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Nonequilibrium steady-state response of a nematic liquid crystal under
simple shear flow and electric fields
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The effect of a dc electric field on the response of a nematic liquid crystal under shear flow has been investigated
by measuring the shear stress response to an ac electric field used as a probe. It was found that both the first- and
second-order responses do not vanish at high frequencies, but have constant nonzero values. The experimental
results are in good agreement with calculations based on the Ericksen-Leslie theory. The role of the Parodi
relation (which is derived from the Onsager reciprocal relation) in the stress response is discussed.
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I. INTRODUCTION

Nematic liquid crystals (NLCs) can be easily taken to
nonequilibrium states by applying external forces, so they
have been widely used to investigate various types of
nonequilibrium phenomena. Here, we confine ourselves to
a nonequilibrium steady state (NESS), in which there are
still many fascinating phenomena. NESSs are an interesting
subject for study in general, because some theoretical results
are similar to ones for the equilibrium state (ES). For example,
in some cases the fluctuation-dissipation theorem (FDT) in the
ES can be modified to hold in an NESS [1–6]. It should also
be noted that the linear response to an external force and the
correlation function of fluctuations can be defined in an NESS
as well as in the ES. In an NESS of an NLC, brought about
by a steady shear flow, Fatriansyah et al. [7] calculated the
correlation function and the response function of the director
orientation on the basis of a hydrodynamic theory of NLCs,
called the Ericksen-Leslie (EL) theory, and derived a modified
FDT, assuming that the director is independent of position,
that is, the monodomain case. In this system nonconservative
forces are induced by the rotational flow, which violate the
usual FDT.

Experimentally, the response function in the sheared NLC
was obtained by applying a small ac electric field to measure
the corresponding shear stress response [8]. A characteristic
response, which originated from the nonconservative force,
was clearly observed. In this paper, we investigate both
theoretically and experimentally the influence of a dc electric
field on the shear stress response in addition to the shear flow,
where a small ac electric field is also used as a perturbation
probe. The dc electric field is expected to change the steady
orientation of the director, bringing about qualitative changes
in response. In our previous paper, it was found that the
stress response would take a nonzero value, even at infinite
frequency, if there is no Parodi relation, which is derived from
Onsager’s reciprocity. That is, the response can go to zero at
infinite frequency thanks to the Parodi relation. In the following
section we theoretically show that the shear stress response
never vanishes at infinite frequency in the monodomain model
under dc electric fields. In Sec. III, we present experimental
results for the NLC 4-n-pentyl-4′-cyanobiphenyl (5CB) and
compare them with the theoretical predictions. The last section
is devoted to a summary.

II. THEORETICAL CALCULATION BASED
ON EL THEORY

NLCs are composed of rodlike molecules with the long
axes aligned statistically parallel to each other. The average
orientation of molecules is represented by a unit vector n which
is called the director. Ericksen and Leslie have formulated
a continuum theory for the velocity v and the director n of
NLCs [9–14]. Hereafter, we assume a monodomain (i.e., the
director is independent of position) and a simple shear flow.
Under these assumptions, the EL equations can be simplified
and we need only the following equations for our purpose. The
angular momentum balance gives

n × h = γ1n × N + γ2n × An, (1)

where h is the molecular field, N is the rate of change
of the director with respect to the background fluid, and
A = 1/2(∇βvα + ∇αvβ) is the symmetric part of the velocity
gradient. The parameters γ1 and γ2 are the rotational and
irrotational viscosity coefficients. The components of the
molecular field h are given by

hα = − ∂f

∂nα

, (2)

where f is the free energy density. When subjected to an
electric field, the free energy density can be written as

f = − 1
2ε0ε⊥E2 − 1

2ε0�ε (n · E)2 , (3)

where ε0 is the dielectric constant in a vacuum, and �ε is the
dielectric anisotropy defined as �ε = ε// − ε⊥ with ε// and ε⊥
being the dielectric constants parallel and perpendicular to the
director, respectively (�ε = 11.5 for 5CB [15]). The rate of
change of the director is defined as

