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Feed-forward loops are hierarchical three-node transcriptional subnetworks, wherein a top-level protein
regulates the activity of a target gene via two paths: a direct-regulatory path, and an indirect route, whereby the
top-level proteins act implicitly through an intermediate transcription factor. Using a transcriptional network of
the model bacterium Escherichia coli, we confirmed that nearly all types of feed-forward loop were significantly
overrepresented in the bacterial network. We then used mathematical modeling to study their dynamics by
manipulating the rise times of the top-level protein concentration, termed the induction time, through alteration
of the protein destruction rates. Rise times of the regulated proteins exhibited two qualitatively different regimes,
depending on whether top-level inductions were “fast” or “slow.” In the fast regime, rise times were nearly
independent of rapid top-level inductions, indicative of biological robustness, and occurred when RNA production
rate-limits the protein yield. Alternatively, the protein rise times were dependent upon slower top-level inductions,
greater than approximately one bacterial cell cycle. An equation is given for this crossover, which depends upon
three parameters of the direct-regulatory path: transcriptional cooperation at the DNA-binding site, a protein-DNA
dissociation constant, and the relative magnitude of the top-level protien concentration.
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I. INTRODUCTION

Networks map how related nodes are connected together
by links and are widely employed throughout the physical,
life, and social sciences to visualize and interpret information
about large, self-interacting systems. In just one example from
genetics, a network’s nodes can be identified with the genes
of DNA, which are interconnected by links that denote causal
correlations between the two expression levels. Such networks
are termed gene regulatory networks [1]. They have been
shown to harbor subnetworks, termed network motifs [2,3],
which are found more abundantly than in randomized networks
with the same degree sequence. This fact begs the question of
whether or not any special functionality can be attributed to
these peculiar patterns.

Addressing this question theoretically, Milo and collabo-
rators hypothesized that network motifs function as “simple
building blocks of complex networks” [2]. One such motif
is the three-node hierarchical feed-forward loop, wherein a
top-level gene affects the activity of a target through two
regulatory paths: a direct path with a single link, and an indirect
path composed of two sequential links [Fig. 1(a)]. These
loops have been implicated in some specialized functions,
such as fold-change detection [4–7], noise buffering [8], a
nonmonotone input dependence [9], and pulse-like “biphasic”
qualities [10,11].

Two types of feed-forward loop can be identified, depend-
ing on whether the overall regulatory effect of the direct path
is the same (coherent) or opposite (incoherent) as the indirect
paths’ effect on the target gene. The coherent loops are thought
to function as delay elements for expression of the regulated
gene (node 3; Fig. 1), when compared against the case without
the coregulator interaction, termed “simple regulation” in
Ref. [10]. In contrast, the incoherent type feed-forward loops
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are thought to accelerate the expression of the target protein
[10]. These conclusions were justified on the basis of computer
experiments, wherein each feed-forward loop was perturbed
with a binary, ON/OFF transcriptional regulator concentration
[10]. However, some predictions of these models have since
been confirmed experimentally [12–14].

Here we further investigated the dynamical consequences
for protein levels of the regulated gene for each of the
eight types of feed-forward loop motif. More specifically,
we used mathematical modeling to manipulate rise times
of the top-level regulator, here termed the induction time,
while also holding its initial and final concentration levels
fixed. Although the topology is fixed, the pattern of regulatory
interactions varies among feed-forward loops. We show below
how these differences result in qualitatively different behaviors
depending on if the top-level induction time is either “fast” or
“slow.”

II. TRANSCRIPTIONAL NETWORKS

A. Escherichia coli model network

The Escherichia coli (E. coli) bacterium provides a
prototypical transcriptional network as data sets are well
documented [3,15]. We extracted an E. coli network from the
software package GeneNetWeaver [16]. This network hosted
L = 3648 links and N = 1564 nodes and was sparse: L/N ≈
2.3 links per node. GeneNetWeaver refers to a link’s regulatory
action as stimulatory (“+”), inhibitory (“–”), biregulatory
(“+–”), or undocumented (“?”). This extracted network
contained some disconnected components; we removed these
by pruning, leaving only its largest connected component for
further analysis.

B. Feed-forward loops

The feed-forward loop is a hierarchical three-node sub-
network composed of two gene coregulators, wherein one
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FIG. 1. (a) All eight feed-forward loop transcriptional motifs. The
composite sign of the indirect path, (1,2) and then (2,3), is identical
to the direct path (1,3) for the “coherent” loops, but is opposite for the
“incoherent” loops [10]. The regulatory action of the single (2,3) link
differentiates the coherent from the incoherent loops of each type.
The search algorithm included counts of (b) embedded feed-forward
loops or excluded them to count only the (c) canonical loops.

regulates the other. This structure was originally shown to be
overrepresented in E. coli gene-regulatory networks inferred
from the RegulonDB database [3].

There are eight types of feed-forward loop, each accounting
for a possible combination of its three links, which may
either up- or down-regulate target expression, as illustrated in
Fig. 1(a). The coherent loops are those wherein the “direct
path” from node 1 to 3 contributes to expression of the
regulated gene (node 3) in the same manner as the whole of the
“indirect path,” which spans from nodes 1 to 3 but involves the
node 2 waypoint. Thus, the incoherent loops are those wherein
the direct and indirect paths regulate the gene oppositely.

Herein we differentiate between two classes of feed-
forward loop present within a transcriptional network. The
first class, termed the “embedded” feed-forward loop, consists
of feed-forward loop subnetworks potentially exposed to
intramotif interactions [Fig. 1(b)]. The second class, termed
the “canonical” feed-forward loop, are those loops that lack
any additional links between their nodes [Fig. 1(c)].

