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Modeling smectic layers in confined geometries: Order parameter and defects
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We identify problems with the standard complex order parameter formalism for smectic-A (SmA) liquid crystals
and discuss possible alternative descriptions of smectic order. In particular, we suggest an approach based on the
real smectic density variation rather than a complex order parameter. This approach gives reasonable numerical
results for the smectic layer configuration and director field in sample geometries and can be used to model
smectic liquid crystals under nanoscale confinement for technological applications.
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I. INTRODUCTION

For over 40 years, theoretical understanding of smectic
liquid crystals has been based on the complex order parameter
ψ(r) introduced by de Gennes [1,2], which represents the
magnitude and phase of layer ordering. During this time,
the order parameter has been useful in many ways. It
demonstrated an analogy between smectic liquid crystals and
superconductors, allowing methods of solid-state physics to
be applied to liquid-crystal science [1,3]. It led to theories for
the nematic–smectic-A (SmA) and isotropic-SmA transitions,
which are strongly affected by nematic order fluctuations
[4–8]. It further led to prediction of twist-grain-boundary
phases, liquid-crystal analogs of the Abrikosov flux lattice in
type-II superconductors [9]. Most recently, it has led to calcu-
lations for smectic layer configurations in confined geometries
[10–16], which may be useful for design of smectic de-
vices [17].

The purpose of this paper is to point out two problems
with the complex order parameter description, which affect
some but certainly not all of the work that has been done
with it. The first problem is related to the topology of the
order parameter itself. If the order parameter is treated as
a single-valued complex-number field, then it is unable to
describe certain types of defects that can realistically occur. As
a result, calculations based on this order parameter can predict
unphysical configurations of smectic layers. One possible
solution to this problem is to regard the order parameter
as a double-valued complex-number field, as has recently
been proposed [18–20]. That solution is mathematically
and physically valid, but it is not well suited to numerical
calculations of smectic layer configurations. It would be useful
to find an alternative approach that could be more suitable for
computation.

The second problem is related to the free energy. The
functional constructed by de Gennes represents the free energy
on a coarse-grained basis, on length scales much greater
than the smectic layer spacing. It does not represent the
local free energy density on the length scale of the smectic
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layers themselves. As a result, it is suitable for macroscopic
calculations but not for nanoscale calculations of the positions
of defects with respect to smectic layers, or the positions of
smectic layers with respect to boundaries.

As a solution to these problems, we propose to use
the physical density variation δρ(r) instead of the complex
order parameter ψ(r). We develop a theory for smectic
layering in terms of δρ(r), which is less mathematically
elegant than the theory in terms of ψ(r) but is suitable for
numerical computation. Through symmetry arguments and
explicit calculations, we show that this theory avoids both
of the problems outlined above. As examples, we present
calculations of disclination structures, including defect charges
of +1/2, +1, and ±2 (which have recently been studied using
topological methods [18]). We also present calculations of
dislocation structures, showing the Peierls-Nabarro barrier for
dislocation glide [21]. The results are physically reasonable
and show that the theory in terms of δρ(r) is appropriate for
modeling smectic layer configurations.

II. PROBLEMS

A. Order parameter

To see the first problem with the order parameter, consider a
disclination of charge +1/2, as shown in Fig. 1. In this figure,
every point on the plane has a local density ρ(r) = ρ0 + δρ(r),
with bright and dark regions corresponding to higher and lower
density, respectively. To use the complex order parameter ψ(r),
we must write the local density variation, compared with the
average ρ0, as δρ(r) = Re[ψ(r)]. However, it is impossible
to associate a unique complex number ψ with each point
around the defect. If we try to make this association, then
we must say that the phase of ψ increases downward in the
lower-left quadrant, outward in the right half, upward in the
upper-left quadrant, and eventually we reach an inconsistency.
There must be a branch cut where ψ changes to the complex
conjugate ψ∗, as illustrated by the dotted line. This situation is
similar to the well-known problem of describing nematic order
with a unit vector n̂(r): going around a half-charge disclination,
there must be a branch cut where n̂ changes to −n̂.