Nα = dnα

dt
− Wαβnβ, (4)

where Wαβ = 1/2(∇βvα − ∇αvβ) is the antisymmetric part of
the velocity gradient. The constitutive equation for the viscous
stress tensor is

σ
(visc)
αβ = α4Aαβ + α1nαnβnμnρAμρ + α5nαnμAμβ

+α6nβnμAμα + α2nαNβ + α3nβNα, (5)

where αi (i = 1, . . . ,6) are Leslie coefficients, in terms
of which γ1 and γ2 are expressed as γ1 = α3 − α2 and
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γ2 = α6 − α5. For 5CB these coefficients have been deter-
mined [16]: α1 = −0.00767 Pa s, α2 = −0.08171 Pa s, α3 =
−0.00433 Pa s, α4 = 0.06642 Pa s, α5 = 0.06725 Pa s, α6 =
−0.01879 Pa s at 25 °C. These values are used in numerical
calculations later. Note that, here, an NLC is treated as an
incompressible fluid.

In reality, the monodomain and simple shear flow as-
sumptions may not be exactly satisfied for various reasons.
For example, in our experiment no surface treatment for
aligning molecules is made so that the director and flow are
spatially disturbed at least near the surfaces. Note that our
model also does not accommodate defects (e.g., disclinations).
Furthermore, larger deformations from the flow-aligning state
are reported to take place [17]. For simplicity, however, we
adopt the assumptions shown in Fig. 1(a), where n(t) =
(cos θ,0, sin θ ) and v = γ̇ z

�

x with γ̇ and
�

x being the shear
rate and the unit vector along the x axis, respectively.

Here, we calculate the stress change due to a small ac
electric field in the steady state under constant shear flow and
dc electric fields. In this case, the total electric field in Eq. (3)
is given as E(t) = E0 + �E cos ωt . Using Eqs. (2) and (4),
Eq. (1) becomes

γ1
∂θ

∂t
= −1

2
γ̇ (γ1 + γ2 cos 2θ ) + 1

2
ε0�εE (t)2 sin 2θ, (6)

where the electric field is applied in the z direction. Without
the ac electric field, that is, in the nonperturbed state, the flow

FIG. 1. (Color online) (a) A simple shear flow is applied along
the x axis with a velocity gradient parallel to the z axis. An electric
field is applied along the z direction. (b) We define θ to be the angle
between the director and the x axis when the electric field is applied.

alignment angle θ0 (as shown in Fig. 1) in the steady state is
given as [18]

θ0 = cos−1

√√√√√
(
ε0�εE2

0

)2 − γ1γ2γ̇ 2 + γ 2
2 γ̇ 2 −

√(
ε0�εE2

0

)2 [(
ε0�εE2

0

)2 + (
γ 2

1 − γ 2
2

)
γ̇ 2

]
2
[(

ε0�εE2
0

)2 + γ 2
2 γ̇ 2

] . (7a)

In the special case of E0 = 0, θ0 reduces to

θ0 = 1

2
cos−1

(
−γ1

γ2

)
. (7b)

The angle θ0 monotonically increases with increasing electric field, as shown in Fig. 2 where the values of the viscosities and
the dielectric anisotropy for 5CB at 25 °C, corresponding to the experimental conditions, are used. Expanding θ up to the second
order with respect to �E, we obtain the corresponding change in θ :

�θ (t) = �θ2,0 + Re[�θ1,1e
iωt ] + Re[�θ2,2e

i2ωt ], (8)

with

�θ1,1(ω) = −ε0�εE0�E sin 2θ0

iωτ + 1

τ

γ1
, (9)

�θ2,2(ω) = (1/2)|�θ1,1|2(γ̇ γ2 cos 2θ0 − ε0�εE0 sin 2θ0) + �θ1,1ε0�εE0�E cos 2θ0 + ε0�ε�E2 sin 2θ0