C. Randomized networks

We constructed randomized versions of the E. coli network,
which preserved its degree sequence, to compare against
feed-forward loop counts obtained from E. coli and used the
well-known configuration model for this purpose (e.g., see
Ref. [17] for a review). Briefly, each network link was “cut,”

to leave a number of directed “stubs” adjoined to each node.
Links were reconnected at random with uniform probability
from the number of remaining stubs. Although this process
automatically preserves the degree of each node, it may
otherwise admit multiple or self-loops that we are compelled
to avoid because they are not present in the feed-forward
loop structure. Although autoregulation among E. coli genes
is common, we did not consider them here because the
feed-forward loop is free of self-loops.

The configuration model, as implemented above, does not
preserve the regulatory identity of each link. The E. coli
network used here has 1966 up-regulating (+) links, 1466
down-regulating (–) links, 201 links of mixed regulation (+–),
and 15 links of undetermined regulatory identity (?). We
developed two strategies to assign these identities to links
of each random network. In the first strategy, we kept these
totals constant but distributed them uniformly throughout a
network, with equal probability until their numbers were
exhausted. We term this strategy random regulation (RR). In
the second strategy, the regulatory identity of each link was
simply preserved from that of the “source” node. This strategy
was termed source-preserved regulation (SPR).

III. THE MATHEMATICAL MODEL

We focus our modeling efforts on the canonical feed-
forward loops. At the transcriptional level, we assumed an
infinite RNA polymerase pool, so that transcription is rate
limited by the levels of DNA-binding proteins. The transition
from an open to closed promoter occurs rapidly [18], so we
model RNA production as a constant rate [19]. We further
assumed an infinite pool of ribosomes, so that protein levels,
Si(t), are limited purely by the transcriptional activity [20].
Protein concentrations can therefore be modeled using the
equation

d

dt
Si(t) = fi({S}; t) − k

deg
i Si(t). (1)

Here fi({S}; t) expresses the number of proteins created per
unit time and volume, which may depend on a number of
regulator protein levels, denoted by the set {S} = {Sj : j =
1, . . .}; 1/k

deg
i denotes lifetime of the ith protein species.

A. Modeling protein production

If expression of the ith gene varies with the j th transcrip-
tional activator protein concentration, denoted by aj→i , then
fi can be modeled using a sigmoid-type equation: fi(aj→i) =
Vi(aj→i/Kji)n/[1 + (aj→i/Kj→i)n] [10,21]. This is the well-
known Hill equation from enzyme kinetics [22]. The parameter
Vi sets the (constant) maximum protein production flux, n

measures protein cooperation at the promoter, and Kj→i

measures the dissociation constant (=1/affinity) of the j th
regulator to the ith target promoter/operator [10,21,23]. Re-
pressor protein concentrations, rj→i , inhibit the transcriptional
activity, and this effect can be modeled with a similar equation:
fi = Vi/[1 + (rj→i/Kj→i)n] [10,21].

While these equations account for the action of single
activator or repressor species, they can be altered to include
contributions from multiple activator or repressor species. For
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example, the equation for modeling contributions of many
activators is given by

fi({aj→i}j ; t) = Vi

∑
j (aj→i(t)/Kj→i)n

1 + ∑
j (aj→i(t)/Kj→i)n

(2)

and employs OR-gate logic [10,24,25]. A gene regulated only
by multiple repressors may be modeled using the equation

fi({rj→i}j ; t) = Vi

1 + ∑
j (rj→i(t)/Kj→i)n

. (3)

Finally, both types of regulators can act concurrently to modify
the expression of a gene. In this case, we employ the AND-gate
logic to account for these dual actions:

fi({aj→i ,rj→i}j ; t) = Vi

1 + ∑
j (rj→i(t)/Kj→i)n

×
∑

j [aj→i(t)/Kj→i]n

1 + ∑
j [aj→i(t)/Kj→i]n

. (4)

The OR and AND logic gates have been used extensively
before in similar modeling situations [10,24,25].

B. Modeling assumptions and approximations

Dynamics of each feed-forward loop have been assumed to
operate near stable steady-state fixed points, in the long-time
limit, because transcriptional networks are more likely to
include dynamically stable motifs rather than oscillatory, or
source-like, fixed points [26]. The degradation rate, k

deg
i ,

or the protein turnover time, 1/k
deg
i , accounts for dilution

effects from cell division from a bacterial population, primarily
because bacterial proteins are long-lived [27]. Additionally,
experimental measurements of transcript half-lives tend on
the order of hours (e.g., see Ref. [28]), which roughly coincide
with the E. coli doubling time, approximately 18–180 min
[29,30]. Thus, we take all 1/k

deg
i = 1/kdeg being equal, and

this value as the E. coli cell-cycle time.
We point out that Eqs. (2)–(4) were not obtained from

any reaction mechanism, although similar equations, such
as the Hill and Michaelis-Menten kinetic equations, can
be derived from a single-site occupancy model [22]. Our
primary modeling assumptions are that gene transcription
limits the protein yield, and that the protein flux can be
parameterized using sigmoid-type equations, which is in
agreement with experimental observations (see Ref. [31] and
references therein). Although the QSSA reduction may not
always agree well with the full model near the steady state
[32,33], our phenomenological models are sufficiently simple
wherein such variance may not be large. Such models have
been applied successfully to dynamically model the results
from several experimental systems [12,23,27].

Finally, we note that protein rise times obtained from
different coregulator interactions may be directly compared.
For example, Mangan and Alon [10] employed similar models
of the feed-forward loop to compare its dynamics to the
case of “simple regulation,” which they take as the feed-
forward loop absent the coregulator interaction. However, their
models begin from an initial concentration of S̃i(0) = 0, which
may be directly validated with experiments using florescent

reporter proteins. Alternatively we analyze feed-forward loop
dynamics from the angle of perturbation from the nominal
biological steady state, S̃i(0) = 1, which is representative of
in vivo conditions. Mangan and Alon [10] normalized the final
protein levels to infer dynamic consequences from changing
topology. Our results can be similarly normalized after first
shifting the maximum protein levels regulated by the loop:
max {S̃i(t̃)} − 1, or by equating steady-state levels between
topologically different motifs. This does not change the value
of the rise time, but rather dilates or contracts the fold-change
levels. This shifting may, however, lead to fold-change levels
< 0 when the net result of the loop is repressive of the
protein concentration; this effect is not captured by the earlier
modeling studies that initialize the protein concentration to
zero, such as in Ref. [10].

