elements
L(γ )

ij = (Lγ )ij /(Lγ )ii . This modified fractional Laplacian is
related to the dynamics of a random walker on a network de-
termined by a fractional transition matrix W(γ ) with elements
w

(γ )
i→j given by w

(γ )
i→j = δij − L(γ )

ij . Therefore,

w
(γ )
i→j = δij − (Lγ )ij

k
(γ )
i

, (6)

where we define the fractional degree of the node i as k
(γ )
i ≡

(Lγ )ii . Notice that w
(γ )
i→i = 0. Also, the fractional transition

matrix for 0 < γ � 1 is a stochastic matrix that satisfies∑N
l=1 w

(γ )
i→l = 1. On the other hand, from Eq. (6) in the case

γ = 1, we recover the normal random walk with a transition
matrix given by w

(1)
i→j = Aij/ki .

Now, the corresponding fractional stationary distribution
p∞

i (γ ) of the random walker, from Eq. (6), and using the
detailed balance condition k

(γ )
i p∞

j (γ ) = k
(γ )
j p∞

i (γ ) [19], is
given by

p∞
i (γ ) = (Lγ )ii∑N

m=1(Lγ )mm

= k
(γ )
i∑N

m=1 k
(γ )
m

. (7)
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This is a generalization of the result p∞
i ∝ ki for normal

random walks discussed before, and is recovered from Eq. (7)
when γ = 1. The general result that relates this stationary
distribution with the mean first return time still applies and
reads 〈T (γ )

ii 〉 = 1/p∞
i (γ ) [19].

The modified Laplacian L describes a random walker using
a transition matrix that allows only the passage from a node
to one of its neighbors (which we recover when γ = 1).
In what follows we show that in the fractional case, when
0 < γ < 1, the random walker can move using long-range
navigation on the network. For this purpose, we start with
the example of a ring (1D lattice with periodic boundary
conditions), where the eigenvalues of the Laplacian matrix
are μm = 2 − 2 cos[2π (m − 1)/N] and the corresponding
eigenvectors have components 〈m|�l〉 = e−i 2π

N
(l−1)(m−1)/

√
N

(where i ≡ √−1) [41]. Using Eq. (4), we obtain

(Lγ )ij = 1

N

N∑
l=2

(2 − 2 cos φl)
γ e−iφl (i−j ) (8)

= 1

N

N∑
l=2

(2 − 2 cos φl)
γ cos[φl(i − j )], (9)

with φm = 2π
N

(m − 1). In Eq. (8), the imaginary part associated
with sin[φl(i − j )] cancels out and only the real part remains
in Eq. (9). Now we present this result in terms of the geodesic
distance dij , defined as the integer number of steps of the
shortest path connecting node i and node j . For the case of a
ring,

dij =
{

|i − j | if |i − j | = 0,1, . . . ,
⌊

N
2

⌋
,

N − |i − j | if |i − j | = ⌊
N
2

⌋ + 1, . . . ,N,

where 
x� is the floor function that gives the largest integer
not greater than x. The distances dij for a ring satisfy

cos

[
2π

N
(l − 1)(i − j )

]
= cos

[
2π

N
(l − 1)dij

]
, (10)

and using this result in Eq. (9), we have for the fractional
Laplacian of a ring

(Lγ )ij = 1

N

N∑
l=2

(2 − 2 cos φl)
γ cos[φldij ]

= 4γ

N

N∑
l=2

sin2γ

[
φl

2

]
cos[φldij ]. (11)

On the other hand, using the fact that dij = 0 if i = j , we
obtain from Eq. (11) the fractional degree

k
(γ )
i = (Lγ )ii = 4γ

N

N∑
l=2

sin2γ

[
φl

2

]
. (12)

Now, introducing Eqs. (11) and (12) in Eq. (6), we obtain
the elements w

(γ )
i→j of the fractional transition matrix for a

ring:

w
(γ )
i→j = δij −

∑N
l=2 sin2γ

[
π(l−1)

N

]
cos

[ 2π(l−1)
N

dij

]
∑N

l=2 sin2γ
[

π(l−1)
N

] . (13)

