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Slow synaptic dynamics in a network: From exponential to power-law forgetting

J. M. Luck1,* and A. Mehta2,†
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We investigate a mean-field model of interacting synapses on a directed neural network. Our interest lies in
the slow adaptive dynamics of synapses, which are driven by the fast dynamics of the neurons they connect.
Cooperation is modeled from the usual Hebbian perspective, while competition is modeled by an original
polarity-driven rule. The emergence of a critical manifold culminating in a tricritical point is crucially dependent
on the presence of synaptic competition. This leads to a universal 1/t power-law relaxation of the mean synaptic
strength along the critical manifold and an equally universal 1/

√
t relaxation at the tricritical point, to be

contrasted with the exponential relaxation that is otherwise generic. In turn, this leads to the natural emergence
of long- and short-term memory from different parts of parameter space in a synaptic network, which is the most
original and important result of our present investigations.

DOI: 10.1103/PhysRevE.90.032709 PACS number(s): 87.19.lv, 87.18.Sn, 87.10.Mn, 05.40.−a

I. INTRODUCTION

Memory and its mechanisms have always attracted a
great deal of interest [1]. It is well known that memory
is not a monolithic construct, and that memory subsystems
corresponding to episodic, semantic, or working memory exist
[2]. We focus here on explicit memory, which is the memory
for events and facts.

In general, memories are acquired by the process of
learning, which is a complicated phenomenon related to neural
activities, brain network structure, and synaptic plasticity [3].
However, neuroscientists [4,5] typically focus on the latter, so
that increasingly sophisticated models of synaptic plasticity
have emerged over the years [6–8]. Much of this work has
been done by adapting methods from statistical physics. Such
modeling, while it may not include details of specificities
involving chemical and biological processes in the brain,
can outline possible mechanisms that take place in simplified
structures. For example, the study of neural networks [6–8],
while it greatly simplifies biological structures in order to
make them tractable, has still been able to make an impact
on the parent field. In particular, neural networks such as the
Hopfield model [9,10] have been extensively investigated via
methods borrowed from the statistical physics of disordered
and complex systems [11–14]. In these models, memories are
stored as patterns of neural activities, which correspond both to
low-energy states and to attractors of the stochastic dynamics
of the model. An essential property of these models as well as
real neural networks is that their capacity is finite. Forgetting is
therefore an important aspect of continued learning [3,15–20].

More recently, there has been a great deal of work on
the fast dynamics of neurons in neural networks. Typically,
models of integrate-and-fire neurons on networks have been
studied, and their different dynamical regimes explored [21].
The discovery of neural avalanches in the brain [22] was
followed by several dynamical models of neural networks
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[23,24], where the statistics of avalanches were investigated
[25–30] in the context of theories of self-organized criticality
[31]. A review of such approaches can be found in Ref. [32].

Here, by contrast, we study the slow dynamics of adaptive
synapses in neural networks. This is done with the objective
of exploring the phenomena of learning and forgetting, to
both of which the evolution of synaptic plasticity is strongly
linked [3].

We usually tend to remember information only for relatively
short durations: such finite time scales, corresponding to short-
term memory, are readily modeled by a process of exponential
forgetting. However, there are some things we remember for as
long as we live, which form part of our long-term memories:
this scenario corresponds to power-law forgetting [33–35],
with its attendant absence of time scales. Typically, models
that manifest the latter have made use of specially designed
synapses with hidden internal states [36–38]. The aim of this
paper is to provide a holistic framework for the modeling
of synaptic networks that are capable of storing both long-
and short-term memories, without recourse to specialized
architectures. In our model, these emerge naturally in different
parameter regimes, as a direct consequence of the collective
dynamics of synaptic cooperation and competition. Our model
thus provides a clear modeling alternative to the cascade
process of Fusi and collaborators [36], which have so far
occupied center stage in the field: while their model invokes
specialized synaptic architectures to get long-term memory,
ours does not.

In general, neural processes are assumed to be subject to
local rules that govern the way in which synapses are updated
[3,39]; Hebb’s rule is an important example, which says that
“neurons that fire together, wire together” [40]. The outcome
of many such processes results in functional change, which
drives behavior, in much the same way as in agent-based
modeling, when local interactions among agents may give
rise to emergent phenomena on a macroscopic scale [41]. In
such approaches [42], the underlying idea is that the strategy
of a given agent is to a large extent determined by what
the others are doing, through considerations of the relative
payoffs obtainable in each case. This formalism was extended
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to neural networks in a simple-minded way in Refs. [43,44],
where synapses adapted via competing interactions involving
the activity patterns of interconnected neurons.

This paper puts that earlier work on a more complete
footing, in particular by extending the types of synaptic
interactions. It is known that both competition and cooperation
play important roles in synaptic plasticity [45]; cooperation
has traditionally been modeled by Hebb’s rule, but this alone
can lead to the unlimited growth of synaptic strength, which
is unphysical. Competition is thus a necessary mechanism to
regulate such growth [4,46]: while regarded as an essential
ingredient by neuroscientists, its inclusion in theoretical
models is rare [5]. An example of competition in the fast
dynamical regime of firing neurons can be found in Ref. [47],
where synaptic updates occur depending on the latency of
spike trains. Our modeling of competition [43] is, however,
formulated in the opposite dynamical regime of slow synaptic
dynamics. Finally, we also include a representation of the
spontaneous relaxation of synapses. This mechanism is an
important one in the context of finite storage capacities, when
space is created via the spontaneous decay of old memories.
This is sometimes referred to as the palimpsest effect [15,16].