The branch cuts in ψ and n̂ occur for the same physical
reason: neither of these quantities gives an exactly correct
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FIG. 1. (Color online) Disclination in a two-dimensional smectic
phase. Bright and dark regions correspond to higher and lower density,
respectively, and the red dotted line is the branch cut in ψ and n̂.

description of the symmetry of the phase. The nematic phase
has orientational order along the axis represented by ±n̂, which
can be described correctly by a tensor. The vector n̂ is often
adequate as an approximate description, but the sign of n̂ does
not correspond to anything physical. Hence, a branch cut in
the sign of n̂ is not a physical defect and it cannot cost any free
energy. Likewise, the smectic phase has higher density at some
positions and lower density at other positions, and this density
variation can be described correctly by the real number δρ or
Re(ψ). The full complex number ψ may be mathematically
convenient as an approximate description, but Im(ψ) does not
correspond to anything physical. Hence, a branch cut in Im(ψ)
is not a physical defect, and it cannot cost any free energy.

Does this issue with ψ affect any calculations? To see some
specific examples, we implement the smectic formalism in a
simulation. The original free energy density proposed by de
Gennes [1] is

f = 1
2 r|ψ |2 + 1

4u|ψ |4 + 1
2C|(∇ − iqn̂)ψ |2 + fN, (1)

where q is the favored wave vector of smectic order and fN

the nematic free energy density. A generalized version of this
free energy from Ref. [6], similar to Ref. [11], is

f = 1

2
α|ψ |2 + 1

4
β|ψ |4 + 2b1 − e1

4
|∇iψ |2 + 1

2
b2|�ψ |2

+ 3

4
e1ninj∇iψ∇jψ

∗ + 1

2
K(∂inj )(∂inj ). (2)

For sample calculations, we numerically minimize the free
energy of Eq. (2) using Monte Carlo simulated annealing.
We perform the calculation on a square lattice, where each
lattice site has a director n̂ and a complex order parameter ψ .
The required derivatives are approximated by standard finite
differences.

For an initial simulation, we consider a geometry with two
disclinations of charge +1/2 each. In this initial simulation,
we assume the director field is held fixed and calculate the
resulting smectic layer configuration. The results are shown in
Fig. 2(a). Here, the color indicates the magnitude of smectic
order |ψ | (with purple and blue representing higher and lower
order, respectively), while the brightness indicates the local

FIG. 2. (Color online) Simulation of smectic layers using a fixed
director field (shown by short lines) with two half-charged discli-
nations. (a) Results using the complex order parameter approach
of Eq. (2), with parameters α = −1, β = 100, b1 = −3, b2 = 5,
e1 = −b1 − 8b2(π/10)2. Note that the line defect between the defect
cores is unphysical. (b) Results using the real order parameter
approach of Eq. (9), with parameters a = −0.1, b = 0, c = 10,
q = 2π/10, and B = 0.1/q4.

density given by Re(ψ). Note that this simulation shows a line
defect connecting the two disclinations. This line defect is a
sharp boundary where ψ → ψ∗. As an artifact of the model,
this boundary has a free energy penalty, which is linearly
proportional to the distance between disclinations and hence
binds the disclinations together.

For a second example, we perform simulations where the
director field and layer configuration can both relax. We
consider a circular geometry with boundary conditions on
the director requiring a single disclination of charge +1/2.
Subject to that constraint, the director and layers relax together
inside the domain. Numerical minimization of the free energy
gives the structure shown in Fig. 3(a). Once again, we see
a line defect in the layers coming out of the disclination.
Because there is no other disclination where the line defect
can terminate, it runs all the way to the boundary. This line
defect is not required by the symmetry of the smectic phase; it
is just an artifact of the complex order parameter formalism.

FIG. 3. (Color online) Simulations of a circular domain with
boundary conditions requiring a single half-charged disclination. (a)
Results using the complex order parameter approach of Eq. (2),
with parameters α = −1, β = 100, b1 = −3, b2 = 5, e1 = −b1 −
8b2(π/10)2, K = 0.002 5. The line defect from the defect core to the
boundary is unphysical. (b) Results using the real order parameter
approach of Eq. (9), with parameters a = −0.1, b = 0, c = 10,
q = 2π/10, B = 0.1/q4, and K = 0.008.
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One possible response to this problem is to say that the
complex order parameter ψ(r) is not really a single-valued
function of position. This point may have been understood
implicitly for many years. To our knowledge, it was first
stated explicitly in a recent series of papers by Kamien and
collaborators [18–20]. These papers point out that the phase of
ψ(r) is not actually an element of the unit circle S1; rather, it
is an element of the orbifold S1/Z2. In other words, ψ(r)
is not a single-valued function but rather a double-valued
function of position. At every position, it takes both of the
values Re(ψ) ± iIm(ψ), because these two values correspond
to the same physical density.

