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Active elastic dimers: Cells moving on rigid tracks
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Experiments suggest that the migration of some cells in the three-dimensional extracellular matrix bears
strong resemblance to one-dimensional cell migration. Motivated by this observation, we construct and study a
minimal one-dimensional model cell made of two beads and an active spring moving along a rigid track. The
active spring models the stress fibers with their myosin-driven contractility and α-actinin-driven extendability,
while the friction coefficients of the two beads describe the catch and slip-bond behaviors of the integrins in
focal adhesions. In the absence of active noise, net motion arises from an interplay between active contractility
(and passive extendability) of the stress fibers and an asymmetry between the front and back of the cell due to
catch-bond behavior of integrins at the front of the cell and slip-bond behavior of integrins at the back. We obtain
reasonable cell speeds with independently estimated parameters. We also study the effects of hysteresis in the
active spring, due to catch-bond behavior and the dynamics of cross linking, and the addition of active noise on
the motion of the cell. Our model highlights the role of α-actinin in three-dimensional cell motility and does not
require Arp2/3 actin filament nucleation for net motion.
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I. INTRODUCTION

Epithelial cells crawl to heal a wound, white blood cells
migrate to chase and ingest harmful bacteria, and, in an
embryo, neural crest cells move away from the neural tube to
generate neurons, bone cells, and muscle cells [1,2]. Since cell
motility is integral to a wide range of physiological processes,
quantitative understanding of it is an important step in the
quantification of cell biology at and beyond the cell size scale.

To date, most quantitative understanding of cell motility
pertains to cells crawling on surfaces [3]. For example, one
can predict the shape of a crawling cell based on its speed [4].
Yet, is a smooth surface a native environment for a crawling
cell? The answer is typically no. For instance, epithelial cells
must crawl through the three-dimensional extracellular matrix
(ECM) to heal a wound. The ECM consists mostly of fibrous
collagen with a pore size that can range up to the order of
the cell size (tens of microns) [5]. So how does this type
of environment affect single cell motility in terms of speed,
overall direction of migration, and sensitivity or robustness to
changes in the environment?

There has been a recent explosion in experiments tackling
this question [5–18]. These experiments clearly demonstrate
that cells crawling through the ECM can take on very
different shapes from the ones crawling in two dimensions;
namely, they mimic the fibrous environment of the ECM by
elongating as they traverse along fibers [7]. An elongated
shape is very different from the fanlike cell shapes observed
in two dimensions such that new approaches to quantitative
modeling may be needed. Based on these results, cell crawling
experiments in one dimension have been conducted to study
how one-dimensional single cell migration compares to three-
dimensional single cell migration along fibers [19,20]. More-
over, as the cell crawls through the ECM, the cell remodels
it, again, calling for new approaches to prior two-dimensional
quantitative modeling. While three-dimensional cell migration
experiments are becoming numerous, there have been very few
studies focused on quantitative modeling of these experiments.

Here, as a first step, we focus on modeling cells that
move along very taut ECM fibers—taut enough such that
they are essentially featureless (rigid) tracks. To do so, we
build a one-dimensional model of cell motility along one
fiber, or track, via a bead-active-spring model, the properties
of which are described below (see Fig. 1). Bead-spring
models have been successfully used to elucidate the role
of cell mechanical properties in driving shape dynamics for
cells crawling in two dimensions. In particular, Refs. [21]
and [22] have captured bipedal locomotion in crawling cells
using a two-dimensional bead-spring model. Reference [23]
introduces a one-dimensional Brownian inchworm model for
directed self-propulsion in the presence of noise. This model
consists of an elastic dimer representing the front and rear of
the self-propelled particle and shows that an effective friction
force that depends on the elastic coupling between the two
beads can rectify diffusive motion to lead to directed motion
(even in the absence of an externally imposed gradient).

In our bead-active spring model, the spring represent stress
fibers comprised of actin, myosin, and cross-linker complexes
[24]. Because the stress fibers contain myosin motors, they
contain an “active” component. Myosin (myosin II) is activated
by adenosine triphosphate (ATP). ATP-driven myosins walk
toward the plus end of the actin filament such that two
actin filaments of opposite orientation coupled via myosin
will contract, as in muscle. While the orientation of the
actin filaments is not as regular as in muscle, i.e., some
filaments coupled via myosin are not oppositely oriented,
overall contraction still occurs [25]. So the spring denotes
the stress fibers, and the beads denote the location of focal
adhesions, which enable the stress fibers to connect to the
ECM. Integrins are one of the main proteins comprising focal
adhesions [26]. As far as the type of molecular bonding, it
has been shown that integrins can act as catch bonds [27]. For
catch bonds, the bond lifetime increases with increasing force
before decreasing with even further increase in force, while for
slip bonds, the bond lifetime decreases with increasing force
[28,29]. Catch-bond behavior is less intuitive than slip bond
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FIG. 1. (Color online) Side-view schematic of a two-bead-spring
model of a cell crawling along a narrow track.

behavior, but their enhanced strength over a range of forces
may play a key role in how cells respond to and explore their
mechanical environment.

