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Colloidal nanoparticles trapped by liquid-crystal defect lines: A lattice Monte Carlo simulation

Regina Jose,1,2 Gregor Skačej,1,3 V. S. S. Sastry,2 and Slobodan Žumer1,3
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Lattice-based Monte Carlo simulations are performed to study a confined liquid crystal system with a
topological disclination line entangling a colloidal nanoparticle. In our microscopic study the disclination line is
stretched by moving the colloid, as in laser tweezing experiments, which results in a restoring force attempting
to minimize the disclination length. From constant-force simulations we extract the corresponding disclination
line tension, estimated as ∼50 pN, and observe its decrease with increasing temperature.
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I. INTRODUCTION

Curvature elasticity-mediated interactions in confined ne-
matic liquid crystals (LCs) have turned out to be a powerful
tool for colloidal particle assembly both in two- and three-
dimensional systems [1–4]. This mechanism is typically
externally assisted by the use of laser tweezers allowing for a
direct manipulation of colloidal particles in a refractive index-
mismatched nematic medium [5,6]. The resulting colloidal
crystals show great potential for use in various photonic
applications [7]. A most relevant aspect in colloidal crystal
assembly is the interaction of colloidal particles with nematic
topological defect lines (disclinations): colloidal particles are
known to be attracted towards disclinations if they are well
within the influence of the corresponding distortion field [8–
10]. Another important feature is the response of disclination-
trapped particles to the application of an external force as
provided in an experiment, e.g., through a laser tweezer in
a disclination line tension measurement [5,11]. Moreover,
when a colloidal particle is moved, this affects the surrounding
nematic medium, including the disclination lines [4,12].

Here we present a simple microscopic lattice Monte Carlo
(MC) simulation study of a small spherical colloidal nanopar-
ticle trapped by a nematic disclination line, with a typical
particle size around or even below 100 nm [13–15]. While there
have been a number of experimental investigations in such
systems, microscopic simulation studies are still rare. We focus
on the particle force-displacement behavior when an external
(e.g., laser tweezer) force is applied in an attempt to move the
particle. To provide a controlled disclination line environment,
a nematic liquid crystal sample confined to a prismatic
nanochannel is considered. Nanochannel-confined colloidal
particles have been studied in the past using phenomenological
simulations [16], while our approach here is more microscopic
and based on simple pairwise interactions. Recently, off-lattice
molecular simulations have also been used to study small
nanoparticles in LCs, focusing on particle diffusivity and
interaction, gel formation, and particle positioning inside LC
droplets [17–19].

II. MODEL, GEOMETRY, AND METHOD

Our approach is based on the Lebwohl-Lasher (LL) lattice
model [20,21], where elongated LC molecules are represented

by a system of freely rotating unit vectors (spins) ui arranged
into a simple cubic lattice of spacing a. The colloidal particle,
as well as the confining nanochannel walls, are carved
from the cubic lattice, with the corresponding interfacial
spin orientations fixed according to the desired boundary
conditions (anchoring). The total interaction energy is given
by U = −ε

∑
〈ij〉[3(ui · uj )2 − 1]/2, where the sum is taken

over nearest-neighbor lattice sites i and j , while ε > 0 is
the orientational interaction strength promoting parallel spin
alignment. The nematic-nematic, nematic-colloidal particle,
and nematic-wall interaction strengths are assumed equal,
which implies strong surface anchoring with an extrapolation
length [23] approaching ∼a. Temperature T is represented
in reduced units as T ∗ = kBT /ε, with bulk nematic-isotropic
(NI) transition occurring at T ∗

NI ∼ 1.1232 [21].
The simulation box is simple cubic and periodic along

the z direction, accommodating a prismatic nanochannel. The
channel is directed along z and has a length h = 100a; its
lateral (xy) cross section is an equilateral triangle of side length
l = 200a. This leaves more than 1.73 × 106 lattice sites inside
the channel, actively taking part in the simulation and consti-
tuting the bulk of our nematic medium (see Fig. 1). Bounding
sites along the nanochannel surface are anchored planarly
within the xy plane so as to create a stable disclination line
of strength m = −1/2, running along the channel symmetry
axis z. Through such boundary conditions we have explicitly
avoided less stable integer-strength disclinations characterized
by a higher free-energy cost per unit length Fd ∝ m2 that, in
addition, are also prone to escape along z [23,24].