We do not disagree with the approach of Refs. [18–20].
Their argument is correct both mathematically and physically,
and it is well suited for some analytic calculations of smectic
layer configurations. However, that approach is not simple
to implement in a numerical simulation. For anyone who is
developing software, there is a natural tendency to assume
that ψ(r) is a single complex number at each position,
which is incorrect. As a result, there is a risk that calculated
structures will have unphysical line defects like the structures
in Figs. 2(a) and 3(a), and indeed such structures can be found
in the literature. To follow the approach of Refs. [18–20],
it would be necessary for software developers to construct a
data structure that represents the appropriate orbifold. As an
alternative to that challenging task, it might be preferable to
develop a different formalism that is not only correct but also
straightforward to implement numerically. We will propose
such a formalism in Sec. III below.

B. Free energy

The second issue with the complex order parameter for-
malism is that it describes the free energy on coarse-grained
length scales, which are much greater than the smectic layer
spacing. For many purposes this coarse-grained description is
desirable, because it allows the theory to calculate macroscopic
distortions of smectic layers. However, the coarse-grained
description is not able to describe the free energy on a length
scale comparable to the smectic layer spacing, and hence it
cannot calculate nanoscale features of the layer configuration.

The simplest way to see the coarse-grained nature of the
theory is to consider a simple periodic density wave, which is
described by the complex order parameter ψ(x,y) = eiqy+�
.
By putting this order parameter into the free energy density
of Eq. (1) or (2), it is easy to see that the free energy density
is constant. All positions are equivalent, with the same free
energy density, regardless of whether they are density maxima,
minima, or anywhere in between. Of coarse, the microscopic
free energy density cannot really be constant; it must depend
on the position with respect to the smectic layers. The free
energy density of Eq. (1) or (2) is just an average over the
smectic density wave.

A problem occurs if one tries to use the coarse-grained free
energy to calculate nanoscale properties of the smectic layers.
As a specific example, suppose we want to calculate the energy
of a dislocation as a function of the position with respect to the
layer structure. This calculation would be useful to determine
the most favorable position of the dislocation with respect to
the layers, and to predict the Peierls-Nabarro energy barrier for

FIG. 4. (Color online) Visualization of the phase variation

(x,y) around a single edge dislocation.

dislocation glide from layer to layer (the process illustrated in
Fig. 9.17 of Ref. [21]).

To describe a single edge dislocation in the 2D (x,y)
plane, we use the complex order parameter ψ(x,y) =
ei[qy+
(x,y)+�
], where 
(x,y) = arg(x + iy) is the phase
variation and �
 is a constant phase offset. The director
n̂(x,y) is chosen as a unit vector along the gradient of ψ(x,y).
Figure 4 shows a visualization of 
(x,y); the branch cut starts
at (x = 0, y = 0) and goes in the positive x direction.

The first column of pictures in Fig. 5 shows visualizations
of the density variation around the dislocation. Note that
the constant phase offset �
 defines the position of the
dislocation with respect to the layer structure. When �
 = 0,
the dislocation occurs at a density minimum (shown in blue);
when �
 = π it occurs at a density maximum (shown in
red). For intermediate �
 it occurs at a lower-symmetry point
between those extremes.

The second column of pictures in Fig. 5 shows the free
energy density of Eq. (1), calculated with the parameters
r = −5, u = 5, q = 1, and C = 1/q2. From these pictures,
we can see that the free energy density is sharply peaked at
the dislocation and decays rapidly away from the dislocation.
This free energy density is clearly independent of the constant
phase offset �
, and indeed all the pictures in this column
are identical. As a result, the integrated free energy is also
independent of �
, and hence the dislocation is equally
likely to occur anywhere within the layer structure. This result
implies that the dislocation can move with respect to the layer
structure, from row to row in the table, with no energy cost. In
the terminology of dislocation theory, we would say that the
Peierls-Nabarro energy barrier for dislocation glide is zero,
which is physically unrealistic.

The same type of problem could occur in any calculations
where the phase of the smectic layer structure is important,
such as a calculation of the positions of smectic layers
with respect to boundaries. It shows that the model has
more symmetry than the actual SmA phase: in the real
system, the density maxima and minima are special positions,
and there must be some free energy difference between
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FIG. 5. (Color online) Behavior as the dislocation is displaced with respect to the layer structure. Plots show the smectic density variation,
the free energy density for the complex order parameter formalism, and the free energy density for the real density formalism (calculated for
the cubic parameter b = 0 and b �= 0). Red represents highest values of density or free energy; blue represents lowest values.

defects/boundaries at those positions and at other positions.
Hence, in order to calculate nanoscale features of the layer
configuration, it is necessary to develop a different theoretical
formalism.