2iωτ + 1

τ

γ1
, (10)

and

�θ2,0 = �θ2,2(0), (11)

where the first subscript of �θ indicates the order with respect to �E and the second one the harmonic order. The relaxation
time τ is defined by

τ = − γ1

γ̇ γ2 sin 2θ0 + ε0�εE2
0 cos 2θ0

. (12)

Next, we calculate the shear stress response. The shear stress (σzx in the present case) can be also expanded with respect to �E:

σ (t) = σ0 + �σ2,0 + Re[�σ1,1(ω)eiωt ] + Re[�σ2,2(ω)ei2ωt ], (13)
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where σ0 is the shear stress with no ac electric field. It should be noted that the ω response �σ1,1 (ω) appears under dc electric
fields, as can be seen from Eq. (9); this response vanishes for E0 = 0. The stress is independent of the polarity of the electric field
as NLCs are nonpolar and, therefore, the stress response depends on E(t)2 = E2

0 + 2E0�E cos ωt + �E2/2 [1 + cos (2ωt)] as
shown in Eq. (6), clearly indicating that the ω response �σ1,1 (ω) should emerge under dc electric fields in addition to the 2ω

response �σ2,2 (ω).
From Eqs. (5), (7a), and (9)–(12), the unperturbed shear stress σ0 and the responses �σ1,1 (ω), �σ2,0, and �σ2,2 (ω) are

obtained:

σ0 = γ̇
[
α1 sin2 θ0 cos2 θ0 + 1

2 {α4 + (α5 − α2) sin2 θ0 + (α3 + α6) cos2 θ0}
]

sin 2θ0, (14)

�σ1,1 (ω) = γ̇
[
α1 cos 2θ0 − 1

2 (α2 + α3) + iω(α3 cos2 θ0 − α2 sin2 θ0)
]
�θ1,1 (ω) , (15)

�σ2,2(ω) = γ̇

2
[α1 sin 4θ0 − 2(α2 + α3) sin 2θ0 + 2iω(α3 cos2 θ0 − α2 sin2 θ0)]�θ2,2(ω)

+ γ̇

2
[α1 cos 4θ0 − (α2 + α3) cos 2θ0 − iω(α2 + α3) sin 2θ0]|�θ1,1(ω)|2, (16)

�σ2,0 = �σ2,2(0). (17)

When we compare the above theoretical result with ex-
perimental one, the parallel-plate geometry of the rheometer
which is used in our experiment should be considered. For this
geometry, the apparent shear stress is given by [8]

�σ (R)(ω) = 4

γ̇ 3
R

∫ γ̇R

0
�σ (ω,γ̇ )γ̇ 2dγ̇ , (18)

where γ̇R is the shear rate at the edge of the rotating disks. The
numerically calculated results are presented in Sec. IV.

III. EXPERIMENT

We used the NLC 5CB (4-n-pentyl-4′-cyanobiphenyl;
Tokyo Chemical Industry) without any further treatment.
Measurements were carried out with a parallel-plate rheometer
(Physica MCR300, Anton Paar) at room temperature (25 °C).

FIG. 2. E0 dependence of θ0 calculated from the EL theory. The
angle θ0 increases monotonically and tends to saturate when E0 >

200 V mm−1.

5CB exhibits transitions from crystal to nematic phases at
18 °C and from nematic to isotropic phases at 35 °C, so we
conducted experiments at 25 °C around the center of the
nematic phase. The diameter of the rotating plate and the gap
between the two parallel plates are 35 and 0.2 mm, respectively.
In the rheometer, the shear rate is defined at the edge of the
upper plate and the shear stress at the corresponding shear
rate is calculated from the mechanical torque by assuming
that the sample is a Newtonian fluid. Figure 1 shows the
relation among the flow direction, the velocity gradient, and
the electric field, which is applied to the sample by using a
synthesizer (Model 1940, NF) and a high-voltage amplifier
(Model 4005, NF). The experimental setup is shown in Fig. 3.
The shear stress was measured with a vector signal analyzer
(HP89410A, Hewlett-Packard) and the first- and second-order
harmonics were obtained.

