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Length of adaptive walk on uncorrelated and correlated fitness landscapes
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We consider the adaptation dynamics of an asexual population that walks uphill on a rugged fitness landscape
which is endowed with a large number of local fitness peaks. We work in a parameter regime where only those
mutants that are a single mutation away are accessible, as a result of which the population eventually gets trapped
at a local fitness maximum and the adaptive walk terminates. We study how the number of adaptive steps taken
by the population before reaching a local fitness peak depends on the initial fitness of the population, the extreme
value distribution of the beneficial mutations, and correlations among the fitnesses. Assuming that the relative
fitness difference between successive steps is small, we analytically calculate the average walk length for both
uncorrelated and correlated fitnesses in all extreme value domains for a given initial fitness. We present numerical
results for the model where the fitness differences can be large and find that the walk length behavior differs
from that in the former model in the Fréchet domain of extreme value theory. We also discuss the relevance of
our results to microbial experiments.
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I. INTRODUCTION

Fitness is a quantitative measure of how successful an
organism is in a given environment: an organism with a high
fitness has a better chance of propagation within the population
than one with a lower fitness. The fitness landscape, defined
as a map from genetic sequences to (genotypic) fitness, is a
fundamental concept in the theory of biological evolution [1,2].
But to construct a fitness landscape for a microbe with merely
a hundred-nucleotide sequence, one needs to experimentally
measure the fitness of 4100 ∼ 1060 sequences, which is not
possible with the current technology. However, some empirical
insights have been obtained regarding the qualitative nature of
the fitness landscapes in the recent years. Fitness has been
measured for various microbes for a small part (up to 10 loci)
of the genome, which gives information about the local
topography of the fitness landscape [3]. Large-scale fitness
landscapes for about 70 000 HIV sequences have also been
constructed [4]. A key result which has emerged from these
empirical studies is that the fitness landscapes are quite rugged,
i.e., they are endowed with a moderately large number of
local fitness peaks which are sequences that are more fit than
their nearest neighbors. A related characteristic of such fitness
landscapes is that they are partially correlated [5,6], which has
the effect of reducing the number of local fitness peaks relative
to a fully uncorrelated fitness landscape.

Besides measuring fitness landscapes directly, the dynamics
of adaptation have also been exploited to obtain insights into
the structure of the underlying fitness landscape [6–10]. During
adaptation, a population climbs the fitness landscape, and
in asexual populations, this process occurs exclusively via
beneficial mutations. However, as advantageous mutations are
rare, accounting for less than 15% of all mutations [11,12],
experimental study of adaptation is difficult. But in recent
times, it has been possible to track adaptive trajectories
for several tens to thousands of generations, especially in
microbial populations [10]. It has been observed that initially
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the population evolves quickly and then its fitness increases
slowly towards different fitness plateaus for the same initial
fitness [8,13,14], thus supporting the conclusion that fitness
landscapes are rugged. On such fitness landscapes, while
very large populations can reach the global fitness maximum
quickly, as they produce greater number of mutants, smaller
populations stay trapped at a local fitness peak for a long
time [9,15–17]. In recent experiments, the number of adaptive
mutations that occur till the population reaches a fitness plateau
have been measured, and it has been found that the population
encounters a local fitness maximum within two [18] to nine
[19] substitutions.

In this article, we address how the number of adaptive
steps that a population takes before it gets trapped at a local
fitness peak depends on the properties of the underlying
fitness landscape. We consider an asexual population in the
strong selection-weak mutation regime, where the rate of
mutations is low enough to produce only those sequences that
are a single mutation away (weak mutation), and a mutation
that confers a fitness benefit has a substantial probability
of spreading through the population, while the neutral or
disadvantageous mutations get lost (strong selection). As a
result of these assumptions, the entire population can be
represented by a single point in the fitness landscape and
performs an uphill adaptive walk which terminates once the
population reaches a local fitness peak since a better fitness
is at least two mutations away [20,21]. The properties of
the adaptive walk depend on the distribution of beneficial
mutations, which can be found by appealing to the extreme
value theory (EVT) [21] since beneficial mutations are rare and
therefore lie in the tail of the full fitness distribution [11,12].
For independent and identically distributed (i.i.d.) random
variables, the EVT states that the distribution of the tails can
belong to one of three domains, namely, Weibull, Gumbel, and
Fréchet [22]. Interestingly, all three extreme value domains
have been observed in recent experiments. Although the
exponential distribution for beneficial mutations belonging to
the Gumbel domain has been most commonly seen [23–26],
the fitness distribution of beneficial mutations belonging to
the Weibull [19,27] and Fréchet [28] domains have also been
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observed. Here we study how the walk length depends on these
three extreme value domains. Although, as mentioned above,
fitnesses are known to be correlated, much of the previous work
on the subject ignores correlations completely [23,29–31].
Here we also investigate how correlations affect the number
of adaptive substitutions. Motivated by recent experiments on
adaptive walks in which a maladapted population starts at
different fitnesses [18,19,32], we also analyze the dependence
of the walk length on the initial fitness.

According to the population genetics theory [33], the
probability that a beneficial mutation will spread through
the population increases with the relative fitness difference
between the mutant and the parent exponentially rapidly
towards unity. Using this probability function, we numerically
find that the adaptive walk is shortest in the Gumbel domain
[34]. However, when the relative fitness difference is assumed
to be small, this probability is proportional to the relative fitness
difference, and in this case, we find that the adaptive walks
are shortest in the Fréchet domain and longest in the Weibull
domain. Although the assumption of small fitness differences
is biologically incorrect, especially in the Fréchet domain, it
is still interesting to consider this model as it connects to other
systems [30], such as deterministically evolving populations
[35,36] and a gas of particles undergoing elastic collisions
[37,38], and lends itself to analytical calculations. We calculate
the average walk length in all three EVT domains for
uncorrelated fitnesses and show that it depends logarithmically
on the initial rank of the population. Using results from
the large deviation theory [39], we also obtain analytical
expressions for the walk length for correlated fitnesses and
find that the walk lasts longer on correlated fitness landscapes
as they have fewer local fitness peaks.

The article is organized as follows: In Sec. II, we describe
the model of fitness landscapes and adaptation dynamics em-
ployed here. We present a detailed analysis of the model which
assumes the fitness difference to be small on uncorrelated and
correlated fitness landscapes in Sec. III and then move on to
describe our numerical results for the full model that takes
care of large relative fitness differences in Sec. IV. We, finally,
conclude with a summary of our results, and their relevance to
the experiments, in Sec. V.