With these minimal ingredients in our quantitative model,
we explore the following questions: What is the interplay
between the kinetics of focal adhesion binding to the rigid
track and the active mechanics of the stress fibers in affecting
cell speed in this constrained environment? What about the
role of myosin (active cross linkers) versus passive cross
linkers in one-dimensional cell crawling? Also, what is the
role of randomness, due to activity, on cell crawling? More
precisely, how robust is the motion to randomness? The
answers to these questions can then be tested in vitro with
various knockdowns and/or mutant fibroblasts, for example,
crawling along fabricated microbridges (with no side walls)
as a starting point for understanding how a cell moves in the
complicated microenvironment of the ECM.

The organization of the paper is as follows. The next
section details the ingredients for the minimal bead-active
spring model along with the equations of motion of the model.
Section III presents estimates of the parameters used. Section
IV explores solutions to these equations, i.e., cell movement,
in the physiological part of the parameter space. The final
section, Sec. V, addresses the implications of our work.

II. A MINIMAL MODEL

We start by asking the following question: Which aspects
of two-dimensional cell movement hold for cells crawling
along the fibers of the ECM, one of the native environments
for a crawling cell? Two-dimensional cell crawling studies
support the following scenario [3]. The cell extends its front via
actin filament nucleation and polymerization and then creates
mature focal adhesions under the new extension. Meanwhile,
focal adhesions are disassembled near the rear of the cell so
that the rear can retract to catch up with the front, which has
since continued to extend. The retraction is myosin-driven
since the use of blebbistatin suppresses motility of a cell
[30], though leading edge cell fragments can continue to move
via actin treadmilling [31]. In this two-dimensional scenario,
actin filament nucleation is driven by the branching agent,
Arp2/3 [32,33]. Arp2/3 nucleates branched filaments at a
reasonably regular angle of 70◦ from the polymerizing end
of actin filaments and, therefore, helps set the lateral extent of
the leading edge of the crawling cell. This extent can be broad
for cells crawling on two-dimensional substrates, resulting in
fanlike shapes at the leading edge.

Some aspects of this description of two-dimensional cell
crawling still hold for cell migration on ECM fibers, in the
sense that there is extension, the assembly and disassembly
of focal adhesions, and contractility driven by myosin. The

most notable difference from two-dimensional studies is the
elongated shape of cells undergoing mesenchymal migration
or crawling along fibers. This observation has led researchers
to conjecture that this particular mode of cell migration is
effectively one-dimensional migration [7]. There are other
observations that are consistent with the conjecture. For in-
stance, Arp2/3 does not appear to be as important in generating
motion here since the rather wide branch angle leads to large
lateral lengths, which would not be commensurate with the
underlying fiber [12]. Instead, actin filament nucleation via
Arp2/3 is important for generating pseudopods whose possible
function could be to search out for other ECM fibers to move
along.

Here we study the motion along one fiber only and focus
on the interplay between stress fibers and focal adhesion. To
quantify the interplay between focal adhesions and myosin-
driven contractility, we construct a minimal one-dimensional
model for a crawling cell as two beads connected by an active
spring. The two beads denote the two ends of a cell that attach
to the surface via focal adhesions. While focal adhesions occur
throughout the cell, traction force microscopy indicates that
the focal adhesions exert the largest stresses at the edges of
a crawling cell on surfaces [34]. We assume that the same
observation holds for cells crawling in confined constrictions.
Bead 1, denoted by position x1(t), is to the right of Bead 2,
denoted by x2(t), as shown in Fig. 1. The beads have masses
m1 and m2 and friction coefficients γ1 and γ2, respectively. The
friction coefficients model the focal adhesions, or attachment
to the fiber, while the active spring between the two beads
denotes the stress fibers. Let us now quantify the concept of
an active spring.

A. Stress fibers as active springs with two equilibrium lengths

Stress fibers primarily consist of actin filaments, myosin,
and α-actinin, a passive cross linker [24]. A few other proteins,
such as zyxin, colocalize with α-actinin [35]. The stress
fiber is made up of parallel arrangements of actomyosin
units in series. Each actomyosin unit is considered as two
actin filament rods connected by a myosin minifilament and
α-actinin at each end. Since the stress fibers in cells crawling
in constrained geometries exhibit more ordered stress fibers
than the cells crawling on surfaces, using this fundamental
musclelike element is very useful [6] (see Fig. 2). For a static
cell, the stress fiber is under contractile tension as it adheres
to the substrate. In a moving cell, the focal adhesions are

FIG. 2. (Color online) Schematic of contractile units in a stress
fiber in extended mode (top) and contracted mode (bottom). The blue
filaments represent actin filaments, red rectangles represent α-actinin,
and the green shapes represent myosin minifilaments. For simplicity,
we have not shown any contractile units in parallel, only three units
in series.
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being created and destroyed. Since myosin exhibit catch-bond
behavior with an optimum load force of about 6 pN per motor,
the myosin may not always be under sufficient load (or too
much load) to walk efficiently along the actin filaments [36].