The shear stress response to ac electric field under steady
shear flow and electric fields was measured by applying a
small ac electric field �E cos(ωt). We obtained the first-order
response �σ1,1(ω) and the second-order response �σ2,2(ω),
which should be proportional to �E and �E2, respectively,
for small �E. The dc electric field dependencies of the
first- and second-order responses are shown in Fig. 4,
where the measurements were done at γ̇ = 10 s−1 and E0 =
100 V mm−1. Linearity was confirmed to hold at least up to
�E = 20 V mm−1. All the measurements were performed at
�E = 14.1 V mm−1 and γ̇ = 10 s−1.

IV. RESULTS AND DISCUSSION

First, we discuss the first-order response �σ1,1(ω) shown
in Fig. 5 (lines are experimental results and dots are theoretical
predictions). The first-order response appears only when
we apply a dc electric field E0. When E0 is low (E0 =
20 V mm−1) [see Fig. 5(a)], the experimental stress response
resembles Debye-type relaxation. However, as we increase E0

to 80 V mm−1 [see Fig. 5(b)], we can see that the response
remains nonzero even at high frequencies, forming what is
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FIG. 3. (Color online) Experimental setup. Electric fields are
applied between the top and bottom plates. For the electro-optical
experiment we add a light source and a microscope to observe the
change of transmitted intensity.(In the figure: dc and ac electric field
source, microscope, sample, rheometer.)

referred to as a plateau. The emergence of the plateau is the
most remarkable characteristic of the response to ac electric
field under dc electric fields. From the EL theory, it is easily
seen that the plateau comes from the third term with iω in the
bracket on the right-hand side of Eq. (15) because �θ1,1(ω) in
Eq. (15) is inversely proportional to iω at high frequencies, as
can be seen from Eq. (9). The iω term appears as a result of
differentiating the director with respect to time in Eq. (4). In
the limit as ω → ∞, we have

�σ1,1(∞) = γ̇ (α3 cos2 θ0 − α2 sin2 θ0)τ

γ1

× ε0�εE0�E sin 2θ0. (19)

It should be noted that the director response �θ1,1(ω) vanishes
at high frequencies, but the stress response �σ1,1(ω) remains
nonzero.

At higher values of E0, the height of the plateau is
larger than at low frequencies, as shown in Figs. 5(b)
(80 V mm−1) and 5(c) (160 V mm−1). The agreement between
the experimental and theoretical results for all E0 shown
in Fig. 5 is fairly good. The dependence of plateau height
�σ1,1(∞) on E0 is shown in Fig. 6 for the experiment and
the theoretical result in Eq. (15). From Fig. 6, we observe that
when E0 < 40 V mm−1 the plateau is small. As we increase
E0 to more than 50 V mm−1, the plateau height increases
sharply. In the same figure, we also plot the E0 dependencies
of �σ1,1 calculated at zero frequency and experimentally
obtained from Fig. 5 at 0.23 rad s−1. The agreement between
them is good. The low-frequency and high-frequency (plateau)

FIG. 4. (Color online) Dependence of |σ1,1| on �E (a) and |σ2,2|
on �E2 (b) at γ̇ = 10 s−1 and E0 = 100 V mm−1. Linear relations
are obtained at low ac electric fields.

values exchange at around E0 = 90 V mm−1. The imaginary
part of the response (Fig. 5) goes to zero at both low and high
frequencies, and shows good agreement between theory and
experiment. The peak or valley frequency of the imaginary part
is seen to increase with increasing dc electric field, though
it changes sign from positive to negative at around E0 =
90 V mm−1 corresponding to the above-mentioned exchange
of the low- and high-frequency values of the response.