C. Scaling the model equations

We have scaled each protein concentration, S̃i = Si/S
bio
i

relative to the value of an initial biological state, Sbio
i .

Conceptually, this concentration is the mean value measured
over a living bacterial population operating in the nominal
(unperturbed) state. Dissociation constants were similarly
scaled: K̃j→i = Kj→i/S

bio
j . Concentrations evolve in elapsed

time, t̃ = tkdeg, where, as outlined above, the quantity 1/kdeg

is understood as a typical E. coli cell cycle time (Sec.
III B). Finally, the maximum transcriptional activity for the
ith species or node was scaled relative to these parameters:
Ṽi = Vi/kdegSbio

i .
We note that Ṽi is not, in principle, independent of

the other parameters, because of the steady-state condition:
f̃i({S̃(∞)}; ∞) = 1. As an example, we applied this restriction
to Eq. (4). Solving for Ṽi , gives the equation

Ṽi =
[

1 +
∑

l

(1/K̃l→i)
n

]
︸ ︷︷ ︸

repressors

1 + ∑
j (1/K̃j→i)n∑

j (1/K̃j→i)n︸ ︷︷ ︸
activators

. (5)

A similar result may be obtained for the cases of Eqs. (2)
and (3).

These scaling relationships express the protein concentra-
tions in terms of a relative measure: the ratio of the absolute
concentration level, Si(t), to the initial level, Sbio

i , termed
the fold change. There are some advantages to expressing
concentrations in these relative units. For example, incoherent
feed-forward loops are thought to be superior detectors of
the fold-change response over changes in the absolute levels
[4]. This ability may contribute to improved reliability in the
gene response, given the inherently noisy cellular environment
[4,34].

D. Parameter values

Biological fluxes are ubiquitously sigmoid in their de-
pendence on protein concentrations [22], which holds for
transcriptional activity [21]. Given this shape, we might expect
“normal” values of the scaled dissociation constants to reside
near the inflection point, K̃j→i = (n + 1/n − 1)1/n, because
it offers a staging ground for rapid response to smaller
changes in the regulator concentration. For a typical value
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of n = 2, this equation works out to be K̃j→i ≈ 1.73. So it
appears reasonable to experimental measurements to reside
near K̃j→i ∼ 1.

This estimate can be refined by appealing to eukaryotic
data, as they are readily available. The number of tran-
scription factors within a eukaryotic cell is approximately
7.22 × 104 (95% CI is [4.2 × 104,1.24 × 105], assuming the
data are log-normally distributed) [37]. The volume of a
typical nucleus is approximately 337 × 10−18 m3 (95% CI is
[178 × 10−18 m3, 638 × 10−18 m3], again assuming a loga-
rithmic distribution for the data) [35,36]. Considering only
the means, the concentration of a typical transcription factor
protein is approximately 356 nM. Given that a species-wide
nonspecific dissociation constant is ∼1000 nM [37], we may
estimate K̃j→i ∼ 1000 nM/356 nM = 2.81. Note that these
estimates have assumed the differences between eukaryotic
and prokaryotic transcription (e.g., chromatin remodeling)
does not significantly affect the protein-DNA binding kinetics.

As with these transcription factor data, many biological
data are log-normally distributed [38]; so the dissociation
constants may be similarly distributed. The above arguments
suggest a mean value of approximately ln 2.81 = 1.03. We
may use this value to construct a probability density function,
P (K̃i→j ), from which to sample parameter values. Data were
unavailable to support an estimation for the variance; so, we
instead assumed a logarithmic standard deviation of one base.
This choice is consistent with parameter values employed in
other studies [10].

IV. COMPUTER SIMULATIONS

A. Manipulating top-level regulator rise times

Each feed-forward loop was perturbed by manipulating the
time, τ̃1, needed for node 1 to rise to half its maximum level,
which we refer to here as the induction time. Protein concentra-
tions for node 1 evolve in response to an instantaneous, steplike
concentration increase of its activator. The induction time can
be manipulated by setting a new value for the degradation
constant: ln 2/τ̃1. Thus, S̃1(t̃) evolves according to the equation
(see Appendix A)

d

dt̃
S̃1(t̃) = ln 2

τ̃1
[S̃max − S̃1(t̃)], (6)

wherein S̃max is the steady-state value for node 1: S̃1(∞) =
S̃max. Equation (6) can be solved exactly, to give

S̃1(t̃) = S̃max − (S̃max − 1)2−t̃/τ̃1 . (7)

Our primary dynamical metric for measuring the expression of
the regulated gene (node 3), is the rise time of its concentration
profile, τ̃3; i.e., the time needed for the protein concentration
to reach half of its maximum level.

Figure 2 depicts how the top-level regulator concentration
varies dynamically with the induction times, achieved by
manipulating the degradation or dilution rate of the node 1
proteins (see Appendix A). Without manipulation, induction
time of node 1 would be fixed to τ̃1 = ln 2 ≈ 0.693 (thick
solid line). All rise times were measured from the point of
the instantaneous, steplike activation of the node 1 regulator
(dotted line).
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FIG. 2. (a) Concentrations for the top-level regulator, S̃1(t̃), of
each feed-forward loop, under conditions of varying induction time
values, τ̃1. Steplike activation of the node 1 regular (dotted line), the
point at which all other expression responses are measured, confers
a graded response in the node 1 protein production (solid lines).
Without manipulation, induction time is fixed, τ̃1 = ln 2 (thick solid
line). Here, n = 2 and S̃max = 10. (b) Measurements of rise times
for protein concentrations in the feed-forward loop from a steplike
activator of node 1 (wavy line).