III. PROPOSED SOLUTION

In the previous section, we pointed out problems in using the
complex order parameter approach for nanoscale calculations
of smectic layer configurations. In this section, we consider
possible solutions.

For a first possible solution, we might want to make a min-
imal modification of the complex order parameter approach
to avoid the problem of a double-valued order parameter. For
this modification, we can replace the double-valued complex
order parameter,

ψ(r) = |ψ |e±iφ(r) = |ψ |[cos φ(r) ± i sin φ(r)], (3)

by the single-valued complex order parameter,

ψ̃(r) = |ψ |ei|φ(r)| = |ψ |[cos φ(r) + i| sin φ(r)|]
= |ψ |[cos φ(r) + i

√
1 − cos2 φ(r)]. (4)

The local density is related to the order parameter by

δρ(r) = ρ(r) − ρ0 = Re[ψ(r)] = Re[ψ̃(r)]

= |ψ | cos φ(r), (5)

and the amplitude of the density modulation is

δρmax = |ψ |. (6)

The single-valued complex order parameter can then be written
as

ψ̃(r) = δρ(r) + i

√
δρ2

max − δρ(r)2. (7)

In that case, the free energy density of Eq. (1) can be
transformed into

f = r

2
|ψ̃ |2 + u

4
|ψ̃ |4 + C

2
|(∇ − iqn̂)ψ̃ |2 + fN

= r

2
δρ2 + u

4
δρ4

+ Cδρ2
∣∣∇(δρ) + qn̂

√
δρ2

max − δρ2
∣∣2

2
(
δρ2

max − δρ2
) + fN . (8)

In principle, it should be possible to use the free energy
density of Eq. (8) to calculate smectic layer configurations,
without any problem with a double-valued order parameter.
However, we find this solution to be unsatisfactory for three
reasons. First, this free energy density requires knowledge
of the modulation amplitude δρmax as well as the local
density δρ(r); that information is not always available. Second,
the denominator of Eq. (8) will certainly cause numerical
singularities wherever it is near zero. Third, this equation does
not give a free energy density that varies periodically with the
smectic density wave, and hence it does not solve the problem
described in Sec. II B. All three of these issues arise for the
same reason: The single-valued complex order parameter ψ̃(r)
has an imaginary part that is only present for consistency with
the original de Gennes formalism; it is not physically necessary
or meaningful.
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Because of these issues, we suggest an alternative formal-
ism based only on the real density variation δρ(r), with no
imaginary part. In that case, the theory becomes a form of
density functional theory, analogous to early work on smectic
phases [22,23]. For this theory, we propose a free energy
density for the SmA phase of the form

f = a

2
δρ2 + b

3
δρ3 + c

4
δρ4 + B[(∂i∂j + q2ninj )δρ]2

+ 1

2
K(∂inj )2, (9)

where δρ(r) is the local deviation from the average density
ρ0. This model has a transition from the nematic phase when
a is above a threshold to the SmA phase when a is below
the threshold. In the SmA phase, the free energy minimum
is approximately a sinusoidal density wave with wavelength
2π/q. This result is consistent with the de Gennes theory.

We should make four remarks about this free energy. First,
n̂ only enters through the second-rank tensor ninj , which
corresponds to Qij in Refs. [6–8]. Hence, the free energy
depends only on ninj and δρ, which are both physical, single-
valued functions, with no need for branch cuts. Second, the free
energy includes a third-order term of δρ3. This term is allowed
because there is no symmetry between high density (δρ > 0)
and low density (δρ < 0). Third, it could include other terms
permitted by symmetry, such as |∇δρ|2 and (n̂ · ∇δρ)2. These
terms shift the nematic-SmA transition and the wavelength of
the smectic density modulation but do not change the general
physics discussed here, so we will not consider them further.
Fourth, it includes the nematic free energy density fN . We
use the simplest approximation fN = 1

2K(∂inj )2 with a single
Frank elastic constant, although it could be generalized to
different Frank constants.