Next, let us discuss the second-order response �σ2,2

(Fig. 7). This response is more complicated than the first-order
response since there are contributions from the first-order
mode �θ1,1 as well as �θ2,2, as can be seen from Eq. (16).
It should be noted that the second-order response appears
even without a dc electric field, as shown in Fig. 7(a).
The stress response resembles Debye-type relaxation for
E0 = 0. However, one may notice that the real part becomes
slightly negative at around 10 rad s−1. We have previously
observed this negative part and shown that it originates from
nonconservative forces due to the shear flow [8]. This is a
remarkable characteristic of nonequilibrium steady states of
systems under shear flow and is observed also in an immiscible
polymer blend in which one polymer is dispersed as droplets
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FIG. 5. (Color online) Frequency dispersion of �σ1,1 as a function of angular frequency ω. The theoretical curves are obtained from
Eq. (15). A characteristic nonzero plateau, which is due to the dc electric field, appears at high frequencies in (b)–(d).

in the other [19]. The nonconservative forces also violate the
fluctuation-dissipation relation (FDR). Fatriansyah et al. have
theoretically clarified the mechanism of the appearance of
the nonconservative forces in NLCs and derived a modified
FDR [7]. According to the theory, the nonconservative forces
can emerge only when the director is out of the shear plane.
In Sec. II, however, we assumed that the director is confined
in the shear plane and, therefore, we cannot reproduce the
negative part in the present model. The director may tend to
be in the shear plane under a dc electric field. Therefore, it is
expected that our monodomain model works better as the dc
electric field is increased.

From Fig. 7, it is obvious that there is a plateau at every dc
electric field except for E0 = 0 [Fig. 7(a)]. As we increase E0,
the plateau, which is the characteristic of the system under dc
electric fields, appears. The origin of the plateau in the second-
order response is the same as that in the first-order response.
The plateau comes from the ω term proportional to �θ2,2 in
Eq. (16), which includes a factor (α3 cos2 θ0 − α2 sin2 θ0). This
factor also appears in the ω term of the first-order response
[see Eq. (15)]. Interestingly, this vanishes at E0 = 0 due to the

Parodi relation α6 − α5 = α2 + α3, which is easily proved by
using Eq. (7b). Note that the second-order response does not
vanish for E0 = 0 unlike the first-order response. It is obvious
that the factor is in general not zero for E0 �= 0. When we
increase E0 to 80 V mm−1, the plateau at high frequencies
rises, as shown in Fig. 7(b). The plateau becomes remarkable
for E0 = 120 V mm−1 [Fig. 7(d)]. The agreement between
the experimental and theoretical results is good. The imaginary
part of the response also shows good agreement between theory
and experiment.

Figure 8 shows the E0 dependence of �σ2,2 calculated
at zero frequency and experimentally obtained from Fig. 7
at 0.23 rad s−1. Also in the same figure we show the E0

dependence of the height of the plateau. Good agreement
is obtained between the theory and experiment. The E0

dependencies are more complicated than those in the first-order
response.

Finally, we show experimental evidence that the plateau
observed in the real part of the first-order response should be
ascribed to the time derivative of the director, but not to �θ1,1

itself. To do so, we made an optical measurement using crossed
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FIG. 6. (Color online) E0 dependence of the first-order response
at very low frequency (0.23 rad s−1 for the experiment and exactly
zero for the theory), Re[�σ1,1(ω → 0)]. Also shown is the depen-
dence of plateau height Re[�σ1,1(ω → ∞)]. For dc electric fields
higher than around 90 V mm−1, Re[�σ1,1(ω → ∞)] becomes larger
than Re[�σ1,1(ω → 0)].

polarizers, in which the light intensity is shown to be just
proportional to the first-order mode �θ1,1. Therefore, if �θ1,1

is of the Debye type, there should be no plateau observed in
the optical response at high frequencies, though it is observed
in the shear stress response.