B. Singular regulation of protein levels

We have also compared dynamics of each feed-forward
loop (see Fig. 1) to that of the regulated gene of each loop (node
3), which we consider to be controlled by a single transcription
factor. This single-regulated protein level constitutes the direct
path of each feed-forward loop (from node 1 to 3). This
theoretical setup eliminates contributions to gene 3 expression
from the indirect path (node 1 to 2 to 3). To emphasize this
comparison, we kept node labels for the single-regulated gene
from each of the eight feed-forward loops; i.e., node 3 was
controlled only by the concentration of node 1.
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C. Expression thresholds and detection limits

Intrinsic and extrinsic noise are two components con-
tributing to variation of the gene expression profile in living
bacteria. Extrinsic noise refers to sources of variation such as
in the location and concentration of biomolecules or the states
of cells, while intrinsic noise refers to variation contributed
from microscopic events governing reaction rates of the gene
expression machinery [39]. Here we refer to the total noise
level, η, which incorporates both noise types, as the ratio of
the standard deviation of the signal subject to intrinsic and
extrinsic noise to the mean value of the signal [39].

This total noise level affects protein concentrations, and
determines to which stimuli the cells respond. Thus, the
fold-change level of a transcriptional activator (inhibitor)
should rise above (below) a threshold value, at the steady state,
for the noise inherent in the transcriptional and translational
processes. The overall noise level in E. coli cultures has been
measured for mutant and wild type genes [39]. We calculated
the mean for these reported values, 0.23, by estimating a
probability distribution function from the data.

This value can be used to estimate a threshold for the steady-
state concentration value of a “detectable” signal. The fold
change in a steady-state concentration should be greater than
a standard deviation from the initial state, 1 + η; however,
the lower envelope of the perturbed state is S̃i(∞)(1 − η).
Thus, for a concentration to rise above the ambient cellular
noise level, the steady-state concentration for the perturbed
state should be large enough such that the difference between
them is greater than zero: S̃i(∞)(1 − η) − 1 − η > 0. This
condition gives a lower bound on the fold-change level of an
overexpressed gene:

S̃i(∞) >
1 + η

1 − η
. (8)

A similar bound can be identified for underexpressed genes,
wherein the fold-change level should be reduced in an amount
that falls below a value:

S̃i(∞) <
1 − η

1 + η
. (9)

Putting the averaged value of η = 0.23 into Eq. (8) gives
S̃i(∞) > 1.6 for activated genes, or, using Eq. (9), S̃i(∞) <

0.63 for the inhibited ones. This value is consistent with
bioinformatic estimates that put a threshold on differential
expression of approximately 1.5–2-fold [40].

D. Stochastic simulations

For each feed-forward loop, we carried out a total of 103

simulations for each value of the induction time, chosen from
the interval [10−3,103]. Values for the dissociation constants,
K̃i→j , were sampled randomly, per simulation, from the log-
normal distribution of Sec. III D. Rise times of the regulated
gene (node 3) were then calculated, and a normal kernel
smoothing method [41] was used to estimate a probability
density function, P (τ̃3; τ̃1). Finally, a mean rise time, 〈τ̃3〉,
was estimated for each value of the induction time using this
density function:

〈τ̃3〉 =
∫ ∞

−∞
τ̃3P (τ̃3; τ̃1) dτ̃3. (10)

Brackets, 〈 · 〉, thus denote an average over all values for the
dissociation constants.

V. RESULTS

A. Feed-forward loop overrepresention in E. coli

Table I shows that many feed-forward loops are overrepre-
sented in the model E. coli transcriptional network. Statistical
significance was determined by calculating a z score for its
abundance, α. This was carried out using counts obtained from
100 random networks of each type (RR or SPR). We expressed
the z score as the difference between the E. coli abundance of
an FFL and its mean as counted in the random networks, in
units of standard deviations: (ln α − 〈α〉)/√σ . The quantities
〈α〉 and σ are, respectively, the mean and variance of the
log-normally distributed counts from each type of randomized
network.

A majority of the canonical feed-forward loops show
counts similar to the embedded loops, indicating that many
feed-forward loops found using our algorithm were free of
additional internal interactions. However, there were two
instances wherein the counts greatly differed. Specifically, we
counted 204 embedded incoherent type 2 loops with only 34
canonical ones, but also counted 336 embedded incoherent
type 4 loops compared to only 18 canonical ones. Even more
surprising was that the embedded incoherent type 4 loops
were significantly overrepresented when compared with the
both types of random networks, while the canonical incoherent
type 4 loop was significantly underrepresented. These numbers
indicate that extraneous interactions dominate the counts of
embedded I-2 and I-4 loops.

Counts from Table I can be directly compared to those
reported from previous studies. For example, Mangan and
Alon curated gene-regulatory networks from the literature, for
both the E. coli bacterium and the model yeast Saccharomyces
cerevisiae [10]. Their counts substantially differ from those
we report in Table I, which can probably be explained by
the incompleteness of their networks. However, the relative
ordering of their coherent and incoherent feed-forward loops
by abundance are substantially different from that of Table I;
thus, not all of the count variation can be explained purely by
our use of a proportionally larger model network.

Finally, we note that reports of feed-forward loops and
their abundances counted from transcriptional networks are
somewhat inconsistent. For example, several studies collated
all feed-forward loop types and reported the aggregate counts
[2,26,42]. In many of these cases the authors use only smaller
subsets of the larger available transcriptional networks. There
are also differences in the underlying biological definitions
of a feed-forward loop. For example, Ref. [43] refers to a
feed-forward loop as a four-node structure, with nodes defined
as either the DNA promoters or protein regulators. However,
we and others (e.g., Refs. [3,10]) refer to feed-forward loops as
interactive patterns between the regulated products (i.e., RNA
and proteins).