The result obtained in Eq. (13) reveals the nonlocal character of
the emergent process behind fractional diffusion on networks,
where the transition probability depends explicitly on the
global distance dij , at variance with the case of normal random
walks, where the transition probability allows transitions
only to nearest neighbors. In the limit N � 1, the sum in
Eq. (8) can be approximated by an integral that takes the
form

(Lγ )ij = 1

2π

∫ 2π

0
(2 − 2 cos θ )γ eidij θ dθ, (14)

which can be evaluated analytically and is given by (see
Ref. [43] for a discussion)

(Lγ )ij = −�(dij − γ )�(2γ + 1)

π�(1 + γ + dij )
sin(πγ ), (15)

where �(x) is the � function. Using Eq. (15) in Eq. (6) we
obtain that for a ring

w
(γ )
i→j = δij − �(γ + 1)�(dij − γ )

�(−γ )�(dij + γ + 1)
. (16)

For i, j such that dij � 1, and using the asymptotic result
�(n + α) ≈ �(n)nα , for an integer n � 1, and a real α, we
arrive at the result

w
(γ )
i→j ∼ d

−(1+2γ )
ij . (17)

This asymptotic expression is not valid when γ → 0 or
γ → 1. To summarize, for a very large ring and very large
geodesic distances between nodes, we have shown explicitly
that the transition probability that emerges from the fractional
dynamics is a power law that corresponds precisely to the Lévy
random walks introduced in Ref. [19].

This long-range navigation, based on power laws of the
shortest paths introduced by Ref. [19] is valid for general
networks and has been explored by other authors afterwards
[18,44,45]. For this long-range fractional dynamics, the
transition probability matrix can connect arbitrarily distant
nodes and, in this sense, the problem can be mathematically
equivalent to an abstract complete weighted network.

In order to illustrate the effect of the fractional dynamics
of a random walker on a network, in Fig. 2 we show the
Monte Carlo simulation of a discrete-time random walker on
a network. We choose for clarity a tree (network without loops
[1]) but the qualitative results stand for any network. The
discrete time t denotes the number of steps of the random
walker as it moves from one node to the next node on the
network. This discrete random process is governed by a master
equation with a transition probability matrix that gives the
probability of moving from node to node. Given the topology
of the network, we calculate the adjacency matrix and the
corresponding Laplacian matrix L of the network. Then we
obtain its eigenvalues and eigenvectors that allow us in turn to
get the fractional Laplacian matrix Lγ . Finally, using Eq. (6),
we determine the transition probabilities for different values
of the parameter γ . The dynamics starts at t = 0 from an
arbitrary node. We show three discrete times t = 25, 50, 100
for three values of the parameter γ = 1, 0.75, 0.5. Here, we
depict one representative realization of a random walker as
it navigates from one node to another randomly. The case
γ = 1 corresponds to normal random walk leading to normal
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t=0

t=25 t=50 t=100

Unvisited nodes
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Position at time t

γ=1

γ=0.75

γ=0.5

Random walk
using regular
dynamics

Random walk
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dynamics

FIG. 2. (Color online) Monte Carlo simulation of a discrete-time random walker on a network. We choose for clarity a tree, with N = 100
nodes, but the qualitative results stand for any network. The discrete time t denotes the number of steps of the random walker as it moves
from one node to the next node on the network. This discrete random process is governed by a master equation with a transition probability
matrix that gives the probability of moving from node to node. The dynamics starts at t = 0 from an arbitrary node. We show three discrete
times t = 25, 50, 100 for three values of the parameter γ = 1, 0.75, 0.5. Here, we depict one representative realization of a random walker as
it navigates from one node to another randomly. The case γ = 1 corresponds to normal random walk leading to normal diffusion. In this case,
the random walker can move only locally to nearest neighbors and, as can be seen in the figure, the walker revisits very frequently the same
nodes and therefore the exploration of the network is redundant and not very efficient. The cases with γ = 0.75, 0.5 correspond to a fractional
random walk leading to anomalous diffusion. In this case, the random walker can navigate in a long-range fashion from one node to another
arbitrarily distant node. This allows to explore more efficiently the network since the walker does not tend to revisit the same nodes; on the
contrary, it tends to explore and navigates distant new regions each time. All this can be seen in the figure for different times, and allow us to
make a comparison between a random walker using regular dynamics and fractional dynamics.