More specifically, when focal adhesions are just beginning
to form at the front of the cell, myosins are not pulling due to
the small applied load. When myosin are not pulling, the plus
end of actin filaments separate and/or extend. We argue that
the plus ends extend to relieve the strain in the α-actinin such
that it approaches its equilibrium configuration (see Fig. 2).
In this α-actinin extension mode, the mechanical stiffness
of the active spring, k, is primarily due to the stiffness of
the α-actinin. Moreover, the equilibrium spring length of the
active spring is denoted by xeq1. As the focal adhesions at the
front of the cell mature over a time scale of seconds [37],
the myosin come under load again such that they “catch”
and exert contractile forces on each pair of actin filaments
to induce a contracted mode causing the α-actinin to stretch
and rotate in the opposite direction. In this mode, myosin
provides the mechanical stiffness of the spring and there is a
second equilibrium spring length, xeq1 − xeq2, with xeq2 < xeq1

as indicated by the isolated stress fiber experiments [25].
How then does the stress fiber switch back the extension

mode? As the myosin contract, strain builds in the α-actinin.
This strain buildup can be enhanced by zyxin binding to the α-
actinin such that the myosins no longer “catch” and a transition
is then made to the extending mode. Experiments tracking
zyxin in static cells find that it colocalizes to places along
the stress fiber under high tension and have argued that zyxin
could act as some molecular switch from one mechanical state
to another [38].

Given these two modes of the stress fiber, passive extension
and active (motor) contraction, we model the elasticity of the
stress fiber as a spring with two different equilibrium spring
lengths. The transition between the two modes of the active
spring is determined by the extension of the spring. The larger
the extension of the spring, the more tensile load is placed
on the myosin so as to induce contractility of the myosin.
Therefore, a simple model for the equilibrium spring length,
xeq, of this active spring is

xeq = xeq1 − xeq2�(x1 − x2 − l), (1)

where �(x1 − x2 − l) is the Heaviside step function. With
this choice, when x1 − x2 > l, the equilibrium spring length
is shorter when myosins actively pull and longer when the
myosins do not. Moreover, l is bounded below by xeq1 − xeq2

and above by xeq1. With this changing equilibrium spring
length, the spring is now an active contractile element.

In addition to the catch-bond kinetics of the actomyosin
bonds, α-actinin exhibits catch-bond kinetics as well [39].
Catch-bond kinetics indicate some sort of conformational
change in the protein such that the conformation of the
α-actinin in the extended mode may indeed be different than
when in the contracting mode. The binding of zyxin may
also affect the conformation of the α-actinin. A possible
change in conformation of the α-actinin suggests that the
transition between extension and contraction is not necessarily
reversible, particularly if zyxin bind in one conformation (but
not the other) [38]. Moreover, when the active spring is in
its extended mode, there is less overlap between the actin
filaments such that it is less likely that additional α-actinin
can bind together two actin filaments. Conversely, when the
active spring is in its contracted state, it is more likely that
an additional α-actinin can link two actin filaments together.
Therefore, for the active spring to extend, it must overcome the
additional binding energy of the added α-actinin; i.e., bonds
must be broken. However, this additional binding energy is not
present as the active spring contracts.

To account for potential conformational changes in the
α-actinin, additional α-actinin binding, and even internal
frictional losses, we allow l to take on two values, l↑, as the
active spring extends and l↓ as the active spring compresses
with l↑ > l↓. In sum, the equilibrium active spring length takes
on the form

xeq = xeq1 − xeq2�(x1 − x2 − l↑) (2)

when the active spring is extending and

xeq = xeq1 − xeq2�(x1 − x2 − l↓) (3)

when the active spring is contracting. This means that the
description for xeq contains hysteresis (see Fig. 3). Such
hysteresis in stress-strain behavior is often found in materials
where the strain history affects the observed stress, giving
rise to different stress-strain paths for loading and unloading.
Prime examples are the phenomenological Johnson-Segalman
model of viscoelastic behavior [40] and the experimentally
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FIG. 3. (Color online) (a) Plot of the equilibrium spring length xeq as a function of x1 − x2. (b) Plot of friction coefficient γ1 as a function
of x1 − x2. The parameters used are listed in Table I.
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TABLE I. Table of parameters used.

Parameters Values

k 1 nN/μm
xeq1 50 μm
xeq2 5 μm
l↓ ∼46.5 μm
l↑ ∼48.5 μm
γ11 10 nN s/μm
γ12 20 nN s/μm
γ2 20 nN s/μm
m1,m2 ∼0
A1,A2 ∼0

observed strain history dependent mechanical response of soft
biological tissue [41]. We must also point out that a recent
viscoelastic model for stress fibers is an active version of
an viscoelastic polymer model [42]. Even more recent work
develops a model for the power-stroke-driven actomyosin
contraction that includes hysteresis [43]. Because the width
of the hysteresis represents a strain barrier and the height a
strain “input,” the height of the hysteresis loop must be greater
than the hysteresis width to generate motion.

B. Focal adhesions provide an elastic friction

Now that we have quantified our active spring, we turn
to the focal adhesions. The mechanical interaction between
the migrating cell and the ECM are mediated by cell surface
receptors and associated ligands in the ECM. The ECM glyco-
protein fibronectin and the transmembrane receptor proteins of
the integrin family form the major and most well-characterized
receptor-ligand pair [44]. In their inactive state, integrins
exist in a bent, relaxed form so as to avoid the formation
of physiologically harmful cell-cell or cell-ECM connections.
Once they are activated via a vertical load, they undergo a
conformational change to an extended state [27,45]. When
in this state, AFM experiments find that integrins respond
additionally to an increase in the lateral distance between
the two extended dimers with an increased bond lifetimes for
applied forces up to 30 pN [27]. In other words, integrin can
act as a catch bond. It may indeed be the maturation of the
focal adhesion that triggers this lateral distance and, thereby,
the catch-bond mechanism of the integrins [45].