II. MODEL

A. Fitness landscapes

The adaptation model studied here is defined on a hypercube
of dimension L where each vertex corresponds to a binary
sequence, as shown in Fig. 1 for L = 4. Each sequence is
assigned a fitness which is an i.i.d. random variable chosen
from a probability distribution. Experiments indicate that
deleterious and neutral mutations account for most of the
weight in the fitness distribution, but a significant fraction
comes from the beneficial mutations as well [11]. Since
the adaptation process is governed by these rare beneficial
mutations, we need to consider the upper tail of the fitness
distribution [21], which immediately suggests the use of
the EVT and the related peak-over-thresholds formulation
described below [22,29].

FIG. 1. (Color online) Schematic representation of adaptive
walks in a four-dimensional sequence space, starting from the same
initial sequence. Arrows represent the shift of the population from a
sequence to a more fit sequence one mutation away (refer to text for
details).

Consider the conditional cumulative distribution PfT
(f )

for the fitness f chosen from the distribution p̂(f ) above a
large threshold fT , which here refers to the wild-type fitness.
Formally, we have

PfT
(f ) = Prob(F − fT < f |F > fT ) (1)

= 1 − q̂(f + fT )

q̂(fT )
, (2)

where q̂(f ) = ∫
f

dgp̂(g). For large enough thresholds, the
above cumulative distribution approaches the generalized
Pareto distribution (GPD) [22]:

PfT
(f )

largefT−→ P (f,τ ) = 1 −
[

1 + κf

τ

]−1/κ

,

−∞ < κ < ∞, (3)

where τ is a scale factor and the shape parameter κ can
take any real value. The limiting distribution with positive
κ corresponds to a power-law distribution and is obtained
when p̂(f ) itself decays algebraically. When κ < 0, the
fitness distribution, (3), makes sense when f < −τ/κ , and
therefore such a distribution is bounded above. This class
of distributions appears when p̂(f ) is truncated. Finally, the
limit κ → 0 gives an exponentially decaying function which is
obtained from unbounded distributions decaying more rapidly
than a power law. For example, for the fitness distribution
p̂(f ) = cf c−1e−f c

, c > 0, the conditional distribution works
out to be

PfT
(f ) = 1 − e−(f +fT )c

e−f c
T

(4)

≈ 1 − e−cf c−1
T f , fT � 1. (5)

Thus the tail of the conditional distribution is an exponential,
and the threshold fitness fT and the exponent c characterizing
the tail of the full distribution p̂(f ) appear in the scale
factor τ . In summary, the distribution p(f,τ ) = dP (f,τ )/df
of beneficial mutations for i.i.d. fitnesses is a GPD or, in
the language of the EVT, the distribution p(f,τ ) can be
of only three types: Weibull (κ < 0), Gumbel (κ → 0), and
Fréchet (κ > 0) [22]. A result from the EVT that we need for
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subsequent discussion concerns the largest value of L random
variables or, in other words, the typical fitness f̃ of a local
fitness peak. Since, in a set of L random variables, the number
of fitnesses that exceed f̃ is one, we have [22]

L

∫ u

f̃

dfp(f ) = 1, (6)

where u is the upper limit of the fitness distribution. This
immediately yields

f̃ = τ

(
Lκ − 1

κ

)
. (7)

We set τ = 1 in the rest of this article and denote the fitness
distribution by p(f ). As we are interested in adaptive changes,
an uncorrelated fitness landscape is generated by choosing
fitnesses independently from p(f ).

We introduce correlations between sequence fitnesses using
a block model [40], where a sequence of length L is assumed
to be built of B blocks, each of length LB = L/B. The
2LB fitnesses of each of the B blocks is an i.i.d. random
variable chosen from the GPD, and the fitness of the whole
sequence is given by the average of the block fitnesses. Fitness
correlations arise because of common blocks between two
sequences and can be changed by tuning the number of
blocks in the sequence. The two limits, namely, B = 1 and
B = L, produce fully uncorrelated and fully correlated fitness
landscapes, respectively. A measure of the ruggedness of a
fitness landscape is the number of local fitness peaks (defined
as sequences that are more fit than all of their one-mutant
neighbors), which decreases as the fitness correlations increase
[40]. On correlated fitness landscapes, a local fitness peak
is reached when the fitness of each block is a local fitness
maximum. As the probability of one of the 2LB sequences
being a local fitness peak is 2LB /(LB + 1), the average number
of local peaks in a correlated fitness landscape is given by
( 2LB

LB+1 )B [40]. Thus in a fully correlated fitness landscape,
there is only one local (same as global) fitness peak, whereas
in fully uncorrelated fitness landscapes, there are on average
2L/(L + 1) local fitness maxima.

B. Adaptive walk

We consider an asexual population initially localized at a
sequence with fitness f0 in the strong selection–weak mutation
regime [21], in which only the beneficial mutations spread
through the population and the mutation rates are low enough
so that only those sequences that are one mutation away from
the currently occupied sequence can be accessed. As illustrated
in Fig. 1 for a sequence space of dimension 4, starting from the
sequence {0000}, at the first step in the walk, the population
has three more fit neighbors, viz., {0010},{0100}, and {1000},
and it chooses one of them according to a stochastic rule
described below. After the first step is taken, the population
again scans its nearest neighbors and walks to a neighbor that
is more fit. This process is repeated until a local fitness peak
is reached, whereupon the adaptive walk terminates since the
next beneficial mutation is at least two mutations away, which
is not accessible in the weak mutation regime. The number of
steps taken from the initial sequence to a local fitness peak is
termed the walk length. In Fig. 1, two walks to the local fitness

peak {0100}, with lengths 1 and 3, are shown. Of course, an
adaptive walk to a different local fitness peak (say, sequence
{1001}) is also possible.