diffusion. In this case, the random walker can move only
locally to nearest neighbors and, as can be seen in the
figure, the walker revisits very frequently the same nodes and
therefore the exploration of the network is redundant and not
very efficient. The cases with γ = 0.75, 0.5 correspond to a
fractional random walk leading to anomalous diffusion. In this
case, the random walker can navigate in a long-range fashion
from one node to another arbitrarily distant node. This allows
us to explore more efficiently the network since the walker does
not tend to revisit the same nodes; on the contrary, it tends to
explore and navigates distant new regions each time. All this
can be seen in the figure for different times, and allow us to
make a comparison between a random walker using regular
dynamics and a fractional dynamics; see the Supplemental
Material [46].

Finally, it is important to stress that this general dynamics
given by the fractional Laplacian matrix Lγ has embedded the
seeds of a long-range dynamics on networks of any kind.
Not only involving the shortest paths but also trajectories
of any kind in the network. That is, the fractional transition
probabilities introduced in Eq. (6) contain a global dynamics in
networks. Here lies its importance and the fruitful applications
that it may have for many real processes in networks.

IV. FRACTIONAL RETURN PROBABILITY

Now, we analyze the continuous-time random walks de-
fined by the fractional transition matrix W(γ ). Using the
fractional matrix L(γ ) in the master equation, Eq. (2), the

fractional occupation probability p
(γ )
ij (t) satisfies

dp
(γ )
ij (t)

dt
= −

N∑
l=1

L(γ )
lj p

(γ )
il (t). (18)

We are interested in the efficiency of the dynamics, described
by Eq. (18), to explore the network. In the fractional case
a treatment similar to the analysis of Eq. (2) allows us to
obtain the average fractional return probability, defined by
p

(γ )
0 (t) = 1

N

∑N
i=1 p

(γ )
ii (t), as

p
(γ )
0 (t) = 1

N

N∑
i=1

exp
[−ζ

(γ )
i t

]
, (19)

where ζ
(γ )
1 = 0, 0 < ζ

(γ )
m � 2 with m = 2, . . . ,N are the real

eigenvalues of L(γ ). Processes where p
(γ )
0 (t) decays rapidly to

the limt→∞ p
(γ )
0 (t) = N−1 explore efficiently new sites of the

network.
To analyze in detail this average return probability, let us

use as before the case of a ring. By using the spectrum of the
Laplacian matrix of a ring and the definition of L(γ ), we can
determine analytically the spectrum {ζ (γ )

l }Nl=2 for the modified
fractional Laplacian. With these eigenvalues and Eq. (19), in
the limit N → ∞, and approximating the sum by an integral
as before, we obtain

p
(γ )
0 (t) = 1

2π

∫ 2π

0
e−(2−2 cos θ)γ t/k(γ )

dθ. (20)
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Here k(γ ) = −�(−γ )�(2γ+1) sin(πγ )
π�(1+γ ) denotes the elements in the

diagonal of Lγ given by Eq. (15). In the limit γ = 1 we recover
the well-known analytical result for normal random walks
where p

(1)
0 (t) = e−t I0(t), where In(x) denotes the modified

Bessel function of the first kind [47]. Not only for γ = 1,
but even for some rational values of γ , we can obtain an
analytical result for this quantity. For example, when γ = 1/2
we have p

(1/2)
0 (t) = I0

(
πt
2

) − L0
(

πt
2

)
, where Ln(x) denotes

the modified Struve function [48]. On the other hand, for t � 1,
Eq. (20) can be expressed as

p
(γ )
0 (t) ∼ 1

π

∫ π

0
exp

[−22γ θ2γ

k(γ )
t

]
dθ, (21)

which can be evaluated analytically and takes the form [48]

p
(γ )
0 (t) ∼ [k(γ )]

1
2γ

4πγ

[
�

(
1

2γ

)
− �

(
1

2γ
,νt

)]
t
− 1

2γ , (22)

where ν = (2π )2γ /k(γ ) and �(a,x) is the incomplete �

function [48]. Therefore, the average return probability p
(γ )
0 (t)

for a ring, with N → ∞ in the limit t � 1, decays as a power
law given by p

(γ )
0 (t) ∼ t−1/(2γ ). This result generalizes the case

γ = 1 for a normal random walk, where p
(1)
0 (t) ∼ t−1/2 [4,47].