At the most microscopic level, individual neurons fire at
rates that exhibit a whole spectrum of biological noise [6–8].
Here we choose a level of description where neurons may
be either active or inactive, according to their mean firing
rates. The response of neurons is considered as stochastic and
instantaneous with respect to the much slower dynamics of
the synapses we consider. As a result of this temporal coarse
graining, the overall effect of the microscopic noise can be
represented by spontaneous relaxation rates from one type
of synaptic strength to the other. Next, cooperation between
synapses is incorporated via the usual Hebbian viewpoint. Our
modeling of the competitive interaction by polarity-driven
interactions is the most original as well as the most crucial
part of our formalism: synapses are converted to the type most
responsible for neural activity in their neighborhood [43,44].

Our choice of basis is that of a fully connected network,
where all neurons are connected to one another by directed
synapses [6,8]. Section II contains a detailed description of
the model. In Sec. III, we characterize the various types of
mean-field dynamics (generic, critical, tricritical) displayed
by our model. In Sec. IV, we explore the dependence of our
phase diagram on parameters, with particular reference to the
behavior of relaxation times. In Sec. V, we address issues
related to learning and forgetting, and show that our model
contains a rich spectrum of time scales. Finally, in Sec. VI, we
discuss our findings.

II. MODEL

We model a network of neurons connected by directed
synapses. We first describe the geometry of our network and
then explain the nature of its dynamics.

A. Geometry

We consider a fully connected network, whose bonds are
directed (see Fig. 1) by randomly attributing an orientation
to every bond of the complete graph on N nodes. With

FIG. 1. An instance of the directed fully connected network with
four nodes.

this geometry, mean-field theory is expected to apply in the
thermodynamic limit of an infinitely large network [6].

We mention in passing that our assumption of a fully
connected network in our analysis is only for technical
simplicity. In fact, mean-field dynamics are also expected to
apply to sparse networks, provided that the degree (number of
neighbors) of its nodes grows to infinity with the system size
N . Realistic neural networks, while sparse, indeed show such
growth [48,49], so that it is valid to do a mean-field analysis of
their dynamics. It turns out that for such networks, the degree
grows linearly with system size; it is of the form pN where p

is of the order of 10–15 % .
Neurons live on the nodes of the network, labeled i =

1, . . . ,N . The activity state of neuron i at time t is described
by a binary activity variable:

νi(t) =
{+1 if i is active at time t,

−1 if i is inactive at time t .
(1)

Active neurons are those whose instantaneous firing rate
exceeds some unspecified threshold.

The network is equipped with oriented bonds as follows.
For each pair of different nodes i and j , we attribute a random
orientation to the bond joining i and j , i.e., we put with
probability 1

2 either a directed bond (ij ) from i to j , or a
directed bond (ji) from j to i, but never both. The total number
of oriented bonds is therefore 1

2N (N − 1). Synapses live on the
directed bonds (ij ) so defined. The strength σij (t) of synapse
(ij ) at time t is also described by a binary variable:

σij (t) =
{+1 if (ij ) is strong at time t,

−1 if (ij ) is weak at time t .
(2)

Strong synapses are those whose strength exceeds some
unspecified threshold.

B. Neuronal dynamics

Neurons have an instantaneous stochastic response to their
environment. The activity of neuron i at time t reads

νi(t) =
{+1 with probability F [hi(t)],
−1 with probability 1 − F [hi(t)],

(3)

where F (h) is a sigmoidal response function of the input field
hi(t), increasing from F (−∞) = 0 to F (+∞) = 1. The input
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field acting on neuron i,

hi(t) = 1

N

∑
j∈∂(i)

[a + bσji(t)]νj (t), (4)

is a weighted sum of the instantaneous activities νj (t) of the
neurons j , which influence i. Here, ∂(i) denotes the subset of
nodes j , which transmit information to i via directed synapses
(ji). Strong synapses (σji = 1) enter the above sum with a
synaptic weight a + b, while weak ones (σji = −1) have a
synaptic weight a − b. We assume a and b are constant all
over the network.

All synapses are therefore excitatory for b > 0, and in-
hibitory for b < 0. The kind of collective behavior discussed
here, either along the critical manifold of at its tricritical
endpoint, is therefore different in nature from the chaotic
dynamical features, which have been emphasized in balanced
networks [50–52], where excitatory and inhibitory effects
balance each other on average.

In the following, we consider a spatially homogeneous
situation in the thermodynamic limit of an infinitely large
network. In this limit, for every node i, the numbers of
incoming bonds (ji) and outgoing bonds (ik) are both equal
to 1

2N , up to negligible fluctuations. Moreover, we focus on
the slow plasticity dynamics of the synaptic strengths. The
characteristic time scale of this dynamics is much larger than
the microscopic time scale of neural activity. Within this
framework, it will be sufficient to consider the mean neural
activity

A(t) = 1

N

∑
i

νi(t) (5)

and the mean synaptic strength

J (t) = 2

N (N − 1)

∑
(ij )

σij (t). (6)

These key dynamical quantities entirely characterise the global
aspects of the slow synaptic dynamics. They are related by a
constitutive equation of the form

A(t) = g[J (t)], (7)

which is local in time: the mean neural activity A(t) only
depends on the mean synaptic strength J (t) at the same time
t . The form of the function g(J ) can, at least in principle, be
derived by appropriately averaging the microscopic equations
(3) and (4), both spatially over the network and temporally over
an integration time �t , which would be large with respect to
the time interval between two spikes, say, and very small with
respect to the characteristic time scale of plasticity dynamics.