We now discuss the stochastic rules by which a nearest,
more fit sequence may be chosen [41]. Perhaps the simplest
algorithm is the greedy adaptive walk (GAW), in which the
most fit mutant is chosen at any step in the walk. The average
length J̄ of the GAW has been calculated by appealing to the
theory of records, and for infinitely long sequences, it turns
out that [41]

J̄GAW = e − 1 ≈ 1.718 (8)

for any fitness distribution. In contrast, in the random adaptive
walk (RAW), any more fit one-mutant is equally likely to be
chosen, and in this case, the average length of the walk diverges
with the sequence length. More precisely, the average walk
length for zero initial fitness is given by [42]

J̄RAW ≈ ln L + 1.099 (9)

and is independent of the choice of the fitness distribution. Here
we are interested in the biologically relevant situation where,
as one would intuitively expect, a mutant which is much more
fit than the wild type has a higher chance of sweeping through
the population than a mutant which is mildly more fit. From
the population genetics theory [33], it is known that in a large
adapting asexual population, if h is the fitness of the wild type
and f > h is the fitness of the mutant, the probability that the
mutant will take over the population is given by

π (f,h) = 1 − exp

[
−2(f − h)

h

]
. (10)

Thus, as in Fig. 1, when several of the L nearest mutants
are beneficial, the population moves to one of them with
a probability proportional to π . The normalized transition
probability is then given by [34,43,44]

T (f ← h) = 1 − e− 2(f −h)
h∑

g>h 1 − e− 2(g−h)
h

(full model). (11)

The above equation is clearly nonlinear in the fitnesses, and
we have not been able to obtain analytical results using
the above transition probability. However our previous work
[34] shows that when κ � 0, the relative fitness difference
s = (f − h)/h between the mutations encountered is small,
and we may therefore write π (f,h) ≈ 2s [20,21,43,44], which
gives us

T (f ← h) = f − h∑
g>h g − h

(linear model). (12)

In this article, we refer to the model that uses (11) as the
full model and present numerical results for it in Sec. IV. In
the next section, we study in detail the linear model, which
employs (12) for all κ . The linear model is interesting to study,
not only because it is amenable to analysis, but also because
the results obtained here appear in other systems [30], viz.,
models of deterministically evolving populations [35,36,45]
and the Jepsen gas that describes a system of particles with
random velocities undergoing elastic collisions [37,38]. Two
variants of the linear model have been studied: while [20]
and [30] considered adaptation in a single fixed neighborhood
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where the mutants are produced only at the first step and the
same are retained all through the walk, the model studied in
[23,29,31,34] and [43] assumes that a new set of L fitnesses
(corresponding to the fitness of the one-mutant neighbors) is
generated at each step of the walk. Though we use the latter
model here, it is interesting to note that most results for walk
length are robust with respect to this assumption.

III. WALK LENGTH IN THE LINEAR MODEL

A. On uncorrelated fitness landscapes

For zero initial fitness, it has been shown that if the mean
f̄ of the fitness distribution p(f ) is finite, the walk length
increases with the length of the sequence, but otherwise it
remains constant [31,43]. To understand this transition at
κ = 1 above which f̄ is infinite, we present a simple argument
here and refer the reader to [31] for details. For κ < 1, as the
transition probability, (12), is nonzero for finite fitness differ-
ences, the adaptive walk goes on indefinitely for an infinitely
long sequence or, in other words, the adaptive walk length
diverges with the sequence length L. A calculation for zero
initial fitness and large L shows that the walk length cumulants
increase logarithmically with the sequence length [31]. In
particular, the mean walk length J̄ increases as [30,31,43]

J̄ (L|f0 = 0) ≈ βκ ln L, (13)

where

βκ = 1 − κ

2 − κ
, κ < 1, (14)

which shows that the walks are shorter for slowly decaying
fitness distributions. For κ > 1, as the mean of the fitness
distribution is infinite, the normalization sum in the
denominator on the right-hand side (RHS) of (12) is
dominated by the largest value f̃ among L i.i.d. random
variables [refer (7)]. This implies that the transition occurs to
one of the highly fit sequences with fitness of order f̃ . Since
the number of such sequences is of order unity, the walk
terminates in a few steps resulting in a constant walk length.

As shown in Fig. 2, a similar transition is seen at κ = 1
when the sequence length is kept fixed and the initial fitness
is varied. We now generalize the calculation in [31] for zero
initial fitness to find how the average walk length changes with
the initial fitness when κ < 1. Since the mean of the fitness
distribution is finite when κ is below unity, for long sequences,
we can write (12) as [43]

T (f ← h) = p(f )(f − h)∫ u

h
dgp(g)(g − h)

, (15)

using which we calculate the walk length as detailed below.
An adaptive walk will stop at step J if all the L neighboring

sequences have a fitness lower than that of the currently
occupied sequence. Thus if QJ (L|f0) is the probability that
the adaptive walk of a sequence of length L lasts exactly J

steps, we can write [43]

QJ (L|f0) =
∫ u

f0

df qL(f )PJ (f |f0), (16)

where PJ (f |f0) is the probability distribution of the fitness f

at the J th step, given the initial fitness f0 which satisfies (A1),

0 2 4 6
(1/κ) ln(1+κf0)
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3
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6

J

κ=−1
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κ=2/3
κ=3/2

-4 -2 0 2 4
κ
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-ln L

FIG. 2. (Color online) Variation of average walk length with
initial fitness in the linear model on uncorrelated fitness landscapes for
various κ . Simulation points are for L = 1000 and lines are obtained
from (31) for all κ < 1, except the line for κ = 3/2, which is a guide
for the eye. Inset: Comparison of the average walk length in the full
model (∗) and the linear model (+) for (1/κ) ln(1 + κf0) = 2. The
solid line shows the walk length expressions, (8) (bottom) and (9)
(top), for the greedy adaptive walk and the random adaptive walk,
respectively.

and q(f ) is the cumulative probability of having a fitness lower
than f , which is given by

q(f ) =
∫ f

0
dg p(g) = 1 − (1 + κf )−1/κ . (17)

For the transition probability, (15), the integral equation, (A1),
for the distribution PJ (f |f0) appearing in (16) can be recast
as a second-order differential equation for the distribution
PJ (f |f0) defined through PJ (f |f0) = p(f )PJ (f |f0) and is
given by [43]

P
′′
J+1(f |f0) = p(f )(1 − qL(f ))∫ u

f
dg(g − f )p(g)

PJ (f |f0), J � 1, (18)

where the prime refers to a derivative with respect to (w.r.t.)
f . Although we are unable to analyze (18) when L is finite,
as explained below, it is possible to extract useful information
from it when the sequence is infinitely long and using the fact
that, for a finite sequence, there is a characteristic fitness scale
f̃ given by (7).

We first introduce the generating function G(x,f ) =∑∞
J=1 PJ (f )xJ , x < 1 which, due to (18), obeys the differ-

ential equation

G′′(x,f ) = x(1 − κ)(1 − qL(f ))
(1 + κf )2

G(x,f ) (19)

and is subject to the initial conditions (A5) and (A6). In
the above equation, the cumulative probability qL(f ) of the
maximum value distribution is a smoothly varying function
that increases from 0 to 1, as the fitness f increases and belongs
to one of the three EVT domains. For the cumulative fitness
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distribution, (3), we find that for large L [22]

qL(f ) ≈ e
−( 1+κf

1+κf̃
)−

1
κ

=

⎧⎪⎨
⎪⎩

e−z− 1
κ
, κ < 0 (Weibull),

e−e−z

, κ → 0 (Gumbel),

e−z− 1
κ
, κ > 0 (Fréchet),

(20a)
(20b)
(20c)

where

z(f ) =
{

f − f̃ , κ → 0,

(1 + κf )(1 + κf̃ )−1, κ 
= 0.