To illustrate the physical significance of this formalism,
we will consider several examples of disclinations and dis-
locations. In these numerical examples, we want to describe
the degree of smectic order as a function of position. For
this purpose, we need the magnitude of density modulation at
the wavelength corresponding to smectic layers. The simplest
representation for this order parameter is a local Fourier
transform of the density near any point at the wave vector
q along the local director:

SA(r) = q

2π

∣∣∣∣
∫ π/q

−π/q

e−iqlρ(r + nl)dl

∣∣∣∣ . (10)

This quantity is calculated by numerical integration and
presented as the smectic order parameter in the figures
discussed below.

For initial tests of the real density formalism of Eq. (9),
we consider the same geometries with disclinations that were
studied using the complex order parameter formalism in
Sec. II A. First, we consider a geometry with two disclinations
of charge +1/2 each, assume that the director field is held
fixed, and calculate the resulting smectic layer configuration.
The results are shown in Fig. 2(b). This structure is consistent
with all the symmetries of the SmA phase. The layers are
equally spaced and normal to the director everywhere. The
region between the disclinations is a well-ordered smectic
phase with no line defect.

FIG. 6. (Color online) Simulations of a circular domain with
boundary conditions requiring tangential alignment (parts a and b) or
radial alignment (c and d) of the director. The density functional free
energy (9) is used. In a and c, parameters are a = −5, b = 0, c = 5,
B = 10−5, q = 40, and K = 0.3. In b and d, the Frank constant is
reduced to K = 0.05.

Second, we perform simulations where both the director
field and layer configuration can relax, using a circular
geometry with boundary conditions on the director requiring
a disclination of charge +1/2. We obtain the structure shown
in Fig. 3(b), which has a single disclination at the center.
The smectic layers form a relaxed configuration about the
disclination. There is a point defect in the layers at the
disclination core, where we can see a reduction in the
smectic order parameter defined by the local Fourier transform.
Everywhere else, the layers are well ordered and equally
spaced.

For further examples of the density functional theory, we
perform simulations of the circular domains shown in Fig. 6.
Here, the director field has tangential boundary conditions
(parts a and b) or radial boundary conditions (c and d). In
either case, it must have a total topological charge of +1.
The density modulation has free boundary conditions. We
use two values of the Frank elastic constant K compared to
the nematic-smectic coupling B, and hence two values of
the length scale λ = (K/B)1/2. This characteristic smectic
length scale is large in a and c, and smaller in b and d.
In all cases, free energy minimization gives a configuration
with two disclinations of topological charge +1/2 each, not
a single disclination of +1. In the two cases with high λ,
the director has a smooth variation between the disclinations
and the layers adapt to the director, with small variations in
the layer spacing. In the two cases with smaller λ, the layers
are equally spaced over most of the domain and the director
adapts to the layers, with director variation concentrated in
small regions near the boundary. These results are physically
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FIG. 7. Integration of the free energy density over a region containing an integer number of smectic layers.

reasonable and correspond to what might be observed for
smectic liquid crystals under nanoscale confinement [17].

We next consider the structure and energy of a dislocation
as it glides between smectic layers. As shown in Sec. II B, the
complex order parameter formalism describes the free energy
only on a coarse-grained basis and does not show how the
energy depends on the position of a dislocation with respect
to the layers. We now repeat that dislocation calculation using
the real density formalism of Eq. (9). The results are shown
in Fig. 5, next to the corresponding figures for the complex
order parameter calculation. In this figure, the third and fourth
columns of pictures show the free energy density calculated
for the parameters a = −10, c = 10, q = 1, B = 0.1/q4, and
b = 0 (in the third column) and b = 1 (in the fourth column).
The b term is important because it is the only term considered
here that is odd in δρ, and hence the only term that distinguishes
between density minima and maxima.

From these images, we can make several observations.
First, the free energy density is not uniform but periodic
in the smectic layer structure. If b = 0, there are equal free
energy valleys at the density minima and maxima. If b > 0,
the symmetry between minima and maxima is broken (as is
physically realistic), and the deepest free energy valleys are
at the density minima. Furthermore, there is additional free
energy associated with the dislocation itself. Most importantly,
the free energy plots change as the constant phase offset �
 is
varied, i.e., as the dislocation moves with respect to the layer

structure. Hence, this model does not have the unphysical
symmetry found in the complex order parameter formalism.

To calculate the barrier for dislocation motion, we must
integrate the free energy density to find the total free energy
as a function of �
. In this calculation, it is important to
integrate over an integer number of layers, so that the result
is not influenced by the number of fractional layers within the
integration region. Hence, we define the integration region by
|qx| < 10π and |qy + 
(x,y)| < 8π , as shown in Fig. 7.