B. Linearity of the rise time: Two dynamic response regimes

Figure 3 illustrates the relationship between the mean rise
time, 〈τ̃3〉, and the induction time, τ̃1, for each of the eight
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TABLE I. Coherent (C) and incoherent (I) type feed-forward loops (FFLs) for the E.
coli transcriptional network, counted for both embedded and canonical FFLs. Regulatory
interactions were either stimulating, +, or inhibitory, –. For example, C-1 labels the
coherent type 1 feed-forward loop. z scores reported for FFL distributions obtained from
100 random networks built using either random-regulation (RR) or source-preserved
regulation (SPR) methods. ∗ denotes statistical significance, wherein all z scores > 1.96
(p < 0.05).

Links Embedded motifs Canonical motifs

Type (1,2) (2,3) (1,3) Abundance, α RR SPR Abundance, α RR SPR

C-1 + + + 305∗ 5.22 4.30 264∗ 5.03 3.96
C-2 – + – 186∗ 4.91 4.84 126∗ 3.81 3.42
C-3 + – – 38 0.5 1.55 36 −0.47 1.56
C-4 – – + 91∗ 2.46 3.06 72 1.90 2.62
I-1 + – + 191∗ 4.78 3.91 166∗ 4.35 3.66
I-2 – – – 201∗ 5.82 5.95 34 0.38 1.26
I-3 + + – 56 0.22 0.78 51 −0.31 0.72
I-4 – + + 336∗ 6.34 5.52 18∗ −3.85 −2.49

feed-forward loop types shown in Fig. 1. These curves were
found numerically by first applying the cutoff for differential

10-3 10-2 10-1 100 101 102 103

100

101

102

103

10-1

Induction time, (cell cycles)

Type 3

Type 1
Type 2

Type 4

M
ea

n 
ris

e 
tim

e,
(c

el
l c

yc
le

s)
3

1

100

101

102

103

S~max=10, n=2

S~max=100, n=2
η=0.23

η=0.23

FIG. 3. (Color online) Rise times for the four coherent (red) and
incoherent (blue) loops are plotted against induction times for the
top-level regulator node 1 (see Fig. 1), and illustrated on a logarithmic
scale. Dotted (incoherent FFLs) or solid (coherent FFLs) lines show
best-fit solutions to a linear model. The solid black line denotes
τ̃3 = τ̃1.

expression [Eqs. (8)–(9), with η = 0.23), and then calculating
an average value for each time point (see Sec. IV D).

The relationship between the induction and rise times were,
on average, empirically linear for all eight feed-forward loops
(solid and dotted lines), which is consistent with type of
response from the case of a single-regulated gene [Eq. (12)].
This result holds despite a larger spread in the top-level
concentrations. Values for the fitted parameters have been
collected in Table II. Similar relationships have been reported
using a detailed mathematical model of gene transcription and
protein translation [44].

C. Role of the direct and indirect regulation paths
in feed-forward loop dynamics

The particular value of the induction time has direct
consequences on the qualitative properties of the feed-forward
loop. For example, Fig. 4(a) shows that a large pulse develops
dependent on the timing of the inductions; faster inductions
show no pulse, while the protein concentration exhibits a large
pulse for intermediate induction times. Development of such a
pulse can be understood in terms of independent contributions

TABLE II. Parameters for the empirical curves of Fig. 3, which
are best fitted to the equation: 〈τ̃3〉 = mτ̃1 + B.

τ̃ R = B/m Slope, m y intercept, B

S̃max S̃max S̃max

Type 10 100 10 100 10 100

C-1 3.59 26.0 0.221 0.0273 0.794 0.711
C-2 4.36 41.7 0.193 0.0171 0.839 0.712
C-3 4.13 28.3 0.191 0.0251 0.787 0.712
C-4 1.67 12.7 0.578 0.0734 0.964 0.935
I-1 1.86 12.6 0.348 0.0492 0.647 0.621
I-2 1.45 11.6 0.521 0.0610 0.754 0.710
I-3 3.53 23.3 0.258 0.0303 0.911 0.706
I-4 1.43 12.4 0.521 0.0572 0.746 0.710
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FIG. 4. (Color online) (a) Pulsing dynamics of the I-3 feed-
forward loop. (b) Comparison in normalized response between the
full I-1 loop and the direct linkage of the I-1 loop. (c) Ratio of
rise time in a feed-forward loop, τ̃3(FFL), to that of the single,
direct linkage, τ̃3(single), for coherent (red) and incoherent (blue)
feed-forward loops. Values calculated using n = 2, S̃max = 10, and
all K̃ = 2.81.

from the individual paths of the feed-forward loop topology,
and their interaction at the regulation target, gene 3.

Consider the incoherent type 3 feed-forward loop of
Fig. 4(a) as an example. Here we may hypothesize that
the direct-regulatory path, (1,3), contributes primarily to the
down-regulation observed in the expression of gene 3 for
rapid inductions, Fig. 4(a), because this link contributes the
only down-regulating action. However, as inductions become
slower, the early response of the gene 3 profile is to rise,
possible only from contributions stemming from the indirect

path. Ultimately these rising concentrations are suppressed by
the down-regulating action of the direct link.

To test this hypothesis we introduce a new metric, the rise
time ratio, ρ, which we define here as the ratio of the regulated
genes’ rise time from the full feed-forward loop, τ̃3(FFL), to
the rise time obtained from just the direct path contribution,
τ̃3(single):

ρ = τ̃3(FFL)

τ̃3(single)
(11)

and calculated for all eight feed-forward loops using the
parameter values K̃j→i = 2.81, S̃max = 10, and n = 2. The
direct-path contribution was calculated using the same type
of feed-forward loop, after elimination of the indirect-path
topology. An example of how each system responds is given
by Fig. 4(b).