In this work, we prefer to employ a more phenomenological
route. Remember that all the synapses of the network are
excitatory for b > 0, and inhibitory for b < 0. Consider for
a while the special situation where there are as many strong as
weak synapses. In this case the mean synaptic strength defined
in (6) vanishes (J = 0). We make the simplifying assumption
that there are also as many active as inactive neurons on
average in this situation, so that A = 0. Then, linearising the
constitutive equation (7) around this symmetric situation, we

readily obtain the linear response formula

g(J ) = εJ, (8)

which will be used throughout this work. The slope ε of the
response function is one of the key parameters of the model.
It is clearly proportional to b, and positive in the excitatory
case (b > 0), so that g(J ) is an increasing function of J . In
the inhibitory case (b < 0), ε is negative, so that g(J ) is a
decreasing function of J . Finally, it has to obey |ε| < 1.

C. Synaptic plasticity dynamics

Synaptic strengths evolve very slowly in time, compared to
the fast time scales of neuron firing rates. It is thus natural to
model synaptic dynamics as a stochastic process in continuous
time [53], defined in terms of effective jump rates between the
two states, strong or weak, of the synaptic strength. Our model
includes three plasticity mechanisms, which drive synaptic
evolution:

1. Spontaneous relaxation mechanism

Synapses may spontaneously change their state from weak
to strong (potentiation) or strong to weak (depression). This
spontaneous relaxation mechanism translates into

σij = −1 → +1 with rate �,

σij = +1 → −1 with rate ω.
(9)

Signal processing, in this context, examines the effect of
deterministic external signals which are superposed on these
spontaneous relaxation rates [see (42)].

2. Hebbian mechanism

When two neurons are in the same state of activity
(inactivity), the synapse which connects them strengthens;
when one of the neurons is active and the other is not, the
interconnecting synapse weakens. This is the well-known
Hebbian mechanism [40], which we implement with rate α.
In the thermodynamic limit of the directed fully connected
network, the probability to have νi = ±1 at any given time
is 1

2 (1 ± A) = 1
2 [1 ± g(J )]. The probabilities q+ (q−) to have

νi = νj (νi �= νj ) are:

q± = 1
2 [1 ± g(J )2]. (10)

We thus have

σij = −1 → +1 with rate αq+,

σij = +1 → −1 with rate αq−.
(11)

3. Polarity-driven mechanism

This is a mechanism to introduce synaptic competition,
introduced for the first time in Ref. [43], which converts a given
synapse to the type of its most successful neighbors. Thus: if a
synapse (ij ) connects two neurons with different activities at
any given time, it will adapt its strength to that of a randomly
selected synapse connected to the active neuron. If we have
νi = +1 and νj = −1, the active neuron i is presynaptic, and
the selected synapse may be either outgoing (ik) from neuron i,
or incoming (ki) to neuron i. If we have νi = −1 and νj = +1,
the active neuron j is postsynaptic, and the selected synapse
may be either outgoing (jk) from neuron j , or incoming (kj )
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to neuron j . If the selected synapse is strong, the update
σij = −1 → +1 takes place with rate β; if it is weak, the
update σij = +1 → −1 takes place with rate γ . The rates β

and γ are assumed to be identical in all four cases.
All in all, the polarity-driven mechanism also translates into

a simple form in the thermodynamic limit of the directed fully
connected network:

σij = −1 → +1 with rate 1
2β(1 + J )q−,

σij = +1 → −1 with rate 1
2γ (1 − J )q−.

(12)

III. MEAN-FIELD DYNAMICS

Here we begin our investigation of the slow collective
dynamics of the synaptic activity in the network: importantly,
we restrict ourselves to its global features, rather than looking
at patterns of spatially varying synaptic strengths.

For a spatially homogeneous situation in the thermody-
namic limit, the mean synaptic strength J (t) obeys a nonlinear
dynamical mean-field equation of the form

dJ

dt
= P (J ). (13)

The explicit form of the rate function P (J ) is obtained by
summing the contributions of the three plasticity mechanism
mentioned above:

P (J ) = P1(J ) + P2(J ) + P3(J ), (14)

with [see (9), (11), (12)]

P1(J ) = �(1 − J ) − ω(1 + J ),

P2(J ) = α
(
g(J )2 − J

)
= −αJ (1 − ε2J ), (15)

P3(J ) = −δ(1 − J 2)[1 − g(J )2]

= −δ(1 − J 2)(1 − ε2J 2),

where

δ = 1
4 (γ − β). (16)

In the most general situation, the model has five parameters:
the slope ε of the linear response equation (8) and the four rates
�, ω, α, and δ involved in the three plasticity mechanisms. The
resulting rate function is a polynomial of degree 4:

P (J ) = p4J
4 + p2J

2 − (� + ω + α)J + � − ω − δ, (17)

with

p4 = −δε2, p2 = (α + δ)ε2 + δ. (18)

The linear rate function P1(J ) corresponds to the spontaneous
mechanism; the Hebbian mechanism leads to the quadratic
nonlinearity of P2(J ), while the polarity-driven competitive
mechanism results in the quartic nonlinearity of P3(J ).