A spherical colloidal particle with strong homeotropic
(normal) surface anchoring and 5a radius is fixed at the channel
symmetry axis, serving to pin the edges of the disclination.
Another similar colloidal particle with 10a radius is initially
placed at the midpoint of the nanochannel axis, i.e., h/2 = 50a

away from the pinning particle (Fig. 1). In our study, we
focus on the interplay between the disclination line and this
second colloidal particle (which is either kept fixed in position
or mobile), taking its initial position (channel center) as
the origin of our reference frame rc = (0,0,0) and denoting
its instantaneous position (with respect to the MC “time”)
with rc = a(xc,yc,zc). The inclusion of the movable particle
makes an otherwise straight disclination line loop around it,
entangling it in the process. In this way a particle inclusion and
a disclination are mutually affined, and hence the disclination
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FIG. 1. Schematic of the simulated nanochannel: dashed lines at
the top and bottom surfaces represent the director field. The colloidal
particle under study (white) is at the center and the smaller pinning
particle (black) is at the channel top and bottom (note the periodic
boundary conditions). The disclination (dark gray line) runs along
the channel axis. The particle in a shifted position along with the
stretched disclination is also shown in lighter shades. The defect
structure around the particles is not explicitly shown.

can be stretched by pulling the particle away from the channel
center. Excess pulling can cause the disclination to detach from
the particle and relax by retracing to its initial unstretched
configuration.

We explore the behavior of our model system using Markov
chain MC simulations. The underlying phase space consists
of nematic spin orientations ui and positions, as well as of
the moving particle coordinates rc. In simulations where the
particle is fixed, the MC evolution affects exclusively the
nematic spin orientations and follows the standard Metropolis
procedure [21,25,26]. Here single-spin reorientational trial
moves are generated using the Barker-Watts technique [27]
and are accepted with a probability min[1, exp(−�U/kBT )],
where �U is the corresponding interaction energy change.
The acceptance ratio is kept close to 0.5 by dynamically
adjusting the spin reorientation amplitude. A standard MC
sweep is defined as an attempted reorientation of all nematic
spins.

In simulations where the particle is mobile, on the other
hand, composite particle moves are performed in addition:
first, the particle is shifted randomly by a lattice unit and
the nematic spins annihilated in this way are recreated
in the newly established void on the other side of the particle.
The recreated spins are given orientations compliant with
the particle-imposed boundary conditions, which is refined
by 1000 relaxation sweeps (see below) involving additional
LC spins in particle vicinity. The acceptance or otherwise
of this composite particle move is, as above, guided by the

Metropolis criterion, �U here denoting the total interaction
energy difference before and after the attempted composite
move. The relaxation sweeps performed prior to the acceptance
or rejection are essential to facilitate the insertion of the
displaced particle equilibrated with respect to the existing
nematic director field. They are carried out according to the
Metropolis scheme used in fixed-particle runs, but involve,
for computational time and trial move acceptance reasons,
only spins within a thin shell of 3a thickness surrounding the
particle. (In any case the immediate reorienting influence of the
moving particle is expected to be stronger in its vicinity.) After
every attempted composite move, further 1000 standard MC
sweeps are performed without moving the particle, to relax
the entire director field, and this sets a unit of MC simulation
“time” tc. This algorithm is intended to reflect and account
for the difference between the slower translational time scale
associated with the larger and massive particle, compared to the
faster reorientations of the LC spins constituting the nematic
medium.