In light of these findings, we conjecture that in the front of
the cell, integrins are more likely to act as catch bonds due to
maturation of focal adhesions. In the back of the cell, however,
integrins act as typical slip bonds, where focal adhesions are
merely being disassembled. Therefore, in the front of the cell,
the initiation of focal adhesions call for a “small” friction
coefficient, but once the focal adhesion forms and develops, it
has a large friction coefficient when compared to an integrin
slip bond. This “catching” mechanism of cell-track adhesion
allows the cell’s front to expand and explore new territory and,
after having done that, then allows for the cell’s rear to retract
with the cell front not losing grip on the new territory it just
explored due to the catch-bond mechanism. Since the stress

fibers and the focal adhesions are connected, we define

γ1 = γ11 + γ12�(x1 − x2 − l↑(↓)), (4)

with γ11,γ12 > 0 and γ11 < γ12. For small extensions of the
cell, the friction at the leading bead is smaller than for large
extensions. Larger friction implies a larger unbinding rate for
integrins and, therefore, the integrins can more effectively grip
the track. In addition, because the integrins track the myosin
activity, the hysteresis exhibited by the myosin is also exhibited
in the friction (see Fig. 3). Finally, γ2, the friction coefficient
for the now “rear” bead, is assumed to be constant with the
integrins acting as ordinary slip bonds.

C. Equations of motion

With the stress fibers modeled as an active spring with
spring constant, k, and a changing equilibrium spring length,
and the focal adhesions localized at the front and the back
beads of the two bead-active spring model, the two coupled
equations for the motion of the beads are as follows:

miẍi(t) + γi(x1,x2,l
↑,l↓)ẋi(t)

= ±k[x1 − x2 − xeq(x1,x2,l
↑,l↓)] +

√
Aiζi(t). (5)

Note that we have included an “active noise” term, where Ai is
the variance of the active noise contribution due to stochasticity
in motor activity, and ζi(t) is a Gaussian random variable with
〈ζi(t)〉 = 0 and 〈ζi(t)ζj (t ′)〉 = δij δ(t − t ′). Here Ai does not
satisfy a fluctuation-dissipation relation and is not associated
with any temperature. We study this model for both Ai = 0
(deterministic) and Ai > 0 (nondeterministic).

III. ESTIMATION OF PARAMETERS

Now that we have the formal solutions for the relative and
center-of-mass coordinates, let us present estimates for the
parameters involved before analyzing the solutions in further
detail.

A. Active spring parameters

The actomyosin units account for both the passive mechan-
ical stiffness and the active contractile properties of the stress
fiber. The stiffness of the myosin minifilament is represented
by a spring of stiffness Nmkm, where Nm is the number
of myosin motors in the minifilament and km is the spring
constant for each individual myosin with km ≈ 1 pN/nm
(1 pN/nm = 1 nN/μm) and Nm ≈ 50 [46]. For Nm ≈ 50, the
typical length of a myosin minifilament is 0.3 μm, while its
width is approximately 30 nm [47], which is also consistent
with the approximate length of α-actinin. Each motor exerts
equal and opposite contractile forces on the two actin filaments,
each denoted by f , on the two actin filaments. Each myosin
motor head can exert a maximum of f/2 = 3 pN of contractile
force [48]. The actin filaments are modeled as rigid filaments
with the pair of spanning a maximum length L. Typically,
L = 1 μm. Each α-actinin is modeled as a linear spring
with spring constant, k0 ≈ 50 pN/nm, and rest length La that
can change due to potential conformational changes in the
α-actinin between the extending and contracting modes of the
actomyosin units [49].
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As mentioned previously, experiments on isolated stress
fibers find up to a 23% decrease in length with the addition of
ATP [25]. In the extended mode, we use an equilibrium spring
length, x1eq = 50 μm, since stress fibers typically consist of
about 50 actomyosin units in series and each of the units span
a maximum of 1 μm [50]. Given the experimental results
for percentage of decrease in length of the stress fiber due to
myosin contractility, we explore a range of percentages around
10%.

With the above ingredients, we can also estimate the
effective stiffness of the stress fiber active spring as follows.
The effective stiffness of a myosin minifilament consisting
of Nm ≈ 50 myosin motors, each with a myosin spring
constant approximately 1 pN/nm in parallel, is 50 pN/nm.
In the extended mode of the active spring, the α-actinin
contributes to the elasticity; in the contracted mode, the myosin
minifilaments contribute to the stress fiber elasticity. This
leads to a spring stiffness of ∼50 pN/nm for either mode
for each unit such that k = 50 pN/nm (Np/Ns), where Ns

is the number of actomyosin contractile units in series and
Np in parallel. With Ns = 50 and Np = 1, k ≈ 1 pN/nm. For
Np > 1, the effective stress fiber spring constant is larger.