The parameter ε only enters (15) and (18) through its square
ε2. The model therefore exhibits an exact symmetry between
the excitatory (ε > 0) and the inhibitory (ε < 0) cases. This
is to be expected, as none of the plasticity mechanisms
distinguishes between them. More generally, the model is
invariant if the constitutive function g(J ) is changed into its
opposite.

A. Generic dynamics

The dynamics leave the mean synaptic strength con-
fined to the physical interval −1 � J (t) � 1. We have
indeed P (−1) = 2� + α(1 + ε2) > 0 and P (1) = −2ω −
α(1 − ε2) < 0. The rate function P (J ) has therefore an odd
number of zeros in this interval, i.e., either one or three,
with appropriate multiplicities in critical regimes. These zeros
correspond to fixed points of the dynamics. As a consequence,
the model exhibits two generic dynamical regimes, as shown
in Fig. 2.

In regime I (see Fig. 2, top), there is a single attractive
(stable) fixed point at J0. The mean synaptic strength J (t)
therefore converges exponentially fast to this unique fixed
point, irrespective of its initial value, according to

J (t) − J0 ∼ e−t/τ0 . (19)

The corresponding relaxation time reads

τ0 = − 1

P ′(J0)
. (20)

In the limiting situation where there is only spontaneous
relaxation, so that P (J ) = P1(J ), we have

J0 = � − ω

� + ω
, τ0 = 1

� + ω
. (21)

In regime II (see Fig. 2, bottom), there are two attractive
(stable) fixed points at J1 and J2, and an intermediate repulsive
(unstable) one at J3. The mean synaptic strength J (t) con-
verges exponentially fast to either of the attractive fixed points,
depending on its initial value, namely to J1 if −1 < J (0) < J3

and to J2 if J3 < J (0) < 1. The corresponding relaxation times
read

τ1 = − 1

P ′(J1)
, τ2 = − 1

P ′(J2)
. (22)

In other words, regime II allows for the coexistence of two
separate fixed points, leading to network configurations which
are composed of largely strong/weak synapses. The quartic

J0
J

P(J)

+1

−1

Regime I

P(J)

J1 J2J3 J

+1

−1

Regime II

FIG. 2. (Color online) The two possible generic dynamical
regimes. Top: Regime I (one single attractive fixed point, J0). Bottom:
Regime II (two attractive fixed points, J1 and J2, and an intermediate
repulsive one, J3).

032709-4



SLOW SYNAPTIC DYNAMICS IN A NETWORK: FROM . . . PHYSICAL REVIEW E 90, 032709 (2014)

nonlinearity corresponding to the polarity-driven plasticity
mechanism needs to be sufficiently strong for the model to
exhibit this coexistence (see Sec. IV).

B. Critical dynamics

When two of the three fixed points merge at some Jc, the
dynamical system (13) exhibits a saddle-node bifurcation [54].
In physical terms, the dynamics become critical. We have then

P (Jc) = P ′(Jc) = 0, (23)

so that the critical synaptic strength Jc is a double zero of the
rate function P (J ) (see Fig. 3). There is a left critical case,
where J1 = J3 = J (L)

c , while J2 remains noncritical, and a
right one, where J2 = J3 = J (R)

c , while J1 remains noncritical.
The critical synaptic strength Jc in both cases will be shown to
obey Jc > 1

3 [see (36)]. We thus conclude that the critical point
is always strengthening, as Jc is always larger than the natural
initial value J (0) = 0, corresponding to a random mixture of
strong and weak synapses in equal proportions.

The mean synaptic strength exhibits a universal relaxation
to its critical value, of the form

J (t) − Jc ≈ Ac

t
. (24)

The corresponding amplitude reads

Ac = − 2

P ′′(Jc)
= 1

6δε2
(
J 2

c − J 2
T

) . (25)

The expression (30) for J 2
T as a function of ε, α, and δ has

been used to derive the equality on the extreme right. The 1/t

relaxation law (24) holds whenever the initial value J (0), is on
the attractive side of the critical point, i.e., −1 < J (0) < J (L)

c

in the left critical case (where J (L)
c < JT and so A(L)

c < 0), or
J (R)

c < J (0) < 1 in the right critical one (where J (R)
c > JT and

so A(R)
c > 0). In the opposite regimes [J (L)

c < J (0) < 1 in the
left critical case or −1 < J (0) < J (R)

c in the right critical case],
one finds exponential relaxation to J2 and J1 respectively.

P(J)

Jc
(L) J2 J

+1

−1

Left critical

P(J)

Jc
(R)J1 J

+1

−1

Right critical

FIG. 3. (Color online) The two possible kinds of critical dynam-
ical behavior. Top: left critical case (J1 = J3 = J (L)

c ). Bottom: right
critical case (J2 = J3 = J (R)

c ).

P(J)

JT
J

+1

−1

Tricritical

FIG. 4. (Color online) Tricritical dynamical behavior (J1 = J2 =
J3 = JT ).

C. Tricritical dynamics

When all three fixed points merge at some JT , the dynamical
system (13) exhibits a pitchfork bifurcation [54]. In physical
terms, this corresponds to tricritical behavior. We have then

P (JT ) = P ′(JT ) = P ′′(JT ) = 0, (26)

so that the tricritical synaptic strength JT is a triple zero of the
rate function P (J ) (see Fig. 4).