(21a)
(21b)

It is useful to consider (19) as a function of z defined above.
If z̃ ≡ z(f̃ ), the general solution of the differential equation,
(19), may be written as

G(x,z) =
{
a1g1(x,z) + a2g2(x,z), z < z̃,

b1h1(x,z) + b2h2(x,z), z > z̃,

(22a)
(22b)

where gi,hi satisfy (19), and the constants a1,a2 are determined
in Appendix A using the initial conditions at z0 ≡ z(f0) < z̃.
The other constants of integration, b1 and b2, can be found
by matching the solution G(x,z) and its first derivative
(w.r.t. z) at z = z̃. Noting that z̃ is constant in L and

f0 but z0 depends on them, we find that the constants b1,b2 are
of the form

bi = bi1(x)a1(z0) + bi2(x)a2(z0), i = 1,2. (23)

To find the properties of the walk length, we next define a
generating function H for the walk length distribution, (16),
as

H (x,L) =
∞∑

J=1

QJ (L|f0)xJ (24)

=
∫ z(u)

z(f0)
dz p(z)

dz

df
qL(z)G(x,z). (25)

Upon approximating qL(z) for z < z̃ by zero, we get

H (x,L) ≈
∫ z(u)

z̃

dz p(z)
dz

df
qL

>(z)G>(x,z), (26)

where the subscript > is used to denote the quantities when
z > z̃. Using (21) and (23), we can extract the z0 dependence
of the generating function and find that

H (x,L) =
{

a1(z0)R1(x) + a2(z0)R2(x), κ → 0,

κ

1+κf̃
(a1(z0)R1(x) + a2(z0)R2(x)), κ 
= 0,

(27a)
(27b)

where

Ri(x) =
∫ z(u)

z̃

dz p(z)qL
>(z)

2∑
j=1

bjihj (x,z) (28)

is independent of L and f0. Furthermore, from the explicit expressions for a1 and a2 given in Appendix A, we see that a2 decays
more rapidly with L than a1, and therefore we may neglect the second term on the RHS of (27a) and (27b) for large L. Since the
nth cumulant μn of the walk length is given by [22]

μn(L) = dn ln H

dXn

∣∣∣∣
X=0

, (29)

where X = ln x, to leading order in L, we finally obtain

μn(L) ≈
⎧⎨
⎩

(ln L − f0) dn

dXn e
X/2

∣∣
X=0, κ → 0,

1
2κ

ln
(

Lκ

1+κf0

)
dn

dXn

√
κ2 + 4eX(1 − κ)

∣∣
X=0, κ 
= 0.

(30a)

(30b)

Setting n = 1 in our final result, (30), we find the average
walk length to be

J̄ (L|f0) = βκ

(
ln L − 1

κ
ln(1 + κf0)

)
+ cκ, (31)

where βκ is given by (14), and the constant cκ in which
the subleading corrections in L are subsumed is determined
numerically. We check that the results of [43] and [31] for
f0 = 0 are reproduced from the above equation. We also note
that since the typical rank m of a fitness (with the most fit
ranked 1) is given by [22]

m = L

(1 + κf0)
1
κ

=
(

1 + κf̃

1 + κf0

) 1
κ

, (32)

our result, (31), gives J̄ = βκ ln m + cκ . Thus the effect of
nonzero initial fitness is to replace the sequence length L in
(13) for zero initial fitness (where all the mutants are more
fit) by the average number of mutants present at the beginning
of the walk. The logarithmic dependence of the walk length
on the initial rank was obtained in [20] and [30] using a
model in which both the initial rank m and the mutational
neighborhood are fixed. Here, instead, the initial fitness is
fixed, but the initial rank is a random variable and a new
suite of mutants is generated at every step in the walk. The fact
that the same basic result is obtained in the deterministic and
stochastic model shows that the stochastic effects are rather
unimportant on average as noted in previous works as well
[23,30].
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Our numerical results for the average walk length on
uncorrelated fitness landscapes are compared with (31) in
Fig. 2, where the numerical fits for constants cκ for κ = −1,
0, and 2/3 are 1.15, 1.21, and 1.55, respectively. We see a
good match between the simulation data and (31) except when
the initial fitnesses are close to the local fitness optimum,
where the simulation data lie below the theoretical results.
This discrepancy may be due to the fact that the approximation
q(f ) = 0 is good for fitnesses far below the local fitness peak,
while we have used it for all f < f̃ to arrive at (26).

B. On correlated fitness landscapes

In the above discussion, we have assumed that the sequence
fitnesses are uncorrelated. We now discuss how the walk
length changes when correlated fitnesses generated using a
block model (described in the last section) are considered. If a
sequence is divided into B blocks and the initial fitness of the
b th block is f

(b)
0 , the initial fitness of the whole sequence is

given by

f0 = 1

B

B∑
b=1

f
(b)
0 . (33)

Since the block fitnesses evolve independently, the average
walk length is the sum of the mutations accumulated by each
block [40,43]. Thus the average walk length J̄B for a sequence
composed of B blocks is given by

J̄B(L|f0) =
B∑

b=1

J̄
(
LB |f (b)

0

)
, (34)

where J̄ (LB |f (b)
0 ) is the average walk length for a sequence

of length LB with initial fitness f
(b)
0 on uncorrelated fitness

landscapes. In the simplest situation, where the initial fitness
f

(b)
0 of each block is the same, we immediately have [40,43]

J̄B(L|f0) = BJ̄ (LB |f0). (35)

However, if the block fitnesses are random variables that satisfy
(33), an average over the joint distribution PB({f (b)

0 }) of block
fitnesses is also required. We thus have

J̄B(L|f0)=
∫ u

0
df

(1)
0 . . .

∫ u

0
df

(B)
0 PB

({
f

(b)
0

}) B∑
b=1

J̄
(
LB

∣∣f (b)
0

)
.

(36)

Since the block fitnesses are i.i.d. random variables subject
to constraint (33), the distribution of block fitnesses can be
written as

PB

({
f

(b)
0

}) =
∏B

b=1 p
(
f

(b)
0

)
NB(Bf0)

δ

(
Bf0 −

B∑
i=1

f
(i)
0

)
, (37)

where the normalization constant NB(X) is the distribution of
the sum of B random variables given by

NB(X) =
∫ u

0
df

(1)
0 . . .