B. Friction parameters

We model the integrins as springs with dissociation kinetics
described by catch- or slip-bond behavior. Each integrin bond
can be thought of as a single Hookean spring and allowed to
fail at one point at the cell-ECM interface. At the back of the
cell, the unbinding kinetics of the integrin bond will follow
slip-bond behavior with an effective dissociation rate, K∗

off ,
that increases exponentially according to a Bell model [29], or

K∗
off = Koffe

Fbond/Fb , (6)

where Koff is the unforced dissociation rate of the slip bond,
Fb = kBT /ψ is the characteristic bond rupture force, ψ is a
characteristic unbinding length scale, and Fbond is the tension
within an individual slip-bond spring. Hence, the slip-bond
lifetime simply decreases with increasing applied tensile force.

For the front bead, the integrin bond acts as a catch bond in
the presence of developing focal adhesions and the dissociation
kinetics is a sum of two pathways, one where the bond
is strengthened by the applied force and other where it is
weakened. The summative unbinding rate can be written as

K∗
off = Kse

Fbond/Fb + Kce
−Fbond/Fb , (7)

where the unforced unbinding rates Ks = Koffe
−Fs/Fb and

Kc = Koffe
Fc/Fb are each associated with each pathway [51].

Once Koff is known, the friction coefficients can be
computed using using the formula,

γ = Nintkint

K∗
off

, (8)

where Nint is the number of bound integrins and kint is
the spring constant of the molecular bond. We use kint ≈
10 pN/nm and Nint ≈ 1, though we explore other values. Since
integrins form the bond between the cell and the substrate, we
use the kinetic curve obtained from Kong and collaborators
for the lifetime of a single bond as a function of applied load
[27]. For the front bead, we use K∗

off = 1 s−1 to compute

γ11 = 10 nN s/μm, the weaker coefficient, and an off rate
of 1/3 inverse seconds for the stronger value of the friction
coefficient of the front bead, leading to γ12 = 20 nN s/μm.
Then, γ11 + γ12 = 30 nN s/μm. For the back bead, Kc = 0
and we use K∗

off = 0.5 s−1 to arrive at γ2 = 20 nN s/μm.

IV. RESULTS

To solve the equations of motion [Eq. (5)], we neglect
inertia, as demanded by the physiological conditions. We then
first investigate the cell crawler in the absence of any noise such
that A1 = A2 = 0. Next, defining x = x1 − x2 and subtracting
the equation of motion for x2 from x1, we arrive at

ẋ = −
[

1

γ1(x,l↑(↓))
+ 1

γ2

]
k[x − xeq(x,l↑(↓))], (9)

depending on whether the spring is extending or compressing.
Similarly, the equation of motion for the center of mass is

vcm(t) = ẋcm = −1

2

[
1

γ1(x,l↑(↓))
− 1

γ2

]
k[x − xeq(x,l↑(↓))],

(10)

where xcm = x1+x2
2 . A nonzero center-of-mass velocity trans-

lates to motion of the cell.
Since the center-of-mass velocity equation depends on x,

we first solve the equation of motion for x. To do so, we break
up the system into when the equilibrium spring length is xeq1

and when the equilibrium spring length is xeq1 − xeq2. In the
former case,

xI (t) = xeq1 + [x(0) − xeq1]e− k
γ2

(γ11+γ2)
(γ11) t

, (11)

and in the latter,

xII (t) = xeq1 − xeq2 + [x(0) − xeq1 + xeq2]e− k
γ2

(γ11+γ12+γ2)
(γ11+γ12) t

.

(12)

Now, depending on the history of the spring, be it con-
tracting or extending, we can piece together these solutions
accordingly. For example, if x(0) � l↑, then x decreases and
obeys xII (t), which decreases exponentially with time. This is
because the cell has “overextended itself” in its search for new
territory and now the focal adhesions have matured so both the
equilibrium spring length is decreased, due to myosin-induced
contractility, and the front catch bonds “catch” such that the
back of the cell can catch up with the front without losing new
ground. After the initial decrease in x, as soon as x decreases
below l↓, then the myosins effectively stop pulling, due to
strain built up in the stress fibers from the focal adhesions and
α-actinin, and the equilibrium spring length increases with new
focal adhesions developing at the front. Once this happens,
we rezero our time clock back to t = 0 and iterate xI (t),
an exponential expansion given the initial condition, until x

becomes larger than l↑ such that xII (t) solutions become valid
and the process repeats itself. As we see below, this cyclic
process in an overdamped system leads to net motion due to (1)
the switching between the two equilibrium spring constants,
which drives the overdamped system out of equilibrium, and
(2) the asymmetry in the friction coefficients. Both properties
are needed for motion.
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FIG. 4. (Color online) (a) Plot of cell length x = x1 − x2 as a function of time for the parameters given in Table I. (b) Plot of position of
the center of mass, xcm, as a function of time. (c) Plot of velocity of the center of mass, vcm, as a function of time.