The mean synaptic strength again exhibits a universal
power-law relaxation (even slower than at the critical points)
to its tricritical value JT :

J (t) − JT ≈ ±BT√
t
. (27)

This 1/
√

t relaxation law holds irrespective of the initial value
J (0), with ± denoting the sign of the initial difference J (0) −
JT , whereas

BT =
√

− 3

P ′′′(JT )
= 1√

8δε2JT

. (28)

As JT is always positive, the expression on the right-hand side
is always well defined. We have actually JT > 1

3 [see (36)],
and so the tricritical point too is always strengthening.

To sum up, the noncritical fixed points of regimes I or II
are characterized by exponential relaxation; the corresponding
relaxation times, whether long or short, are always finite.
Anywhere along the critical manifold, on the other hand, one
observes a universal power-law relaxation in 1/t of the mean
synaptic strength. An even slower power-law relaxation in
1/

√
t holds at the tricritical point. These two cases correspond

to an infinite relaxation time.

IV. DEPENDENCE ON PARAMETERS AND
PHASE DIAGRAM

We have so far described the various dynamical regimes
characterizing the evolution of the mean synaptic strength J (t)
according to the mean-field dynamical equation (13). Here, we
describe the regions of parameter space where these will be
found.

A. Dependence on the spontaneous rates

It is worth examining first the phase diagram of the model
in the ω-� plane of the spontaneous rates, for fixed values of
ε, α, and δ. This plane is also the arena where input signals are
expressed (see Sec. V).
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The criticality conditions (23) allow us to express the
critical values of the spontaneous rates in terms of Jc as

ωc = 1
2

(−3p4J
4
c + 4p4J

3
c − p2J

2
c + 2p2Jc − α − δ

)
,

�c = 1
2

(
3p4J

4
c + 4p4J

3
c + p2J

2
c + 2p2Jc − α + δ

)
. (29)

At the tricritical point, the third equality of (26) determines
the value of JT as:

J 2
T = − p2

6p4
= 1

6

(
α + δ

δ
+ 1

ε2

)
. (30)

From now on, JT will denote the (positive) square root of this
expression.

The expressions (29) of the critical rates imply

∂ωc

∂Jc

= −6δε2(1 − Jc)
(
J 2

c − J 2
T

)
,

(31)
∂�c

∂Jc

= −6δε2(1 + Jc)
(
J 2

c − J 2
T

)
.

Viewed as functions of Jc, both critical rates are therefore
simultaneously stationary (i.e., either maximal or minimal)
for Jc = ±JT . The only way for the model to have a physical
tricritical point, where both spontaneous rates ωT and �T are
positive, is to have δ > 0, i.e., γ > β, and J = JT > 0. The
spontaneous rates are then maximal at this tricritical point.

Figure 5 shows a schematic phase diagram in the ω-� plane.
The horn-shaped curve is the critical manifold ending in a
cusp singularity at the tricritical point T. The upper branch (L)
corresponds to left critical dynamics, while the lower one (R)
corresponds to right critical dynamics. The bounded region
inside the critical curve corresponds to regime II, while the
complementary region corresponds to regime I.

B. Dependence on the other parameters

Let us now examine the phase diagram of the model as
a function of the remaining parameters ε, α, and δ. The two
latter rates only enter through their ratio, which suggests the
definition of the dimensionless quantity

g = δ

α + δ
. (32)

ω

Ω (I)

(II)

T(L)

(R)

FIG. 5. (Color online) Schematic phase diagram in the ω-�
plane. T: tricritical point. (L) and (R): left and right critical branches.
(I) and (II): Regimes I and II. Vertical dashed lines: cuts along which
fixed points and relaxation times will be investigated in Sec. IV C and
plotted in Figs. 7 and 8.

0 0.2 0.4 0.6 0.8 1
ε2

0

0.2

0.4

0.6

0.8

1

g

C

FIG. 6. (Color online) Phase diagram in the ε2-g parameter
space. The model has a physical critical manifold in the region marked
with C. (Red) curve ending at filled circles: phase boundary [see (33)]
with endpoints (ε2 = 1

5 , g = 1) and (ε2 = 1, g = 1
5 ). (Blue) filled

square: extremal model (ε2 = g = 1).

The tricritical values �T and ωT of the spontaneous rates �

and ω turn out to obey �T > ωT . The condition for having a
physical critical manifold resembling Fig. 5, culminating in a
physical tricritical point, is thus ωT > 0.

Figure 6 shows the phase diagram of the model in the
ε2-g parameter space (the unit square). The (red) curve with
equation

128ε2g(ε2 + g)3 = 3(ε4 + 14ε2g + g2)2 (33)

is the phase boundary, corresponding to ωT = 0. This curve
exhibits an unexpected symmetry under the exchange of ε2

and g. The endpoints, shown as red symbols, have coordinates
(ε2 = 1

5 , g = 1) and (ε2 = 1, g = 1
5 ).

The model exhibits critical behavior only when the param-
eters ε2 and g lie above the red curve, i.e., in the rather small
region marked C. These rather stringent limitations on critical
behavior suggest that the associated infinitely large relaxation
time is only rarely observed: most of the phase diagram is
dominated by exponential relaxation. This is consistent with
the fact that one would expect infinitely large relaxation times
(with their possible association with long-term memory, see
Sec. V) to be associated only with rare events.