When an electric field is applied, the birefringence na(θ ) =
ne(θ ) − n0(θ ), where n0 and ne are the ordinary and extraor-
dinary refractive indices, respectively, will change and here
the observation is assumed to be made perpendicular to the
parallel plates as shown in Fig. 3. In NLCs, n0 is independent
of the director orientation θ . However, ne (θ ) is dependent on
θ :

ne(θ ) = n⊥n//

(n2
⊥ cos2 θ + n2

// sin2 θ )1/2
− n//, (20)

where n// and n⊥ are the refractive indices parallel and
perpendicular to the director. On the other hand, the transmitted
light intensity of the NLC under crossed polarizers is given by

I = I0 sin2(2α) sin2 πna (θ ) d

λ
, (21)

where I0 is the incoming light intensity, α is the angle between
the polarizer and the x axis, d is the sample thickness, and λ

is the wavelength of the light in a vacuum. For a small change
of θ , �θ , due to the application of an ac electric field, the
corresponding change of I , �I , is obtained from Eqs. (20)

FIG. 7. (Color online) Frequency dispersion of �σ2,2 as a function of angular frequency ω. The theoretical curves are obtained from
Eq. (16). A plateau appears under dc electric fields as well as in the first-order response.
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FIG. 8. (Color online) E0 dependence of the first-order response
at a very low frequency (0.23 rad s−1 for the experiment and
exactly zero for the theory), Re[�σ2,2(ω → 0)]. Also shown is the
dependence of plateau height Re[�σ2,2(ω → ∞)].

and (21):

�I = I0 sin2(2α) sin 2

[
πna (θ0) d

λ

]

× n⊥n//(n2
⊥ − 2n2

// cos θ0) sin θ0

2(n2
⊥ cos2 θ0 + n2

// sin2 θ0)3/2
�θ, (22)

where θ0 is the angle without any ac electric field.
In the optical measurement we replaced the upper plate by

a glass disk with diameter 40 mm so that we could observe
the transmitted light through the sample. As a light source we
used a halogen lamp (LS-LHA, Sumita Optical Glass). The
light intensity was converted by a photosensor into a voltage
and it was amplified (C6386, Hamamatsu Photonics).

The experimental result is shown in Fig. 9 for E0 =
200 V mm−1. Note that the vertical axis is adjusted so that
the theoretical and experimental results coincide as well as
possible, because it is difficult to determine the coefficient
in Eq. (22). The agreement between the experiment and
theory is good, though the data are scattered to some degree.
The relaxation frequency experimentally observed is in good
agreement with the one theoretically obtained. There is no
plateau in the optical response, in contrast to the stress
response, convincing us that the plateau observed in the stress
response should originate from the time derivative of the
director.

FIG. 9. (Color online) Frequency dispersion of the optical re-
sponse, which corresponds to the director response, as a function
of angular frequency ω. Lines are the experiment and circles are the
theory. No plateau is observed, which shows that the plateau observed
in the shear stress response should be ascribed to the time derivative
of the director but not to �θ1,1 itself.

V. SUMMARY

We have investigated the NESS response of an NLC
to an ac electric field under constant dc electric field and
steady shear flow. The first- and second-order shear stress
responses were theoretically obtained from the EL theory
assuming a monodomain model. It was found theoretically
and experimentally that when we apply a dc electric field
both responses remain constant and nonzero even at high ac
electric field frequencies. That is, there is a plateau, which
originates from the time derivative of the director. This plateau
is a remarkable feature in the shear stress response brought
about by the application of a dc electric field. Furthermore, by
performing an optical measurement, the director response is
confirmed to vanish at high frequencies, strongly supporting
the above-mentioned mechanism for the appearance of the
plateau. It was also clarified that the plateau in the second-order
response disappears in the absence of a dc electric field, due
to the Parodi relation, which is derived from the Onsager
reciprocal relation.
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