Note that, once the system has reached equilibrium and
detailed balance is obeyed, the above Metropolis acceptance
criterion generates the desired (canonical) distribution in phase
space only if a given trial move and its reverse are attempted
with equal probabilities [26]. While this is certainly the
case for individual spin reorientations [27], it is much less
obvious for our composite moves where the probability of
attempting a particle displacement (together with a specific
orientational configuration of the surrounding nematic spins)
may, at least in principle, depend on particle position. This
arises due to the instinctual inadequacy of the procedure to
sample the available phase space (for the geometry considered
here) in a perfectly unbiased way. In the cases considered
in this work, i.e., for small particle displacements along the
x axis far enough from the confining walls, we expect this
dependence to be negligible; therefore, forward and reverse
move attempts should be equally probable and eventually
result in the canonical asymptotic distribution.

In analogy with tweezing experiments wherein an ade-
quately intense laser is used to pull the particle, in our simu-
lations an external constant force F is applied. In such a case
the Metropolis criterion for acceptance probability of the par-
ticle move is modified to min{1, exp [−�(U − F · rc)/kBT ]}
[26,28]. In the following, external force is given in dimension-
less units F ∗ = |F|a/ε. Taking ε ∼ 0.023 eV, which yields a
bulk NI transition at room temperature [21], and a ∼ 1 nm,
which roughly assumes one spin to represent a single LC
molecule [20,29], a unit of F ∗ corresponds to ∼3.7 pN.

To identify and visualize topological defects, Westin
metrics are calculated for each lattice site i from the
eigenvalues λi

1 � λi
2 � λi

3 of the averaged local ordering
matrix 〈ui ⊗ ui〉: ci

l = λi
1 − λi

2, ci
p = 2(λi

2 − λi
3), and ci

s =
3λi

3, with 0 � ci
l ,c

i
p,ci

s � 1 [30]. ci
l , ci

p, and ci
s approaching

∼1 correspond to prominent uniaxial, planar, and isotropic
orderings, respectively. Since the defect core is characterized
by depressed uniaxial order, compared to the rest of the
medium, it can be visualized by constructing isosurfaces of
ci
l obtained from the ui field, at an appropriately chosen

(temperature-dependent) threshold. The averaging of the local
ordering matrix is performed over the six nearest-neighbor
lattice sites, apart from the test site, from an instantaneous
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FIG. 2. (Color online) Top row shows defect structures (yellow) entangling a colloidal particle (red) of radius 10a, obtained with (a) the
particle positioned at origin for T ∗ = 1.0, averaged over MC sweeps (MDS) and, (b)–(f) with xc = 0, 10, 20, 30, and 40 for T ∗ = 0.1 from
an equilibrated instantaneous configuration (IDS). Bottom row displays similar structures for a smaller particle of radius 5a. Disclinations are
visualized as ci

l isosurfaces for a threshold of 0.85 and 0.28 at the lower and higher temperatures, respectively. (The corresponding bulk values
are approximately 0.98 and 0.6.) Note the apparent variation in the looping of disclination line around the colloid, and the thickness of the line
away from the particle, at both temperatures. See text for a more detailed description and Supplemental Material [22] for the movies. The small
particle seen at the top and bottom in each plate serves to pin the disclination line.

configuration or, alternatively, over a large number of
MC sweeps. A so-called “instantaneous defect structure”
(IDS) is obtained in the first case, and a “mean defect
structure” (MDS) in the second. In our figures, IDS and
MDS are typically shown for lower and higher values of T ∗,
respectively.

Along the length of simulation nanochannel, the nematic di-
rector field surrounding the disclination line is nearly identical
except near the particle, and hence translations of the particle
along the z axis are energetically largely inconsequential.
In our simulations we set zc = 0, and translation moves of
the particle are restricted along the x axis, without loss of
generality. This is to scale down the computational time
to manageable limits, given the three-dimensional sample
space within the channel. Nevertheless, it still helps us
to capture the essential qualitative behavior of the system
studied.