The upper right corner of Fig. 6, shown as a (blue) square,
corresponds to the extremal model where ε2 = 1 (the slope
of the response function is maximal) and g = 1, i.e., α = 0
(absence of Hebbian learning). The tricritical synaptic strength
assumes the value

JT = 1√
3

≈ 0.57735. (34)

In reduced time units where δ = 1, the corresponding sponta-
neous rates read

ωT = 2
9 (2

√
3 − 3) ≈ 0.10313,

(35)
�T = 2

9 (2
√

3 + 3) ≈ 1.43646.

The critical manifold is the largest possible in this extremal
model. With the notation of Fig. 5, the left (L) branch
corresponds to 1

3 < J (L)
c < JT , while the right (R) branch

corresponds to JT < J (R)
c < 1. It can be checked that the range
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of possible values of Jc is always smaller for generic parameter
values in region C of Fig. 6, than in this extremal model. In
particular, we always have

Jc > 1
3 . (36)

C. Relaxation times

In this section we illustrate the behavior of the attractive fixed
points of the mean-field dynamical equation (13), and of the
corresponding relaxation times. The main emphasis is on the
divergent behavior of the relaxation times when the critical
manifold or the tricritical point is approached. The subsequent
numbers and figures correspond to the extremal model (ε2 =
g = 1). This choice is only made for convenience; any point
within region C of Fig. 6 would lead to a similar picture.
Finally, we work in reduced time units (δ = 1).

1. Critical behavior

In order to investigate the effect of the critical manifold, we
fix a value ω = 0.03 and move along the left (black) vertical
line of Fig. 5 by varying �. By so doing, we cross the left
critical branch (L) at �(L)

c and the right critical branch (R) at
�(R)

c .
Figure 7 shows the fixed points (top) and the corresponding

relaxation times (bottom) against the potentiating rate �. In
regime II, i.e., for �(R)

c < � < �(L)
c , the figure shows the two

attractive fixed points, J1 [lower (black) branch] and J2 [upper
(red) branch] and the two associated relaxation times, τ1 and τ2.
The intermediate repulsive fixed point J3 (blue) is also shown
for completeness. One relaxation time diverges as each branch
of the critical manifold is reached. As � → �(L)

c , where J1

and J3 merge at J (L)
c (see Fig. 3, top), we have

J (L)
c − J1 ∼ (

�(L)
c − �

)1/2
, τ1 ∼ (

�(L)
c − �

)−1/2
. (37)

Similarly, as � → �(R)
c , where J2 and J3 merge at J (R)

c (see
Fig. 3, bottom), we have

J2 − J (R)
c ∼ (

� − �(R)
c

)1/2
, τ2 ∼ (

� − �(R)
c

)−1/2
. (38)

Outside the interval �(R)
c � � � �(L)

c , we are in regime I.
There is one single fixed point J0 (see Fig. 2, top). This fixed
point appears as a continuation of J1 for � < �(R)

c , and as a
continuation of J2 for � > �(L)

c .

2. Tricritical behavior

Now, in order to investigate the effect of the tricritical point,
we set ω = ωT [see (35)] and vary �, which traces the right
(blue) vertical line of Fig. 5. Consequently, we are always
in regime I, with its single fixed point J0 and corresponding
relaxation time τ0. These quantities are plotted in Fig. 8. As the
tricritical point is approached (� → �T ), we have the power
laws

|J0 − JT | ∼ |� − �T |1/3, τ0 ∼ |� − �T |−2/3. (39)

3. Summary

We now summarize the content of the above paragraphs. In
the critical regime, the power laws (37), (38) are characteristic

of a saddle-node bifurcation. They together conspire to hint
at the slow relaxation in 1/t [see (24)] of the mean synaptic
strength at a critical point. Similarly, in the tricritical regime,
the relaxation in 1/

√
t [see (27)] at the tricritical point results

from combining the power laws (39), which are characteristic
of a pitchfork bifurcation. The first thing worth remarking
is that the divergence of the tricritical relaxation time is
symmetric when �T is approached from smaller and larger
�. This is not the case for the critical regime, when the
divergence occurs at �(L)

c when approached from below and at
�(R)

c when approached from above. Second, the faster growth
of the relaxation time around the tricritical point causes the
overall slower relaxation of the mean synaptic strength, with
respect to the critical regime.

We end this section with a qualitative picture of our phase
diagram and its associated flows. The choice of g and ε defines
a specific model within the region C of Fig. 6. The behavior of
the latter as a function of � and ω is illustrated in Fig. 5. Here,
ω can be chosen such that, upon varying �, the system is:

0.8 1 1.2 1.4
Ω

0

2

4

6

8

10

τ i

Ωc
(R) Ωc

(L)

0.8 1 1.2 1.4
Ω

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

J i

(Ωc

(R)
,Jc

(R)
)

(Ωc

(L)
,Jc

(L)
)

(I) (II) (I)

FIG. 7. (Color online) Top: Fixed points Ji against potentiating
rate � in reduced units, for the extremal model with ω = 0.03. Bottom
(black) and top (red) curves: attractive fixed points. Intermediate
(blue) curve: repulsive fixed point. Right (black) and left (red)
filled symbols have respective coordinates (�(L)

c ≈ 1.24768, J (L)
c ≈

0.37013) and (�(R)
c ≈ 0.88270, J (R)

c ≈ 0.85650). Bottom: relaxation
times associated with the attractive fixed points. Vertical lines at
� = �(L)

c and � = �(R)
c demarcate regimes I and II and locate the

divergences (37), (38).
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(i) fully confined to the noncritical regime I (ω > ωT ) so
that only exponential relaxation is possible.