∫ u

0
df

(B)
0

B∏
b=1

p
(
f

(b)
0

)
δ

(
X −

B∑
i=1

f
(i)
0

)

(38)

=
∫ X

0
dfp(f )NB−1(X − f ), (39)

with N0(f ) = δ(f ). Thus we can express the average walk
length as

J̄B(L|f0) = B(βκ ln LB + cκ )

− βκB

κ

∫ l2
l1

dfp(f ) ln(1 + κf )NB−1(Bf0 − f )

NB(Bf0)
,

(40)

where the integration limits are l1 = 0,l2 = Bf0 in the Gumbel
and Fréchet domains. In the Weibull domain, three cases
arise: (i) if Bf0 < u, the limits are l1 = 0, l2 = Bf0; (ii) if
u < Bf0 < (B − 1)u, we have l1 = 0, l2 = u; and (iii) if (B −
1)u < Bf0 < Bu, the limits are l1 = Bf0 − (B − 1)u, l2 = u.

1. Exactly solvable case

For exponentially distributed fitnesses, the distribution
NB(X) in (38) is known exactly to be [46]

NB(X) = e−X XB−1

(B − 1)!
. (41)

Taking the limit κ → 0 in (40), we find the average walk length
as

J̄B(L|f0) = B(β0 ln LB + c0)

−Bβ0

∫ Bf0

0 df e−f fNB−1(Bf0 − f )

NB(Bf0)
(42)

= B(β0 ln LB + c0) − Bβ0
e−Bf0 (Bf0)B

B!NB(Bf0)
(43)

= BJ̄ (LB |f0), (44)

which is the same as that in the case where each block fitness
is f0 [refer (35)].

2. Weakly correlated fitnesses

For κ 
= 0, it appears difficult to obtain exact expressions
for the walk length for correlated fitnesses. The case of two
independent blocks (B = 2) presents the simplest model for
correlated fitnesses, and we discuss this here. The distribution
N2(X) of two random variables is given by

N2(X) =
{∫ X

0 dgp(g)p(X − g), X < u,∫ u

X−u
dgp(g)p(X − g), X > u.

(45a)

(45b)

For 2f0 < u, using (45a) in expression (40), we get

J̄2(L|f0)

B
= βκ ln LB + cκ

− βκ

κ

∫ 2f0

0 dfp(f ) ln(1 + κf )p(2f0 − f )∫ 2f0

0 dfp(f )p(2f0 − f )
(46)

= βκ ln LB + cκ − βκ

κ
ln(1 + κf0) + βκ

2κ
Iκ (w0),

(47)

where the integral

Iκ (w0) =
∫ w0

1 dz lnz z
1−κ
κ (1 − z−1)−1/2∫ w0

1 dz z
1−κ
κ (1 − z−1)−1/2

, (48)
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with w0 = (1 + κf0)2/(1 + 2κf0). Note that for large initial
fitnesses f0 ∼ u/2, the function w0 � 1.

Fréchet class. For positive κ and large f0, an approximate
expression for the integral Iκ (w0) can be obtained after an
integration by parts, and we get

J̄2(L|f0)

B
≈ J̄ (LB |f0) + βκ

2κ
(ln w0 − κ) (49)

≈ βκ ln LB + cκ − βκ

2κ
( ln(κf0) + ln 2 + κ). (50)

Weibull class. The integral Iκ (w0) can be calculated exactly
for uniformly distributed fitnesses and is given by

I−1(w0) = 2 + ln w0 − 2
√

w0

w0 − 1
sinh−1(

√
w0 − 1) (51)

≈ 2(1 − ln 2) − ln w0

2w0
, w0 � 1. (52)

For arbitrary negative κ , we note that the integral Iκ (w0)
is finite when w0 → ∞ and can be written in terms of
the harmonic number Hn = n

∑∞
i=1 (i(n + i))−1 [47]. An

integration by parts then yields

Iκ (w0) ≈ H− 1
κ
− 1

2
− H− 1

κ
−1 + κ�

(
1
2 − 1

κ

)
√

π�
(− 1

κ

) ln w0

w
1/|κ|
0

, (53)

which matches the result for κ = −1 as H1/2 = 2 − ln 4.
Ignoring the last term on the RHS of the above equation,
which decays with f0, we find that the average walk length
can be written as

J̄2(L|f0)

B
= J̄ (LB |f0) + βκ

2κ

(
H− 1

κ
− 1

2
− H− 1

κ
−1

)
, f0 � u/2.

(54)

For f0 > u/2, where N2(X) is given by (45b), the integrals
can be done exactly, and we have

J̄2(L|f0)

B
= βκ ln LB + cκ − βκ

κ

∫ 1
−1 dh(1 − h2)−

1+κ
κ ( ln(1+κf0) + ln(1 + h))∫ 1

−1 dh(1 − h2)−
1+κ
κ

(55)

= βκ ln LB − βκ

κ
ln(1 + κf0) + cκ + βκ

2κ

(
H− 1

κ
− 1

2
− H− 1

κ
−1

)
(56)

= J̄ (LB |f0) + βκ

2κ

(
H− 1

κ
− 1

2
− H− 1

κ
−1

)
, f0 > u/2. (57)

For bounded distributions, although the walk length is contin-
uous at an initial fitness equal to u/2, it is interesting to note
that it is not differentiable. For uniformly distributed fitnesses
where exact expressions for the walk length can be calculated,
the average walk length obtained from (47) and (57) is found
to be the same at f0 = 1/2. The first derivative of the walk
length (w.r.t. f0) is given by

dJ̄2

df0
=

{ 2β−1

f 2
0

[
f0 + 1

2 ln(1 − 2f0)
]
, f0 < 1/2,

− 2β−1

1−f0
, f0 > 1/2.

(58a)

(58b)

From the above equation, we see that while the derivative at
f0 = 1/2 obtained from (58a) is undefined, expression (58b)
yields a finite constant. For general κ < 0, the derivative of the
walk length calculated using (57) is seen to be finite, while it
diverges when (47) is used.

3. On strongly correlated fitness landscapes

We now turn to the situation when the block number B �
1. To calculate the integral in (40), let us first consider the
integrand

F(f ) = p(f ) ln(1 + κf )1/κNB−1(Bf0 − f ). (59)

The first two factors on the RHS are obviously independent of
B and f0. However, for all κ < 1 where the fitness distribution
has a finite mean f̄ , the last factor peaks about the mean
B(f0 − f̄ ) of the sum distribution, which increases with both

B and f0. Then for large enough B and f0, the integrand F(f )
gets a contribution from the lower tail of the sum distribution
instead of the region around its mean. The behavior of the
tail of the sum distribution can be obtained by applying a large
deviation principle if the fitness distribution possesses all finite
moments as is the case for κ � 0. However, for power-law
distributions with κ > 0, the (1/κ)th and higher moments
diverge and the large deviation principle is not applicable,
and in this case, we use the result that the sum distribution
decays as the fitness distribution itself [22,39]. The fact that
the central limit theorem for the sum distribution does not
capture the correct behavior of the integral under question
is illustrated in Appendix B for exponentially distributed
fitnesses.