As shown in Fig. 4(c), this ratio approaches unity in
nearly all loops exposed to faster induction times. Thus, most
feed-forward loops appear to behave as if the single direct
path dominates rise times of the regulated gene under faster
inductions. For slower inductions, this ratio either increases
or decreases, which we attribute, respectively, to a delay
or acceleration of the regulated gene response in the full
feed-forward loop relative to that for the single, direct linkage.

For the strong-pulsing incoherent type 3 loop [Fig. 4(a)],
the gene-response metric switches from the rise time
(time to half-maximum level) to the response time (time
to half steady-state level) with increasing induction time.
This occurs because the apex of the emerging pulse rises
above the steady-state level. When faced with two met-
rics of gene response, we take the smallest (fastest) one:
τ̃3(FFL) = min {rise time,response time}, which explains the
abrupt switching from delay to acceleration in ρ for the type
3 incoherent loop [Fig. 4(c)]. It is not clear whether or not this
has any consequence for biology, although it is interesting to
note that the incoherent type 3 loop was the only incoherent
loop not significantly overexpressed in our E. coli network
(Table I).

D. Robustness of rise times to rapid inductions
of less than one cell cycle

An equation can be found for the approximate rise time,
τ̃j , of a gene j , up-regulated by a single transcription factor
i. As shown in the appendices [Appendix B, Eq. (B21)], this
equation is linear:

τ̃j = μτ̃i + β. (12)

The slope, μ, and y intercept, β, can be expressed in terms
of the parameters S̃max, K̃ , and n. The linearity of Eq. (12) is
consistent with results from other studies, such as rise times
reported for a single negative autoregulated gene [23].

If we write the right-hand side (RHS) of Eq. (12) as
β[(μ/β)τ̃i + 1], then the rise time is nearly constant when
the induction time falls approximately below a threshold:
τ̃i < τ̃R = β/μ. This calculation can be carried out using
equations of the appendix to give

τ̃ R = n ln
√

2
K̃n + 2

K̃n + 1

[
S̃max

(K̃n + 2)1/n
− 1

]
, (13)
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under conditions of S̃max 
 21/n. One equation in the appen-
dices, Eq. (B5),

S̃max > (K̃n + 2)1/n, (14)

places an approximate bound on the perturbation value that
elicits a gene response. This equation quantifies an intuition
that transcriptional activators with small DNA-binding affinity
require larger fold-change concentration changes to elicit
differential expression of the target gene.

An average robustness threshold, 〈τ̃ R〉, can be found with
Eq. (13), by calculating over all biological values of K̃ ,
and using the lognormal probability density function from
Sec. III D, �(K̃):

〈τ̃ R〉 =
∫ ∞

0
τ̃ R(K̃)�(K̃)dK̃ ≈ 2.34. (15)

Here we have used values n = 2 and S̃max = 10. This result is
consistent with the numerical results of Fig. 3 (bottom panel).
Note that also 〈τ̃ R〉 = 〈β〉/〈μ〉 = 〈β/μ〉.

Figure 5 plots Eq. (13) across the parameter space,
assuming dimerized transcriptional regulators (n = 2). The
dissociation constant has a value fixed by biology, and from
the heuristic arguments of Sec. III D, may be near to K̃ = 2.81
for most DNA-binding proteins. Thus, the anecdotal value of
S̃max = 10 that we have used throughout this work appears
poised near, but above, a robustness transition of one cell cycle.
Indeed, solving the equation τ̃ R(S̃max,K̃ = 2.81,n = 2) = 1
gives S̃max ≈ 7.23.

VI. CONCLUSIONS

We used a simplified model of the protein production rate
limited by gene expression to manipulate the dynamics of the
top-level regulator (node 1) of all eight types of feed-forward
loop transcriptional motif. By controlling how soon the con-
centration of the top-level regulator rises to its maximum value,

we observed two qualitatively different regimes in protein
level rise times. In the first, rise times remained constant
despite rapid top-level inductions, and in the other, rise times
varied proportionally with slower induction times. Bacteria
may leverage the remarkable stability of rise times attributed
to dynamics taking place within a cell-cycle time, which our
models suggest provides fault tolerance and reliability of the
gene response in the presence of transcriptional noise, a feature
noted before in the incoherent loops [8].

By modeling a single activator-gene system representative
of the direct link of the feed-forward loop motif, we found the
crossover into robustness depends on only three parameter val-
ues: transcription factor cooperation at the promoter, n; a disso-
ciation constant, K̃ (=1/DNA-binding affinity); and the fold-
change level of the top-level perturbation, S̃max. Given biologi-
cal parameter values, this threshold works out to approximately
one cell-cycle time and is consistent with experimental results
[23,27]. Additionally, mathematical models incorporating
both transcription and translation exhibit similar trends [44].

Analysis of these models show that the direct-regulation
path of nearly all loops, the (1,3) link, determines rise times for
faster top-level inductions, while the indirect path contributes
with slower inductions. The incoherent type 1 and 3 loops,
however, appear to be exceptions to this rule. That dynamics
of a single regulatory link can determine the response a down-
stream gene has implications beyond functionality of single
motifs. For example, it may speak to the modularity hypothesis
of feed-forward loops: If faster signals are limited to nearest
neighbors, then small-node subnetworks may remain dynam-
ically localized, preserving their function despite the presence
of long-range interactions. This hypothesis is reminiscent of
packet flooding in decentralized wireless networks, wherein
information is often transmitted indiscriminately to neighbor-
ing nodes, which nearly guarantees reception at the target [45].