Let us analyze the active dimer motion as a function
of the width and height of the hysteresis loop. Defining
w = 1

2 (l↑ − l↓) and h = 1
2xeq2, the two time scales over which

the cell undergoes extension and contraction are given by
tI = β ln h+w

h−w
and tII = α ln h+w

h−w
, respectively, where α =

γ2(γ11 + γ12)/k(γ11 + γ12 + γ2) and β = γ2γ11/k(γ11 + γ2).
As stated earlier, w < h for motion to occur since the active
strain energy generated by the myosin must overcome the
strain barrier by the α-actinin. When the active dimer is extend-
ing to relieve the strain in the α-actinin and x > l↓, the max-
imum and minimum values of the center-of-mass velocity are

vcm, max ,I = k

2

(
1

γ11
− 1

γ2

)
(h + w),

(13)

vcm, min ,I = k

2

(
1

γ11
− 1

γ2

)
(h − w).

Similarly, when the dimer is contracting and x < l↑, the
maximum and minimum values of the center-of-mass velocity
are given by

vcm, max ,I I = −k

2

(
1

γ11 + γ12
− 1

γ2

)
(h + w),

(14)

vcm, min ,I I = −k

2

(
1

γ11 + γ12
− 1

γ2

)
(h − w).

Finally, the time-averaged-over-one-period vcm, or v̄cm, is
given by

v̄cm = tI v̄cm,I + tII v̄cm,I I

tI + tII

, (15)

where

v̄cm,I = (γ2 − γ11)

2tI (γ11 + γ2)
[xI (0) − xeq1](e− k

γ2

γ11+γ2
γ11

tI − 1) (16)

and

v̄cm,I I = [γ2 − (γ11 + γ12)]

2tII (γ11 + γ12 + γ2)
[xII (0) − (xeq1 − xeq2)]

× (e− k
γ2

γ11+γ12+γ2
γ11+γ12

tII − 1). (17)

The time-averaged-over-one-period vcm would presumably be
the simplest measurement an experimentalist could perform.
So we study it in detail.

Using our parameter estimates from Sec. III, we first
present results for xrel(t), xcm(t), and vcm(t) (see Fig. 4).

Apart for the initial cycle, for each subsequent cycle, the
time in the extension mode is 5.65 s and the time in the
contraction mode is 10.17 s. Note that the time scale for
the extension mode, which corresponds to the time scale for
focal adhesion maturation, is in agreement with the observed
time scale of seconds for focal adhesion maturation [37].
We find vcm, max ,I = 0.088 μm/s, vcm, min ,I = 0.038 μm/s,
vcm, max ,I I = 0.029 μm/s, and vcm, min ,I I = 0.013 μm/s. The
time-averaged-center-of-mass velocity is v̄cm = 0.033 μm/s.
This value is in reasonable agreement with the order-of-
magnitude time-averaged velocity for wild-type HT-1080
fibrosarcoma cells crawling in the ECM [52]. Of course,
we have not yet taken into account the elasticity of the
collagen fiber(s) such that we expect our result to be an upper
bound on the speed. Interestingly, the maximum instantaneous
velocity of the center of mass is the same order as keratocytes
crawling on surfaces [4]. The time-averaged velocity of the
center of mass is about an order of magnitude smaller. So,
using physiologically based independent estimates for the
parameters involved we obtain reasonable cell speeds for cells
traveling in the ECM.

How does v̄cm vary with the spring parameters, namely,
k, h, and w? In Figs. 5 and 6, we plot both v̄cm and xcm(t)
for several values of these parameters. As indicated by Eqs.
(15)–(17), v̄cm increases linearly with the spring constant k.
On the other hand, increasing the width of the hysteresis
loop, w, decreases v̄cm since there is a larger strain barrier

0 50 100 150 200
time (sec)

0
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4

6

8

10

12

14

x cm
(μ

m
)

k = 0.5 nN/μm
k = 1 nN/μm
k = 2 nN/μm

FIG. 5. (Color online) Plots of center of mass for cells as a
function of time for different spring constants k. The parameters
are from Table I (unless stated otherwise).
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FIG. 6. (Color online) (a) Plot of v̄cm(w). The inset plots xcm(t) for different widths. (b) Plot of v̄cm(h) for w = 0.5 μm. The inset plots
xcm(t) for different heights of hysteresis loop.

to overcome to elongate. Once the strain barrier becomes
equal to or larger than the added strain energy (due to myosin
pulling, for example), i.e., w > h, then the active cell can
longer move effectively. Moreover, increasing the difference
between the two equilibrium spring lengths (increasing h) adds
more active strain energy into the system with the motors
contracting more effectively such that the active dimer can
crawl faster until the speed becomes limited by the asymmetry
in the friction coefficients. An increase in h can be driven by
the addition of myosin (in the contraction mode) or increasing
the spring constant associated with the α-actinin since the
extension mode is driven by releasing strain in the α-actinin
(as opposed to actin growth).