To calculate the walk length using the large deviation theory,
we first consider a normalized distribution with support in the
interval [0,u] defined as

g(t) = κ(α − 1)(1 + κt)−α, (60)

where α < 1, u = −1/κ for κ < 0 and α > 1, u = ∞ when
κ � 0. Then the distribution of the sum of B i.i.d. random
variables chosen from g(t) is given by

IB(X; α)=
∫ u

0
dt (1) . . .

∫ u

0
dt (B)

B∏
j=1

g(t (j ))δ

(
X −

B∑
i=1

t (i)

)
.

(61)
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Differentiating on both sides w.r.t. α, we get

∂IB(X; α)

∂α
= BIB(X; α)

α − 1
− B

∫ min(X,u)

0
dtg(t)

× ln(1 + κt)IB−1(X − t ; α). (62)

The upper limit in the above integral is X for unbounded
distributions. But for bounded distributions, when correlations
are strong (large B), the limits in case (ii) described after (40)
apply. Upon dividing the above equation by IB (X; α), it follows
that the average walk length, (40), can be written as

J̄B(L|f0) = B(βκ ln LB + cκ )

− βκB

κ

(
1

α − 1
− ∂

∂α

ln IB(Bf0; α)

B

)∣∣∣∣
α=1+ 1

κ

.

(63)

Our task is now reduced to finding the sum distribution IB(X)
for the various EVT domains which we describe below.

Weibull class. According to the large deviation principle,
for large B, the distribution IB(X) is of the form [39]

IB(X 
 Bx) ∼ eBr(x), (64)

where the rate function r(x) can be determined as described
below. Upon using the integral representation of the Dirac delta

function in (61), we get

IB(X) = 1

2π

∫ ∞

−∞
dkeikX

(∫ ∞

−∞
dye−ikyg(y)

)B

(65)

= 1

2πi

∫ i∞

−i∞
dωeB(ωx+ln g̃(ω)), (66)

where g̃(ω) = ∫ ∞
0 dtg(t)e−ωt is the Laplace transform of the

distribution function g(t). Evaluating the RHS of (66) using
the saddle-point method for large B [48], we get

ln IB(X)

B
= r(x) = ω∗x + ln g̃(ω∗), (67)

where the saddle point ω∗ is real and given by

d ln g̃

dω

∣∣∣∣
ω=ω∗

= −x. (68)

The Laplace transform of the distribution g(t) in (60) is
given by

g̃(ω) = eη[(α − 1)Eα(η) + ηα−1�(2 − α)] (69)

and the function ω∗(f0) is a solution of the equation

T (ω∗) = (α − 1)ω2(Eα−1(η) − Eα(η)) − ηακ2(η + α − 1)�(2 − α)

ωκ((α − 1)ωEα(η) + ηακ�(2 − α))

∣∣∣∣
ω=ω∗

= f0, (70)

where η = ω/κ , Eα(η) = ∫ ∞
1 dxe−ηxx−α is the exponential integral and �(n + 1) = n! is the gamma function. The function

T (ω∗) in the above equation decreases from its maximum value −1/κ to 0 as ω∗ is increased from −∞ to ∞. Using the
asymptotic expansion of the exponential integral [49], we find that

T (ω∗) =
{−κ−1 + (1 − α)ω−1

∗ , ω∗ → −∞,

ω−1
∗ , ω∗ → ∞.

(71a)

(71b)

When the initial fitness is large (small), f0 equals the left-hand side of (70) when ω∗ is negative (positive). Then using (71a) and
(71b) in (67), we find the rate function to be

r(f0) ≈
{

1 + ln ((α − 1)κf0) + ln(1 − ακf0), f0 � T (0),

1 − α − (1 − α) ln
(

1−α
1+κf0

) + ln (�(2 − α)), f0 � T (0),

(72)

(73)

where T (0) = (1 − κ)−1. The above expression for the rate
function is compared to the results from numerical simulations
for uniformly distributed fitnesses in the inset in Fig. 3, and
we see a good agreement for f0 < 0.3 and f0 > 0.7. For small
f0, using (63), we obtain

J̄B(L|f0)

B
= βκ ln LB + cκ − βκf0

1 − (1 + κ)f0
(74)

≈ J̄ (LB |f0), (75)

while for large f0, we get

J̄B(L|f0)

B
= βκ ln LB + cκ − βκ

κ

(
κ + ln(−κ)

+ ln(1 + κf0) + H− 1
κ

− γ
)

(76)

= J̄ (LB |f0) − βκ

κ

(
κ+ ln(−κ) + H− 1

κ
−γ

)
, (77)

where the Euler-Mascheroni constant γ ≈ 0.577. The walk
length expressions above can be succinctly written as

J̄B(L|f0) = J̄B(L|0) − Bβκ

κ
ln(1 + κf0) (78)

and show that the walk for nonzero fitness is shorter, as one
would intuitively expect. For κ = −1, Eqs. (74) and (76) are
compared to the numerical results in Fig. 3, and we see that
the theoretical prediction for the walk length matches the
simulation results quite well in the range of initial fitness values
where the rate function agrees.

Fréchet class. In this case, the sum distribution, (61), for
large Bf0 is given by [22]

IB(Bf0; α) ∼ Bg(Bf0), (79)
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FIG. 3. (Color online) Plot showing the variation of average walk
length with initial fitness for the linear model on correlated fitness
landscapes for various B when κ = −1. Theoretical predictions, (75)
and (77) (lines), are compared to simulation data (symbols). Inset:
Plot showing the rate function for κ = −1 obtained using (67) and
(70) (symbols) and the analytical formulas, (72) and (73).

whose tail behavior is the same as that of the fitness distribution
g(f ). Using this in (63), we immediately find

J̄B(L|f0) = B(βκ ln LB +cκ ) − βκ

κ
(ln(1+Bκf0) + κ(B−1))

(80)

≈ B(βκ ln LB + cκ ) − βκ

κ
(ln(κf0)

+ ln B + κ(B − 1)). (81)

We note that the above answer matches with (50) for the two-
block model discussed in Sec. III B 2. The above equation
states that the average walk length decreases logarithmically
with the initial fitness, but unlike in the Weibull and Gumbel
domain, the coefficient of ln f0 does not scale with the number
of blocks. Thus in this case

J̄B(L|f0) = J̄B(L|0) − βκ

κ
ln(1 + Bκf0). (82)

In Fig. 4, the above expression is compared with the simulation
data for κ = 2/3, and we see a good quantitative agreement
between the theory and the simulations.