(ii) constrained to reach the tricritical point (ω = ωT ).
Here, all initial configurations of synapses (ranging from
totally weak to totally strong) are attracted towards a unique
tricritical point, which is strengthening (JT > 0). The conse-
quent power-law relaxation (∼ 1/

√
t) is at its slowest here.

(iii) free to explore the critical region (ω < ωT ). For
� < �(R)

c and � > �(L)
c , the system is in regime I, and all

relaxation is exponential. For �(R)
c < � < �(L)

c , whether the
critical point is reached or not depends strongly on the initial
synaptic configuration through J (0). While both fixed points
are strengthening, the important difference with the tricritical
scenario is that the associated power-law forgetting is faster
(∼ 1/t) here.

The relaxation time for the mean synaptic strength is likely
to provide an upper bound for the relaxation time of specific
patterns stored in a distributed fashion across the network.
Consequently, as will be discussed in the next section, the
critical and tricritical situations are those where power-law
forgetting can be manifested.

V. LEARNING AND FORGETTING

A. Global properties

In this section we address the learning and forgetting
properties of the model network. We start with global features,

1.2 1.4 1.6 1.8
Ω

0

0.2

0.4

0.6

0.8

1

J 0

(ΩT,JT)

1.2 1.4 1.6 1.8
Ω

0

2

4

6

8

10

τ 0

ΩT

FIG. 8. (Color online) Top: attractive fixed point J0 against po-
tentiating rate � in reduced units, for the extremal model with
ω = ωT . The coordinates (�T ,JT ) of the tricritical point (filled
symbol) are given by (34), (35). Bottom: associated relaxation time
τ0. The vertical line at � = �T locates the divergence (39).

by submitting our model to an arbitrary time-dependent
but spatially uniform input. The latter is modeled by two
deterministic signals S(t) and s(t), which are respectively
superposed on the spontaneous relaxation rates, according to

�(t) = � + S(t),
(40)

ω(t) = ω + s(t).

The single collective degree of freedom of the model,
namely its mean synaptic strength J (t), evolves according to
Eq. (13), where the rate function

P (J ; t) = p4J
4 + p2J

2

− [� + ω + α + S(t) + s(t)]J

+� − ω − δ + S(t) − s(t) (41)

now bears an explicit time dependence.
Let us assume for definiteness that the mean synaptic

strength has relaxed to one of its fixed-point values J , and
that the signals S(t) and s(t) are nonzero only in a finite
time window of duration T . During the learning phase (0 <

t < T ), J (t) will be displaced from the fixed-point value J ,
characterizing its default state in the absence of any input.
During the subsequent forgetting phase (t > T ), J (t) will relax
back to its default state.

If the default parameters are such that the system lies in
the noncritical regime, then both learning and forgetting will
be exponentially fast. Optimal trajectories can in principle be
constructed, as was done in Refs. [43,44] so that fast learning
and slow(er) forgetting are obtained, but globally, the memory
manifested is always short-term. If, however, the default state
of the model is critical, the application of generic input signals
will take the system off it, so that the learning mechanism
will be characterized by a finite relaxation time. Learning will
thus be exponentially fast, while forgetting (at the same global
level) will follow the power law (24) characteristic of the
critical state.

B. Local properties

Associative memory is usually encoded in patterns, which
are stored throughout neural networks in a distributed fashion,
i.e., as a nonuniform modulation of the synaptic weights σij .
In order to explore the storage of memory in our model,
an arbitrary space and time-dependent input [modeled as
deterministic signals Sij (t) and sij (t)] would have to be
superposed on the spontaneous relaxation rates of every
synapse (ij ):

�ij (t) = � + Sij (t),
(42)

ωij (t) = ω + sij (t).

The resulting equations can only be investigated by means of
extensive numerical work in the general case.

We can however look analytically at the response of a single
synapse, say (kl), when it is submitted to an input such as (42).
The mean synaptic strength J (t) of the whole network will be
unaffected by such a localized perturbation, and thus continue
to obey (13). Let us again assume that the system has reached
one of the fixed-point values J . The stochastic dynamics of
the selected synapse (kl) can be shown, along the lines of the
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derivation of (15), to be determined by the effective rates

�eff(t) = � + 1
2α(1 + ε2J 2)

+ 1
4β(1 + J )(1 − ε2J 2) + Skl(t),

(43)
ωeff(t) = ω + 1

2α(1 − ε2J 2)

+ 1
4γ (1 − J )(1 − ε2J 2) + skl(t).

The mean strength jkl(t) of the selected synapse therefore
obeys

djkl

dt
= �eff(t)(1 − jkl) − ωeff(t)(1 + jkl). (44)

In the forgetting phase (t > T ), the input signals vanish, so
that the mean strength of the selected synapse relaxes to the
fixed-point value J of the mean synaptic strength of the whole
network. Interestingly, this relaxation is always exponential:

jkl(t) − J ∼ e−t/τloc . (45)

The corresponding local relaxation time is such that its
reciprocal is the sum of both rates (43) in the absence of a
signal, i.e.,

1

τloc
= � + ω + α + 1

4 [β(1 + J ) + γ (1 − J )](1 − ε2J 2).

(46)
This relaxation time is likely to provide a lower bound for time
scales associated with short-term memory.