Figure 8 presents graphs of the total free energy as a
function of �
. We can see that it has a periodic series of
peaks and valleys as the dislocation moves with respect to the
layer structure. If b = 0, the valleys occur whenever �
 is
a multiple of π , i.e., whenever the dislocation is at either a
density minimum or maximum. If b > 0, the deepest valleys
occur when �
 is a multiple of 2π , i.e., when the dislocation
is at a density minimum; the valleys at density maxima are less
deep. The Peierls-Nabarro energy barrier for dislocation glide
is then the difference in free energy between the deepest valleys
and highest peaks in this plot. Clearly this barrier is nonzero, as
is physically reasonable. We expect that this formalism would
also show how the energy varies as a function of the position
of layers with respect to boundaries.

As a final example, we can use the real density formalism
to calculate smectic layer configurations around disclinations
of total topological charge ±2. This problem is a subject of
current research interest, because Kamien and collaborators

FIG. 8. (Color online) Integrated free energy in the real density formalism as the dislocation is displaced with respect to the layer structure,
as given by the parameter �
. (a) Parameters a = −10, c = 10, q = 1, B = 0.1/q4, and b = 0, so that there is a symmetry between density
minima and maxima. (b) Parameter b = 1, breaking the symmetry between density minima and maxima.
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FIG. 9. (Color online) Simulations of smectic layer configura-
tions around disclinations of total topological charge +2 (parts a
and c) and −2 (parts b and d). In a and b, the nematic director field
inside the domain is specified, and the smectic layers respond to it.
In c and d, the boundary conditions require a total topological charge
of ±2, and the director field and the smectic layers inside the domain
are both free to relax.

[18] have recently used topological results of Poénaru to show
that a smectic phase cannot have disclinations of positive
charge higher than +1. By contrast, a smectic phase can have
disclinations of any arbitrarily high negative charge (integer
or half integer). This mathematical result leads to a physical
question: If a smectic phase were put into a domain where it is
forced to have a total topological charge of +2, how would it
respond? How could the smectic layers adapt without violating
the mathematical constraint?

To answer that question, we simulate smectic layers in
circular domains with total topological charge of ±2, as shown
in Fig. 9. In parts a and b, we assume that the nematic director
field is fixed throughout the interior of each domain so that
there is a nematic disclination of ±2 at the center. In response
to this highly charged nematic disclination, the smectic
layers select a complex configuration. For the +2 defect, the
smectic configuration has a distribution of dislocations in the
layers. This distribution of dislocations is the response to the
frustration caused by a director field that is incompatible with
smectic order: Wherever the smectic phase cannot follow the

director field, it melts into dislocations. By comparison, for
the −2 defect, the smectic layers are highly curved but do not
have the same population of dislocations. Thus, these figures
provide specific illustrations of the topological results.

In parts c and d, we impose boundary conditions on the
nematic director field that require a topological charge of ±2,
but we do not constrain the director field inside the domain.
Instead, the director field and the smectic layers can respond
together to the boundary conditions. In each of these cases,
the high topological charge breaks up into four disclinations
of charge ±1/2 each. These four disclinations repel each other
and hence move near the boundaries. Both the positive and
negative disclinations are accompanied by a distribution of
dislocations. These dislocations are presumably required by
topology in the positive case and are only favored by energy
in the negative case, but in practice they appear fairly similar.

IV. CONCLUSIONS

In conclusion, we have identified two problems with using
the complex order parameter formalism to model nanoscale
layer configurations in smectic liquid crystals. The first prob-
lem is related to the complex order parameter itself: If this order
parameter is interpreted as a single-valued complex-number
field, then it is unable to describe half-charged disclinations
without unphysical line defects. This problem can be solved by
reinterpreting the order parameter as a double-valued function
of position, but this procedure is not well suited for numerical
simulation. The second problem is related to the free energy:
Because the formalism uses a coarse-grained free energy that
averages over the smectic layers, it does not show how the free
energy depends on the position of dislocations or boundaries
with respect to the layers. This problem cannot be solved by
reinterpreting the order parameter as a double-valued function.
In response to these problems, we propose an alternative
formalism based on the physical density variation instead of
the complex order parameter. Through explicit calculations,
we demonstrate that it gives physically reasonable results for
sample geometries. Thus, it has potential for future design of
nanoscale smectic devices.
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