IV. WALK LENGTH IN THE FULL MODEL

As mentioned in Sec. II B, the transition probability, (12),
used to calculate the walk length is valid only when the relative
fitness difference is small. However, large fitness differences
during successive steps in the walk can occur when the initial
fitness is small or if the fitness distribution has a fat tail [34].
In such cases, approximation (12) breaks down, and we should
consider the full transition probability, (11). We have not been
able to obtain analytical results for this model, and present our
simulation results below.

0 2 4 6
(1/κ) ln(1+Bκf0)

4

6

8

10

J B
(L

|f 0)

B=2
B=3

FIG. 4. (Color online) Plot showing the variation of average
walk length with initial fitness for the linear model on correlated
fitness landscapes for various B when κ = 2/3 and LB = 1000. The
theoretical prediction, (80) (lines), is compared to the simulation data
(symbols).

As in the linear model, the walks are long for the full
model when the initial fitness is low or when the fitnesses are
correlated [34]. However, the qualitative difference between
the linear and the full model is seen with regard to the
walk length dependence on the extreme value domain. As
explained in Sec. III A, the divergence of the denominator on
the RHS of (12) is responsible for the independence of the
walk length from the initial fitness when κ > 1 in the linear
model. However, the normalization constant in (11) remains
finite for all κ and therefore the walk length always decreases
with increasing f0 here. The inset in Fig. 2 shows that the
full model is approximated very well by the linear model in
the Weibull domain and is a reasonable approximation in the
Gumbel domain. This agreement is explained by the fact that
the fitness difference between successive steps is indeed small
in these two domains as discussed in [34]. However, in the
Fréchet domain, the relative fitness differences between the
successive steps in the adaptive walk can be as large as a
hundred [34], thus rendering the linear model invalid. For
a fixed initial fitness rank, the inset in Fig. 2 shows that in
the full model, the walk length increases with increasing κ

in the Fréchet domain. Thus the behavior of the walk length
is nonmonotonic in κ , with the minimum occurring in the
Gumbel domain.

Figure 5 shows the distribution of the walk length for
various κ and uncorrelated fitnesses, and we observe that as
|κ| increases, this distribution approaches the corresponding
result for the RAW, where the walk distribution is known to be
a Poisson distribution with mean ln L [42]. A related quantity is
the index of dispersion of the walk length, which is the ratio of
the variance to the mean, which is shown in the inset in Fig. 5
and displays a nonmonotonic behavior, with the minimum
occurring at κ = 0 and approaching unity for κ → ±∞. A
similar nonmonotonic behavior is seen in the linear model,
but in that case the index of dispersion approaches unity when
κ → −∞ and 1 [30].
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FIG. 5. (Color online) Plot showing the simulation data for the
walk length distribution and the index of dispersion (inset) of the
walk length for various κ when L = 1000 using the full model on
uncorrelated fitness landscapes. Inset: (1/κ) ln(1 + κf0) = 2.

V. CONCLUSION

In this article, we have studied a model of adaptation in
which beneficial mutations sweep the population sequentially
as it adapts by climbing up a rugged fitness landscape.
The broad question addressed here is regarding the average
number of adaptive mutations that occur until the population
reaches a local fitness peak. This quantity has been measured
in recent experiments on various systems like bacterio-
phage φX174 [19], fungus A. nidulans [18], and bacterium
E. coli [32]. Theoretically, the number of adaptive changes
have been calculated on uncorrelated fitness landscapes for
zero initial fitness [31,43] and high initial rank [20,30,44].
Some studies for correlated fitnesses have also been carried
out [43,50–52]. Here we have extended the previous works
and studied how the length of the adaptive walk depends
on the initial fitness, extreme value domains, and fitness
correlations.

For the linear model, which assumes small relative fitness
differences in all the extreme value domains, we find that
the walk length decreases with increasing initial fitness
logarithmically provided the mean of the fitness distribution
is finite; otherwise, it remains a constant. The walks are
found to be shorter for fitness distributions that decay more
slowly: in the limit κ → ∞, the walk length approaches the
GAW limit, (8), while in the other extreme of κ → −∞, it
tends to the RAW, (9) [29]. The logarithmic variation with
the same dependence on the fitness distribution as here has
also been seen in other systems [30]. On correlated fitness
landscapes, the previous studies have been largely numerical
[50–52], while here we have presented analytical results.
Interestingly, the large deviation theory finds an application in
the calculation of the walk length for correlated fitnesses. We
find that, as on uncorrelated fitness landscapes, the walk length
decreases with increasing initial fitness and GPD exponent κ .
But increasing fitness correlations also lengthen the adaptive
walk since the population encounters a lesser number of
local fitness peaks. Our detailed analysis shows that the walk

TABLE I. Summary of the dependence of the walk length on the
extreme value domains, initial fitness, and fitness correlations in the
linear model.

Dependence on

EVT domain Initial rank Number of blocks

Weibull: κ < 0 Logarithmic Linear
Gumbel: κ → 0 Logarithmic Linear
Fréchet

0 < κ < 1 Logarithmic Logarithmic
κ > 1 Independent Linear

length difference J̄B(L|f0) − J̄B(L|0) scales linearly with the
number of blocks (that are a measure of correlations) in the
Weibull and Gumbel domains and shows a weaker logarithmic
dependence on the number of blocks in the Fréchet domain.
For the sake of completeness, we also performed simulations
for κ > 1 and found that the average walk length in this case
shows a linear dependence on the block number (data not
shown). These results for the linear model are summarized in
Table I.

For the full model, which is not restricted to small relative
fitness differences, we find that the walk length decreases with
the initial fitness for all κ , unlike in the linear model. The walk
length is, however, seen to match quantitatively well in the
Weibull domain, where small fitness differences arise [34]. In
contrast, in the Fréchet domain, even the qualitative trends in
the two models are opposite: while the walk length decreases
with increasing κ(<1) in the linear model, it increases in the
full model. Thus in the full model, the walk is shortest in the
Gumbel domain. An analytical understanding of these results
is, however, not available.