Two factors contribute to the timing of the regulated protein
yield: the length of time for the transcription factor (top-level)
proteins to accumulate beyond a “promoter threshold” of gene
activation [27] and the time needed for cellular machinery to
first produce the RNA molecules. The latter is a function of
the parameter values and is thus fixed. The former depends on
the protein lifetime, which we explored here as a variable. For
example, if the top-level protein concentration rapidly rises,
then the protein production rate is limited by the (fixed) time
needed to produce protein by the transcription and translation
processes. Thus, the rise time bears almost no dependence on
the induction time. If the accumulation of top-level proteins
is instead “slow,” regulated protein production will be limited
by the shorter lifetime of the top-level proteins. The rise time
regime is therefore a function of which contribution emerges
as the rate-limiting factor the regulated protein yield.

These results are not strictly limited to the E. coli bacterium.
Indeed, the field of synthetic biology is devoted to engineering
modular cell-free systems from constituent biological parts,
such as DNA, RNA, and others [46]. Results from these efforts
promise the ability to leverage biological “operating prin-
ciples” to solve novel nonbiological problems. Because our
results suggest that dynamical robustness arises automatically
from a single gene-transcription factor interaction, without any
feedback loop, there is great potential to use current methods
of synthetic biology to put these predictions directly to the test.
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APPENDIX A: DYNAMICAL EQUATION FOR
MANIPULATING THE RISE TIMES OF S̃1( t̃)

In this paper we manipulated rise times of node 1 for
each of the feed-forward loops shown in Fig. 1 and observed
concentrations of the regulated gene, node 3. Concentrations of
node 1, S1(t), responded to a steplike activator concentration,
instantaneously rising from the nominal level to a maximum,
as shown in Fig. 2. Node 1 thus responded by moving
from the nominal level to its own maximum, Smax. Thus,
we varied the amplitude of node 1, rather than its steplike
activator concentration, because they are both directly related
through an equation of type 2. Finally, if node 1 degrades
at a rate parameterized by k′deg, then together with Eq. (1),
concentrations of node 1 evolved according to

d

dt
S1(t) = V1 − k′degS1(t), (A1)

wherein V1 is constant but depends on the activator concen-
tration. The degradation constant can be expressed in the
cell-cycle lifetime 1/kdeg (Sec. III B):

d

dt
S1(t) = V1 − k′deg

kdeg
kdegS1(t). (A2)

Thus, the quantity k′deg/kdeg refers to a multiple of the cell-
cycle time.

The scaling arguments of Sec. III C can be applied to
Eq. (A2), to give the equation

d

dt̃
S̃1(t̃) = k′deg

kdeg
[S̃max − S̃1(t̃)]. (A3)

Inspection between the exact solution of this equation
and S̃1(t̃) = S̃max − (S̃max − 1)2−t̃/τ̃1 , shows that k′deg/kdeg =
ln 2/τ̃1.

APPENDIX B: EQUATION FOR THE RISE TIME OF A
SINGLE GENE-TRANSCRIPTION FACTOR INTERACTION

Here we derive an equation relating the response time, τ̃j ,
of an up-regulated gene j to the induction time, τ̃i , of its single
regulator i. The concentration, S̃i(t̃), of the top-level regulator
followed the sigmoid of Eq. (7):

S̃i(t̃) = S̃max − (S̃max − 1)2−t̃/τ̃i , (B1)

and the dynamical equation for concentration of the regulated
gene, given by Eqs. (1)–(2):

d

dt̃
S̃j (t̃) = 1 + K̃n

1 + [K̃/S̃i(t̃)]n
− S̃j (t̃). (B2)

We dropped labels on dissociation constants because we
understand that gene j is regulated by only one activator i.
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FIG. 6. Illustration of the three-regime piecewise approximations
for f̃j (t̃) and S̃i(t̃). Both axes are logarithmically scaled, wherein
straight lines correspond to power laws.

Given Eq. (B2), we first explain some simplifying approx-
imations imposed on Eq. (B2) (Sec. B 1). We next establish
a relationship linking τ̃j to τ̃i (Sec. B 2). We further explain
how the resulting equation can be solved to get an analytical
solution for τ̃j (τ̃i) (Sec. B 3). Finally, we validate the analytic
equation by comparing it against the numerical solution
(Sec. B 4).

1. Simplifying approximations

The equation

f̃j (t̃) = 1 + K̃n

1 + [K̃/S̃i(t̃)]n

is sigmoid and so has three distinct power-law regimes
(Fig. 6): (1) it is constant for smaller times, t̃ � t̃−f ; (2) it is
constant for larger times, t̃ � t̃+f , due to promoter saturation;
and (3) it approximately obeys a power law in the intermediate
region, t̃−f < t̃ < t̃+f . We can therefore expand f̃j (t̃) for the
intermediate regime in a Taylor series about t̃ = τ̃f to first
order in the log scale, which gives

f̃j

(
t̃
) =

⎧⎪⎨
⎪⎩

1 t̃ � t̃−f
1
2 (K̃n + 2)

[
t̃
τ̃f

]γ
t̃−f < t̃ < t̃+f

1 + K̃n t̃ � t̃+f

, (B3)

wherein the exponent, γ , is given by

γ = n

2

(
K̃n

K̃n + 1

)[
S̃max

(K̃n + 2)1/n
− 1

]

× ln

[
S̃max − 1

S̃max − (K̃n + 2)1/n

]
. (B4)

Note that Eqs. (B3) and (B4) place an lower bound on the
experimental “control” parameter S̃max:

S̃max > (K̃n + 2)1/n. (B5)

This inequality sets the approximate size of the stimulus in
the responsive gene-expression regime. For example, given
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a high-affinity transcription factor (K̃ = 0) that dimerizes
(n = 2), the smallest amplitude is S̃max = √

2 ≈ 1.41.
An approximate solution to Eq. (B2) can be found by noting

S̃j (t̃) is empirically sigmoid in kind with f̃j . As with f̃j , we
expand S̃j in a first-order Taylor series to give