Let us analyze now this quantity for general networks
in more detail. In Fig. 3 we show the average fractional
return probability p

(γ )
0 (t) using the eigenvalues of the modified

fractional Laplacian L(γ ) and Eq. (19). Notice that the
fractional dynamics explores more efficiently the networks
in comparison with the normal case γ = 1 (i.e., p(γ )

0 (t) decays
more rapidly to the asymptotic value N−1). In particular, in

FIG. 3. (Color online) Average fractional return probability
p

(γ )
0 (t) as a function of time for different networks with N = 5 000

nodes and calculated using Eq. (19). (a) A ring, (b) a tree, and
(c) a scale-free (SF) network of the Barabási-Albert type [49]. We
used different values of γ as indicated in the insets.

Fig. 3(a) we observe the power-law decay of p
(γ )
0 ∝ t−1/(2γ ), as

predicted by our analytical results for a ring, before reaching
the value N−1. The effect of the efficiency of navigation due
to fractional dynamics is more noticeable for large-world
networks (ring and tree) than for small-world (scale-free)
networks.

In order to quantify the efficiency to explore the network,
we introduce a global time T̄ as

T̄ ≡
∫ ∞

0

[
p

(γ )
0 (t) − p

(γ )
0 (∞)

]
dt = 1

N

N∑
j=2

1

ζ
(γ )
j

. (23)

The inverse of the eigenvalues ζ
(γ )
j are the characteristic times

T(γ )
j that dominates the dynamics; these times are also relevant

for the problem of synchronization in networks [3]. Thus, this
global time T̄ is the average of these characteristic times in
p

(γ )
0 (t). In the context of Markovian processes τ ≡ NT̄ is

the Kemeny’s constant, that for random walks is the global
time τ = ∑N

j �=i p∞
j 〈Tij 〉, where 〈Tij 〉 is the mean first passage

time (MFPT) defined as the mean number of steps taken to
reach the node j for the first time starting from the node i

[6,19,52,53].
In Fig. 4 we show the global time T̄ as a function of γ

for different types of networks. In Fig. 4(a), for large-world
networks, the effect of the fractional dynamics reduces several
orders of magnitude the time T̄ , in comparison with the case
γ = 1. In Fig. 4(b) we show that even for small-world networks
the fractional dynamics improves the efficiency to explore the
networks.

FIG. 4. (Color online) Average time T̄ vs. γ calculated from
Eq. (23) for different types of networks with N = 5 000 nodes.
(a) Large-world networks: ring (1D lattice), the regular network
with degree k = 4 obtained by the Watts-Strogatz (WS) model
with rewiring probability p = 0 [50], a tree, a 2D lattice with
dimension 50×100 and periodic boundary conditions. (b) Small-
world networks: the WS network used in (a) with rewiring probability
p = 0.7, a scale-free (SF) network of the Barabási-Albert type [49],
and Erdős-Rényi (ER) network with p = log N/N [51].
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V. CONCLUSIONS

In summary, we have introduced a formalism of fractional
diffusion on networks based on a fractional Laplacian matrix
that can be constructed from the spectra and eigenvectors
of the Laplacian matrix. This fractional approach allows
random walks with long-range dynamics providing a general
framework for anomalous diffusion and navigation in net-
works. We obtained exact results for the stationary probability
distribution, the average fractional return probability, and a
global time. Based on these quantities, we show that the
efficiency to navigate the network is greater if we use a
fractional random walk, in comparison to a normal random
walk. For the case of a ring, we obtain exact analytical results
showing that the fractional transition and return probabilities

follow a long-range power-law decay and, thus, the emergence
of Lévy flights on networks. Our general fractional diffusion
formalism applies to regular, random, and complex networks
and can be implemented from the spectral properties of the
Laplacian matrix, providing an important tool to analyze
anomalous diffusion on networks. Our results show how the
long-range displacements improve the efficiency to reach any
node of the network inducing dynamically the small-world
property in any structure.
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