Experiments show that a moderately sized population
reaches a fitness plateau in two to four substitutions [18,19,32]
(although one population has been seen to gain nine beneficial
mutations as well [19]), thus indicating that the adaptive
walks are generally short. An inverse relationship between
the initial fitness and the walk length has been observed
in some experiments [19,32], in agreement with the full
model. However, a constant walk length independent of the
initial fitness has been seen in a recent experiment [18]. As
described above, the full model predicts the walk length to be a
nonmonotonic function of the parameter κ . The adaptive walk
is expected to last longer in the experimental setups in which
the Weibull [19,27] or Fréchet [28] domain is observed than in
the setups in which the distribution of beneficial mutations has
an exponential tail [23–26]. However, the walk length has not
been measured in these experiments, while in the walk length
experiments [18,19,32], the extreme value domain of the bene-
ficial mutation has not been studied and therefore presently the
theoretical predictions regarding the connection between the
EVT and the length of the adaptive walk remain experimentally
untested. Although some of the available experimental results
are in qualitative agreement with the theoretical predictions
described above, a quantitative comparison between the
experiments and the theory seems difficult. This is because in
experiments measuring the walk length, the walk is assumed
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to terminate if the fitness remains constant over some time
period, but that need not imply that the adaptation is over [19].
Besides, most experiments [18] cannot measure mutations
whose fitness difference is below a threshold value and miss out
on mutations conferring slight benefit, thus underestimating
the walk length. A better understanding of the theoretical
results vis-à-vis the experimental ones remains a goal for the
future.

APPENDIX A: SOLUTION OF THE GENERATING
FUNCTION EQUATION (19)

The probability distribution PJ (f |f0) obeys the recursion
equation [43]

PJ+1(f |f0) =
∫ f

f0

dhT (f ← h)(1 − qL(h))PJ (h|f0),

J � 0, (A1)

where T (f ← h) is given by (15). The above equation
simply means that the population moves from fitness h to
a higher fitness f at the next step with probability T (f ← h)
provided that at least one more fit mutant is available, the
probability of which is given by 1 − qL(h). For a monomorphic
initial condition with fixed fitness f0, we have the boundary
conditions

PJ (f |f0) = δ(f − f0)δJ,0, (A2)

P ′
J (f0|f0) = T ′(f ← f0)p(f0)(1 − qL(f0))δJ,1. (A3)

Equation (A2) is self-explanatory and (A3) is obtained by
applying (A2) to the first derivative of (A1) w.r.t. f [43]. For
the linear model with transition probability (15), the integral
equation (A1) can be recast as a second-order differential
equation, (18).

For infinitely long sequences, the cumulative probability
distribution qL(h) → 0 and the differential equation, (19), for
the generating function G(x,f ) reduces to

G′′(x,f ) = x(1 − κ)

(1 + κf )2
G(x,f ). (A4)

From (A2) and (A3), we have

G(x,f0) = 0, (A5)

G′(x,f0) = x∫ u

f0
dg(g − f0)p(g)

. (A6)

The solution of (A4) subject to the above initial conditions is
given by [48]

G(x,f ) = x(1 − κ)(1 + κf0)1/κ√
κ2 + 4x(1 − κ)

[(
1 + κf

1 + κf0

)α+

−
(

1 + κf

1 + κf0

)α−]
, (A7)

where

α± = 1

2

(
1 ±

√
1 + 4x(1 − κ)

κ2

)
(A8)

The functions a1 and a2 appearing in (27a) and (27b) can
be calculated explicitly using the above result. In terms
of z defined in (21), the solution, (A7), for κ 
= 0 can be
written as

G(x,z) = x(1 − κ)(1 + κf0)1/κ√
κ2 + 4x(1 − κ)

[(
z

1 + κf̃

1 + κf0

)α+

−
(

z
1 + κf̃

1 + κf0

)α−]
. (A9)

Comparing the above equation with (22a), we get

a1 = x(1 − κ)(1 + κf0)1/κ√
κ2 + 4x(1 − κ)

(
1 + κf̃

1 + κf0

)α+
, (A10a)

a2 = −x(1 − κ)(1 + κf0)1/κ√
κ2 + 4x(1 − κ)

(
1 + κf̃

1 + κf0

)α−
. (A10b)

For exponentially distributed fitnesses, taking the limit
κ → 0 in (A7) and using (21), we find that

G(x,z) =
√

xef0

2
(ez

√
xe(f̃ −f0)

√
x − e−z

√
xe−(f̃ −f0)

√
x), (A11)

from which we obtain

a1 =
√

xef0

2
e(f̃ −f0)

√
x, (A12a)

a2 = −
√

xef0

2
e−(f̃ −f0)

√
x. (A12b)

APPENDIX B: WALK LENGTH USING A GAUSSIAN
APPROXIMATION FOR EXPONENTIALLY

DISTRIBUTED FITNESSES

By virtue of the central limit theorem [22], the distribution
NB(X) of the sum of B i.i.d. random variables is given by

NB(X) = 1√
2πBσ 2

exp

[
− (X − Bf̄ )2

2Bσ 2

]
(B1)

provided the mean f̄ and the variance σ 2 of the parent
distribution p(f ) exist. Since the Gaussian distribution is a
good approximation to the exact distribution of the sum when
X ∼ Bf̄ ±

√
2Bσ 2, we expect that it will provide a good

estimate of the walk length when f ∼ B(f0 − f̄ ) ±
√

2Bσ 2

in the integrand in (42). With increasing B, as the core of the
distribution NB(X) moves rightwards while the factor f e−f in
the integrand peaks around 1, the overlap is significant when
f0 ∼ 1 ∓

√
2σ 2/B. Thus the Gaussian approximation for the

sum distribution is likely to work well in the neighborhood of
initial fitness 1. This can be seen more explicitly as follows:
using (B1) in the integral appearing in (42), we get

Iclt =
∫ Bf0

0
dff e−fNB−1(Bf0 − f ) (B2)

= aea2
e−2ab

√
π

[
e−(a−b)2 − e−4a2

+√
π (a − b)(erf(a − b) − erf(2a))

]
, (B3)
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where a = √
(B − 1)/2 and b = (Bf0 − B + 1)/(2a). For

large B, using the asymptotic expansion of error function,
we get

Iclt ≈ aea2
e−2abe−(a−b)2

2
√

π (a − b)2
. (B4)

Expression (42) for the average walk length then gives

J̄B(L|f0) = B(β0 ln LB + c0) − β0B
e−f0(f0−1)

(2 − f0)2
(B5)

≈ B(β0 ln LB + c0) − Bβ0f0, f0 → 1. (B6)

Thus only when the initial fitness is close to unity does
the Gaussian approximation capture the linear relationship
between J̄ and f0 correctly.
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