As stated previously, it is the combination of the nonequi-
librium nature of the active spring and the asymmetry of the
friction that leads to motion. We have added this asymmetry
explicitly given the molecular understanding of how the
integrins behave as catch bonds as focal adhesions mature.
In the absence of this asymmetry, i.e., γ11 + γ12 = γ2 with
γ12 = 0, then vI,II,cm = 0. Moreover, if γ12 = 0, then v̄cm = 0
(even for γ2 �= γ11) because any new territory gained during the
extension mode will be lost during the contraction mode (see
Fig. 7). Moreover, in breaking the symmetry, we have made a
choice as to which direction the active dimer crawls. The cell
can change direction when γ11 > γ2 and γ12 < 0. Since motion

of the center of mass in the extension mode is now to the left,
as long as the asymmetry in the friction coefficients in the
contraction mode is such that not all new territory gain is lost,
then there is net motion to the left. We also observe that as the
difference between γ11 and γ2 increases, v̄cm also increases.
This increase allows the extension mode of the active dimer
to be more efficient at exploring new territory and increases
v̄cm (provided γ12 �= 0 to model the catch-bond behavior of the
integrin at the front of the cell; see Fig. 7).

Now let us investigate the motion of the active dimer
when nonequilibrium noise (Ai > 0) is turned on. Is the
motion robust? Why ask this? Well, the cell is very much
a dynamic entity. There is mounting evidence that the motion
of objects placed in a cell, such as a carbon nanotube, couples
to myosin-driven stress fluctuations in the cytoskeleton [53].
These fluctuations are reminiscent of thermal noise, but with
a nonthermal origin. To study the effect of noise on our
crawling cell, we simulate the equations of motion using
the Euler-Maruyama scheme with Ai > 0 [54]. We define
A = A1 = A2.

Given our deterministic active dimer, for small-enough
values of A, the noise can be added perturbatively and should
not affect the cyclic behavior of the active dimer. More
precisely, we find that for A < 0.1 nN2 s, the noise does
not affect the motion of the cell with the cyclic behavior
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FIG. 7. (Color online) (a) Plot of xcm(t) for different friction coefficients. (b) Plot of v̄cm(γ11).

032707-7



J. H. LOPEZ, MOUMITA DAS, AND J. M. SCHWARZ PHYSICAL REVIEW E 90, 032707 (2014)

0 5 10 15 20 25 30 35 40 45 50
time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
<x

cm
> 

 (μ
m

)
A = 0
A = 0.1 nN2 sec
A = 0.15 nN2sec
A = 0.5 nN2 sec

FIG. 8. (Color online) Plot of xcm(t) for different values of the
noise with A = A1 = A2.

between the extension and contraction modes remaining on
average (see Fig. 8). However, as A is increased beyond
0.1 nN2 s, the scallops become washed out, on average, though
the average speed of the cell remains virtually unchanged.
One can estimate the upper bound of this crossover. When
the cell is in the extension mode, for instance, the variance,
σI (t), is given by σI (t) = 〈x2

I (t)〉 − 〈xI (t)〉2 = A(γ11+γ2)
kγ2γ11

(1 −
e

2k(γ2+γ11)t
γ2γ11 ). When

√
σI (t) becomes of order the hysteresis

width in the time scale tI (to use as a first approximation),
then the area of the deterministic hysteresis gets washed out
on average. This upper bound corresponds approximately to
A ≈ 10 nN2 s, which is a bit larger than the observed value.
One can improve upon this upper bound by taking into account
the directionality of the hysteresis loop and determine the
average time scale that the velocity of the relative coordinate
goes from positive to negative (a velocity zero crossing). This
is because a velocity zero crossing can drive the active dimer
from one mode to the other. One can impose a threshold on the
noise for this switching to occur. We leave such modifications
for potential future work. What we have learned, however,
is that the deterministic model for the model cell is robust
to a range of nonequilibrium, or active, noise. The upper
limit of this range maps to an effective diffusion constant of
approximately 10−3 μm2

s .
Finally, we ask the following question: How does the

motion of the active dimer change if the hysteresis loops
contain finite slopes? Then, in going from one mode to the
other, the stress fiber would no longer behave as a switch,
but the change in equilibrium spring length would depend
continuously on the strain. Since the integrins are ultimately
coupled to the stress fibers, changes in the friction coefficients
would also depend continuously on the strain. As long as
curves with finite slope intersect with the x = xeq, as is
the case with our model, then motion will cease since this
is an overdamped system now in equilibrium (see Fig. 9).
However, the addition of active noise kicks the dimer out of
equilibrium and motion resumes. If the active noise is sufficient
to change the direction of the strain (extending to compressing,
for example), there is a switch from one equilibrium spring
constant to the other. A threshold on this switch will require
an active noise strength above this threshold to regain motion.
Furthermore, at least for A1 = A2, as the strength of the active
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FIG. 9. (Color online) Plot of 〈vcm〉(A) for finite slope case with
a slope of 5/2. (Inset) Plot of 〈xcm〉(t) for A = 0 and A = 0.01 nN2 s.

noise increases, so does the average velocity of the center of
mass, or 〈vcm〉, though increasing the active noise strength
by an order of magnitude leads to a gain of a few tenths of a
percent. In sum, for this finite slope case, active noise is crucial
for sustainable net motion.