S̃j (t̃) =

⎧⎪⎨
⎪⎩

1 t̃ � t̃+j
1
2 (S̃j (∞) + 1)

[
t̃
τ̃j

]ξ
t̃−j < t̃ < t̃+j

S̃j (∞) t̃ � t̃−j

. (B6)

Using Eq. (B2), the steady-state amplitude, S̃j (∞), can be
written in terms of S̃max, the promoter dissociation constant K̃

(=1/affinity), and the transcription factor cooperativity, n:

S̃j (∞) = S̃n
max

K̃n + 1

K̃n + S̃n
max

. (B7)

The exponent ξ is given by

ξ = τ̃j

[
2f̃j (τ̃j )

S̃j (∞) + 1
− 1

]
. (B8)

Equation (B8) relies on f̃j ; we avoid further approximation
by using the full form of f̃j rather than its approximation,
Eq. (B4). Thus, an expression for f̃j (t̃ = τ̃j ,τ̃i) is given by

f̃j (τ̃j ,τ̃i) = K̃n + 1

1 + (K̃/S̃max)n/Gn(τ̃j ,τ̃i)
, (B9)

which can be expressed in terms of attenuating function, Gn,
that is dependent on the induction and rise times:

Gn(τ̃j ,τ̃1) =
[

1 +
(

1 − S̃max

S̃max

)
2−τ̃j /τ̃i

]n

. (B10)

In summary, we have assumed the transcriptional flux, fj (t̃)
[Eq. (B3)], and the concentration S̃j (t̃) [Eq. (B6)] are both
sigmoid curves, and exploited this reasoning to approximate
them using piecewise equations. In the following section we
leverage these approximations to establish a direct relationship
between the induction and rise times.

2. Linking the induction and rise times

As can be seen from Fig. 6, the difference between the upper
cutoffs is approximately equal to the timing delay between the
respective curves for f̃j and S̃j : ln t̃+3 − ln t̃+f = ln τ̃3 − ln τ̃f .
We thus obtain

t̃+3 = t̃+f τ̃3

τ̃f

. (B11)

It remains to find expressions for t̃+f and t̃+3 . The former
satisfies f̃ (t̃+f ) = K̃n + 1, which can be inverted to give

t̃+f = τ̃f

(
2
K̃n + 1

K̃n + 2

)1/γ

, (B12)

while the latter can be found by inverting the equation S̃j (t̃+j ) =
S̃j (∞):

t̃+j = τ̃j

[
2

K̃n + 1

K̃n
(
S̃n

max + 1
)
/S̃n

max + 2

]1/ξ (τ̃j )

. (B13)
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Finally, putting Eqs. (B12) and (B13) into Eq. (B11) gives

2τ̃j

{(
1 − K̃n

K̃n + S̃n
max

+ 1

K̃n + 1

)[
1+ (K̃/S̃max)n

Gn(τ̃j ,τ̃i)

]}−1

− τ̃j

= γ
ln

[
2(K̃n + 1)/(K̃n(S̃n

max + 1)/S̃n
max + 2)

]
ln [2(K̃n + 1)/(K̃n + 2)]

. (B14)

We note that the right-hand side of this equation is independent
of both τ̃j and τ̃i ; the relationship between them is given
entirely by its left-hand side, which is the exponent ξ (τ̃j ). The
remainder of this appendix is devoted to solving Eq. (B14).

3. Finding a solution for τ̃ j (τ̃i )

Figure 7 plots the left-hand side of Eq. (B14) across several
decades of τ̃i . We can see that for larger τ̃i , a discontinuity in
dξ (τ̃j )/dτ̃i is approximately coincident with the intersection
of ξ (τ̃j ) and the right-hand side of Eq. (B14). So, finding
the discontinuities provides a good approximation of τ̃j for
“larger” τ̃i . Carrying this out leads to

τ̃j ∼ μτ̃i, (B15)

wherein μ is given by the equation

μ = 1

ln 2
ln

[
S̃max − 1

S̃max − { · }1/n

]
. (B16)

Here we have abbreviated

{ · } =
(K̃n + 1) S̃n

max+1
S̃n

max−1
+ 1

(K̃n + 1) S̃n
max+1

S̃n
max−1

− K̃n
. (B17)

Note that { · } ≈ K̃n + 2 when S̃max is large in the sense of
Eq. (B5).

The other asymptote of Eq. (B14), valid near τ̃i = 0, can
be obtained by putting Gn(τ̃j ,τ̃i) = 1 into Eq. (B14), and then
solving directly for τ̃j :

τ̃j ∼ β, (B18)
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wherein β is given by the equation

β = n

2

[
S̃max

(K̃n + 2)1/n
− 1

] (K̃n + 1) S̃n
max+1

S̃n
max−1

+ 1

K̃n + 1

× ln ( · )1 ln ( · )2

ln [2(K̃n + 1)/K̃n + 2]
. (B19)

Here we have abbreviated

( · )1 = S̃max − 1

S̃max − (K̃n + 2)1/n
and

( · )2 = 2 × S̃n
max − 1

S̃n
max

× K̃n + 1

(K̃n + 1) S̃n
max+1

S̃n
max−1

+ 1
.

Equation (B19) reduces to

β = n

2

[
S̃max

(K̃n + 2)1/n
− 1

](
K̃n + 2

K̃n + 1

)
ln ( · )1, (B20)

when S̃max 
 21/n. As it should be, β is independent of τ̃i .
Finally, a solution to Eq. (B14) can be given by the the sum of
equations (B15) and (B18):

τ̃j = μτ̃i + β. (B21)

4. Validity of the solution

Equation (B21) is validated numerically by Fig. 8. We
integrated Eq. (B5) to estimate the rise time for a number
of different induction times (circles). The analytic formula
(line), Eq. (B21), overlays the numerical results in very good
agreement.
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