C. A rich spectrum of time scales

As indicated above, networks learn by assimilating space-
and time-dependent patterns. Realistic learning and forgetting
protocols depend on the precise space and time dependence of
applied signals, as well as, of course, the default parameters of
the network. In the previous two subsections, we have shown
that global time scales associated with the dynamics of the
entire network can be either finite (exponential relaxation)
or infinite (power-law relaxation), while the relaxation of a
single synapse is always exponential. The global and local
time scales provide estimates for the upper and lower bounds
respectively for learning and forgetting in realistic situations,
which can involve all possible time scales in between. This
generation of such a rich dispersive spectrum of time scales
from a simple model of a synaptic network has enabled us
to unify the hitherto somewhat separate [36,37] domains of
modeling long- and short-term memory.

We remark that the default parameters of the model
correspond to the intrinsic properties of the network: given
this, it is rather fitting that the critical manifold is rather small,
and has to satisfy rather stringent conditions in order to exist. In
other words: while exponential forgetting is generic, one needs
to design networks rather carefully to get long-term memory
storage.

VI. DISCUSSION

Memories can be short- or long-lasting. Our ability to store
information depends as much on our intrinsic neural structure,
as well as, typically, the significance of this information. One
of the most important features of the model presented here

is that it provides a natural framework for this separation
of time scales in terms of the default (intrinsic) state of
the system and the nature of applied signals. Short-term
memories are forgotten exponentially fast, with a whole
spectrum of time scales determining how fast the forgetting
actually is. Power-law forgetting may hold for long-term
memories corresponding to the default state of the system
being on a critical manifold; there, the mean synaptic strength
has a universal 1/t fall off, which gets even slower at the
tricritical point, where it is turned into a 1/

√
t behavior. Since

the existing model for long-term memory relies on possibly
unrealistic auxiliary structures such as internal states [36,37],
our model represents an important conceptual advance in the
field; it unifies the modeling of short- and long-term memory,
which emerge naturally from collective synaptic dynamics,
without the need to invoke special architectures.

This framework is also an appropriate one to discuss
optimal learning. This occurs if the default state of a neural
system lies on the critical manifold, so that fast learning will
occur for generic signals (which will typically perturb the
system to one of regimes I or II), while forgetting will be
extremely slow. The dynamics in regime II may exhibit yet
other phenomena, with the possibility of the degradation or
improvement of the same system as a result of strong enough
applied signals. The application of more complex protocols,
i.e., time-dependent signals, on the present model would reveal
a very rich dynamical behavior with a whole panoply of
possible scenarios. As a rather extreme situation, one may
think of complex learning protocols, corresponding to signals
cycling around the critical manifold or the tricritical point in
the ω-� plane, and of the corresponding very unusual aging
behavior.

We now make a few remarks on the design of our model.
The slow plasticity dynamics of synapses are driven by
competitive and cooperative interactions consequent on the
fast dynamics of firing neurons. The model is analyzed within
a mean-field approximation, in common with many physics-
based approaches to neuroscience, ranging from earlier work
[11–20] to more recent developments [55]. Such a mean-
field framework is of course appropriate given the lack of
knowledge of microscopic details at the neural or synaptic
level. Our model includes some ideas presented in earlier
work [43] but improves on them by cleanly separating the
roles of neurons and synapses, as well as by introducing
directedness. At the microscopic level, the introduction of
directedness is quite complex, since for example, causality
demands that synaptic updating occurs when a spike train from
a presynaptic neuron reaches a postsynaptic neuron; this could
lead to rather complicated rules reflecting such instantaneous,
spike-time-dependent updates [47]. At our level of description
involving much longer time scales, however, such spikes are
averaged over and represented by a mean neural activity, which
determines synaptic updates.

We should also add that the construction of alternative
synaptic update rules to incorporate some aspects of this
microscopic causality would, at least in the mean-field
perspective presented here, not make much difference. In
particular, introducing a nonlinear constitutive function g(J )
would only result in more intricate equations without changing
any essential feature. In other words, the critical phenomena
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exhibited by our model, and the global features of its phase
diagram, are robust to microscopic details. The latter would
of course regain their importance if our model were to
be investigated by means of computer simulations on large
networks.

Also, we point out that the cooperative Hebbian mechanism
turns out to be almost entirely irrelevant to obtaining critical
behavior in our model. On the other hand, a strong enough
synaptic competitivity—the most original and important fea-
ture of this work—turns out to be the crucial ingredient for the
potential manifestation of both short- and long-term memory
in our model network. Since the human brain is thought of
as being a vast and complex synaptic network, which also
has this remarkable ability to store memories across a rich
spectrum of time scales, our work underlines the current
view that mechanisms of synaptic competitivity are of critical
importance in neuroscience [5].

Finally, we make a few remarks on possible experiments
to test our model. There has been a great deal of research
into the idea that sleep consolidates short-term memories

into long-term ones [56–58]; experiments on rats suggest
that this transformation occurs via a hippocampus-cortical
memory transfer [59]. In the context of our model, this
would suggest that competitive mechanisms predominate in
the cortex rather than the hippocampus; this idea provides a
testable prediction for experiments in vivo. A possible in vitro
experiment could involve the adaptation of high-resolution
measurements of cultured cortical slices [60], which have been
very successful in probing neuronal avalanches, to the present
situation: since these methods are able to distinguish clearly
between exponential and power-law signatures in neuronal
avalanches, one might reasonably hope that they would be able
to do the same in the context of stored synaptic memories.
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