V. DISCUSSION

We have constructed a minimal model for cell moving
on a rigid fiber. The model contains two beads and one
spring, the beads representing the front and the back of the
cell, respectively. Friction coefficients for each bead represent
the focal adhesions between the substrate and the cell. We
assume the back bead to have constant friction, while the
front bead friction changes as nascent focal adhesions become
mature focal adhesions to grip the surface via their catch-bond
behavior. In addition, the single spring connecting the front
and the back beads models the basal stress fibers stretching
along the cell. The effect of myosin is modeled by a change
of the equilibrium spring length. When myosin is actively
contracting, the equilibrium spring length is shorter than when
myosin is not. We have emphasized that the extension mode is
driven by relieving strain in α-actinin binding, which could be
enhanced due to zyxin binding to α-actinin, when the myosin
unbind. Both the catch-bond behavior and/or dynamics of
α-actinin may give rise to hysteresis in this active contractility,
which we have incorporated into the model.

We find that the activity of the myosin and the asymmetry
in the friction coefficients due to catch-bond behavior of the
integrins at the front of the cell and slip-bond behavior at
the back are both needed to obtain directed motion of the
crawling cell in an overdamped system in the absence of
any noise. Like Refs. [55] and [23], our model does not
require actin-filament nucleation driven by the branching agent
Arp2/3 for cell motility. This is important for elongated cells
crawling along ECM fibers, where Arp2/3 plays a role in
generating pseudopods to potentially explore new ECM fibers,
but does not drive motility [12]. In contrast to Ref. [55], where
an advection-diffusion equation for the motor concentration
coupled with an active contractile stress drives the motion,
our model takes into account the stress fiber structure and the
interaction with the substrate via focal adhesion friction. In
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contrast to Ref. [23], our model is deterministic and observes
motion in the direction of larger friction (at least for some part
of the cycle), which is in keeping with experiments [34].

Using independent estimates for the parameters in the
model, we find reasonable agreement with observed speeds
of elongated cells crawling along ECM fibers [52]. We also
study the average speed as a function of the parameters,
which can presumably be qualitatively explored, at least, via
knockdowns of the proteins involved or via mutants. For
instance, the larger the difference between the two equilibrium
spring lengths, the faster the average cell speed. A larger
difference could be due to more myosin (to enhance the
contraction mode) or more α-actinin (to enhance the extension
mode). Interestingly, increased expression levels of α-actinin
are found in melanomas and in tumor cell lines with faster
migration rates (than the corresponding healthy cells) [56].
We also find that the net deterministic cell motion is robust
to active noise. For the time being, we varied the parameters
of the model independently and studied the time-averaged
center-of-mass velocity, or speed. However, varying some
of the parameters simultaneously may yield an optimal
speed.

Our model may help understand the finding of oscillations
observed in cells that are lacking in the protein zyxin.
More specifically, recent experiments [52] have found that
zyxin-depleted cells migrating in the ECM move persistently
along highly linear tracks before reversing their direction. This
reversal persists, resulting in oscillations. These oscillations
have also been observed in cells moving on one-dimensional
micropatterned substrates, but not in two dimensions. Such
periodic migration has been shown to result from the coupling
between cell shape and actin-polymerization-driven polarity
in phase-field models of cell migration [57]. While protrusive
stresses generated by actin filament nucleation via Arp2/3
(and subsequent polymerization) at the leading edge of the
cell play a key role in two-dimensional cell migration, it is
less dominant in three-dimensional migration. Our model does
not require actin filament nucleation and may provide further
insight into the underlying mechanism for the above periodic
migratory motion in one and three dimensions. Should zyxin be
knocked down, then the switching behavior in our active spring
between contraction and extension may become compromised
over time (with redundant proteins not as efficient as zyxin)
and the cell will eventually not be able to move. Hence, it will

fluidize, reorient itself with the help of microtubules, and begin
to crawl in another direction to search out new space. In the
one-dimensional case, the cell can only reverse its direction to
search out “new” space.

One important advantage of our minimal model is that its
simplicity easily allows for extension. For instance, we can
(1) introduce Arp2/3 generated pseudopods via extra beads
and active springs, (2) incorporate elasticity into the track,
(3) introduce a cell nucleus via extra beads and active springs,
and (4) scale up to many cells interacting via cadherins. As for
adding elasticity to the track, the motility of cells migrating
in the ECM depends on its microstructure [5-17]. What are,
then, the strategies or optimization principles that cells use to
migrate in the ECM such that they can harness the elasticity of
the ECM fibers to move, while also overcoming the physical
barriers to motion imposed by the matrix architecture? We can
begin to answer such questions by coupling our model cell to
an extensible wormlike polymer and probe the cell’s motility.
As for introducing a cell nucleus, the discovery of actin stress
fibers extending over the nucleus [58] such that as the cell
crawls the nucleus is squeezed in the direction transverse
to crawling [59] begs for study via modeling. We can add
these actin cap stress fibers to our basal stress fiber model and
address whether their presence helps speed up or slow down a
cell crawling along a one-dimensional elastic fiber. Finally, the
extension to interacting active elastic dimers is motivated by
recent experiments on a collection of spindle-shaped NIH-3T3
cells at high densities [60]. Given the geometry of such cells,
their mechanism for motion may indeed be similar to one
described here. This begs the following question: Under what
conditions does the cell motion not rely on actin-filament
nucleation and polymerization, other than the constrained
geometry case of crawling along ECM fibers? Confinement
by other cells, potentially of a different type, may indeed be
another possibility.
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