III. RESULTS AND DISCUSSION

A. Equilibrium defect structures with fixed particle positions

Initially we look at the equilibrium defect structures in the
system as a function of colloidal particle position, along the
x axis. The particle, initially positioned at the origin, xc = 0,
is shifted off-center step-by-step to the adjacent sites, after
equilibrating the medium with 2 × 105 MC sweeps during

each step. Figure 2(a) shows the defect structure obtained by
averaging the local-ordering matrix over the latter 105 MC
sweeps with particle at xc = 0 and T ∗ = 1.0. Figures 2(b)
to 2(f) show the IDS structure sequence obtained after each
translational step at T ∗ = 0.1. It may be noted that during the
equilibration sweeps in each of these steps the particle position
remains fixed. As the particle is shifted away from center, the
disclination line stretches itself, still entangling the particle, up
to a threshold distance above which a detachment occurs. This
threshold is observed at xc ∼ 35 for T ∗ = 0.1, and occurs at
a smaller value of xc at higher temperatures. For comparison,
similar data for a smaller particle of radius 5a are shown in the
bottom row of Fig. 2.

At T ∗ = 1.0 the defect structure appears to have a three-fold
symmetry wherein it forks into three branches around the
particle and then rejoins to a single disclination. Qualitatively
similar structures are also observed in our preliminary off-
lattice simulations based on the soft-core Gay-Berne potential
[31], performed at a similar temperature rather close to the
NI transition. In the present lattice simulations this structure
apparently gets modified as the temperature is lowered. This
can be attributed to reduced defect line bending near the
particle in accordance with larger line tensions under these
conditions. Note that sometimes transformations between
different entangling structures occur also during the course
of simulations at fixed external parameter values [for instance,
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see the difference between the entangling of the displaced
colloid by the disclination line in Figs. 2(i) and 2(j)]. It is
seen that when the large (10a radius) moving particle is
considered, it is the disclination that detaches from the pinning
particle, on shifting the particle far away from the center.
For the small (5a radius) particle, the opposite is true:
the disclination detaches from the moving particle instead,
relaxing back to the center, while leaving the moving particle
with a Saturn ring defect [32]. This can be attributed to a
more pronounced anchoring effect by the larger particle at
this temperature. Another effect of temperature is on the
fluctuations of the disclination line itself. A manifestation
of its spatial fluctuations over MC “time” is seen as an
increase in the disclination line thickness in regions far away
from the particles as in Figs. 2(a) and 2(g), at T ∗ = 1.0.
A qualitative view of these fluctuations is observed in the
movies (see the Supplemental Material [22]) showing a series
of defect structures obtained at T ∗ = 0.1 and 1.0, as the particle
position is shifted away from the channel center. For T ∗ = 1.0,
a superimposed second isosurface at a higher threshold of
ci
l = 0.53 enveloping the one with a lower ci

l alludes to the
fact that the defect structures formed for different system
parameters in our simulations are all qualitatively similar.

B. Unstretching of disclination line with mobile particle

Now we extend our simulations by allowing colloidal
particle translation as the system evolves during MC “time” tc
to explore the ability of a stretched disclination to move an
entangled particle. In this case we take an initial configuration
of the system where the particle is at xc > 0, entangled by
a stretched disclination. In an experiment this is achieved
by pulling the disclination affined either to an isotropic
laser-created region, or to a particle tweezed by a laser, and
then withdrawing the laser intensity. This corresponds to a state
similar to that depicted in Fig. 2(d) where the particle is at xc =
20 units away from the origin. The trail of the moving particle
is monitored over tc and is shown in Fig. 3. In all cases the
particle is found to be drawn, approximately, back to the origin
at xc ∼ 0, adducing the presence of a restoring force which
drives the relaxation of the disclination to its equilibrium.
This indeed should be expected since a shorter disclination
corresponds to lesser volume occupied by the defect region,

0 2000 4000 6000 8000 10000
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x c

FIG. 3. Trail of the particle as the system evolves from an initially
stretched entangled disclination with particle at xc = 20, along x at
T ∗ = 0.1 (black) and 0.15 (gray).

thereby reducing the total free energy. Note that in some
cases the equilibrated particle position is slightly off-centered,
with typically slightly negative equilibrium xc values; this
is attributed to the asymmetric particle entanglement (see
Fig. 2). Note also that very large fluctuations in the particle
position occur at higher temperatures, and so most of our
simulations are performed at relatively low T ∗ to facilitate the
analysis.

C. Constant-force simulations with mobile particle

Next we perform constant-force simulations wherein a
constant force F ∗ is applied to the particle initially positioned
at the origin. The force is applied along the positive x axis
and, for simplicity, the particle motion is also restricted along
the same axis. Initially, the force shifts the particle away
from the origin and after a transient time this distance is
seen to equilibrate over a mean value, when the system
arrives at a nearly steady state. This occurs when the restoring
force (manifested through disclination line tension) balances
with the external force F ∗. Larger F ∗ values result in an
equilibration farther from the origin. Beyond a threshold
value of force, a detachment occurs. It is ensured that
such simulations are discarded by monitoring the defect
structures at regular intervals as the simulation proceeds. We
observe in all cases that the particle position xc equilibrates
within first 2000tc; then its average is determined over the
next 8000tc. These simulations are carried out at various
temperatures.

The dependence of average equilibrated distance 〈xc〉 on
the applied force F ∗ at different temperatures is shown in
Fig. 4(a). The reasonably good linear fits (with Pearson’s
correlation coefficients �0.95) suggest Hookean behavior,
permitting the comparison of disclination with an elastic string.
(Again, at zero force, slightly negative 〈xc〉 are observed,
which is consistent with our above reasoning.) Slopes obtained
from the fits are inverse values of Hookean force constants
k∗, with their temperature dependence shown in Fig. 4(b).
These values translate to real units as εk∗/a2 and are, for
the a and ε estimates given in Sec. II, in the range of
∼1.5 × 10−3 N/m. In the temperature range considered here,
typical line tension values just before detachment at xc ∼ 20
(tan φ = h/2xc ∼ 2.5, see Fig. 1) and F ∗ ∼ 10 are estimated
as Fd = F ∗ε/2a cos φ ∼ 50 pN, which agrees well with
experiments yielding values between 20 and 120 pN [5,11,33].
Note that this estimate of Fd is sensitive to the choice of
the lattice spacing parameter value a. (Sometimes, a nematic
spin in the LL model is taken to represent a close-packed
cluster of up to ∼102 molecules rather than a single molecule
[34], yielding a somewhat larger a and, in turn, a smaller
Fd .) Moreover, like in experiments [33], our data displayed in
Fig. 4(b) suggest a decrease of the line tension with increasing
temperature. This also agrees with the phenomenological
prediction Fd ∝ K , where K , the Frank elastic constant
of the nematic LC, decreases with increasing temperature
[23,24]. Finally, Fd is a liquid-crystalline material property
and should be independent from the specific geometrical
setup of our simulated experiment, i.e., nanochannel size
parameters h and l, as well as the external force pulling
direction.
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FIG. 4. (a) Equilibrium colloidal particle position versus applied
force for different temperatures. Straight lines represent Hookean
linear fits. (b) Temperature dependence of the force constant inverse
1/k∗.

IV. CONCLUSION

A simple microscopic spin model is employed to study
a nematic liquid-crystalline system containing a spherical
particle entangled by a disclination line, using lattice-based
MC simulations. The conventional single-spin-flip Markov
chain MC procedure is adapted to incorporate the multiscales
entering into the problem via the relatively slow translational
motion of a larger particle in equilibrium with the surrounding
liquid-crystalline medium. It is seen that our simulations
qualitatively capture the physical behavior of a real system,
including an estimate for the disclination line tension in the
range of ∼50 pN and its decrease with increasing temperature.
Simulation methods adopted here enable us to study a
reasonably large system and allow us, at the same time, to look
into the detailed nanoscale behavior. Currently, this would have
been less practicable using an off-lattice model, coarse-grained
or atomistic, for reasons of unacceptable computational cost.
On the other hand, we also deliberately avoid continuum-
based phenomenological approaches due to the constraints
in the lower limit of the length scales they can probe
into.
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