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Fréedericksz transition in the director-density coupling theory

Carlindo Vitoriano
Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Avenida Bom Pastor S/N, Boa Vista, 55292-270,

Garanhuns, PE, Brazil
(Received 2 July 2014; revised manuscript received 31 July 2014; published 4 September 2014)

We show that the director-density coupling theory gives rise to a singular behavior for the mass density. To
overcome this drawback, we propose to supplement the theory with a term that can be derived by regarding liquid
crystals as anisotropic Korteweg fluids. We thus show that the static bevahior of the resulting theory predicts a
Fréedericksz transition accompanied by a modulation in the mass density.
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I. INTRODUCTION

The acousto-optic effect in nematic liquid crystals [1–4] has
provided the impetus for generalizing the Oseen-Frank energy
by including effects due to the coupling between the liquid-
crystal director n̂ and inhomogeneities in the mass density
ρ [5,6]. In the framework in which liquid crystals are regarded
as anisotropic Korteweg fluids [6–12], the usual Oseen-Frank
energy density

fof = 1
2K1(∇ · n̂)2 + 1

2K2[n̂ · (∇ × n̂)]2

+ 1
2K3|n̂ × (∇ × n̂)|2, (1)

where K1, K2, and K3 are, respectively, the Frank constants
for splay, twist, and bend, is supplemented with the elastic
energy density

fkf = ρ
{
σ0(ρ) + 1

2B0|∇ρ|2 + 1
2u2[(∇ρ) · n̂]2

}
, (2)

where ρ2(dσ0/dρ) is an increasing function of ρ and B0 and
u2 are acoustic susceptibilities.

Quite recently, the authors of Ref. [12] considered a nematic
liquid-crystal cell with strong planar anchoring conditions
at the boundaries. Assuming K1 = K2 = K3 ∝ ρ, they have
shown that the static behavior of the theory [6] predicts
a Fréedericksz-type transition followed by a mass density
undulation. The critical threshold voltage of the transition
coincides with that predicted by the Oseen-Frank static theory.
In addition, expressions for the director and mass density
profiles were also derived and discussed.

A few years before Virga’s proposal [6], Selinger and
collaborators [5] (see also Refs. [13–15]) introduced the elastic
energy density,

fddc =
∑
i,j

[
u1

(
∂2ρ

∂xi∂xj

)
+ u2

(
∂ρ

∂xi

)(
∂ρ

∂xj

)]
ninj , (3)

as a supplement to the Oseen-Frank energy density and,
subsequently, applied the model to explain several experi-
mental results [5,16–18]. Here u1 and u2 are the acoustic
susceptibilities of the director-density coupling theory. We
should like to observe in this connection that the u1 term
is essential for explaining the experimental data [19] for the
action of ultrasonic waves on homeotropically aligned nematic
liquid-crystal cells [20–23]. In discussing the Fréedericksz
transition in nematic liquid crystals on the basis of the
director-density coupling theory, we have found that fddc alone
gives rise to a singular behavior for ρ [see Eq. (75) below].

Due to this difficulty, the proposal is to add the second term
appearing in Eq. (2) to fddc in order to prevent the mass density
from becoming singular. Thus, by retaining terms up to second
order in ∂ρ/∂xi [to be consistent with Eq. (3)], a more general
elastic energy density thus obtained is given by

f = fof + fddc + 1
2B|∇ρ|2, (4)

where B = ρ0B0 and ρ0 is the average mass density. Here
it is very important to emphasize that the inclusion of the
B-dependent term does not alter our previous results reported
in Refs. [21–23], since it would be reduced to a constant value
with no influence on the dynamic of the director.

The rest of the paper is organized in the following way.
In Sec. II we consider a liquid-crystal cell connected to a
constant voltage source and derive the set of equations that
determines the equilibrium configuration for ρ and n̂. We thus
particularize the equations to the cases of homeotropic and
planar alignments in Secs. III and IV, respectively. Finally, a
summary and concluding remarks are provided in Sec. V.

II. THEORY

Consider a liquid-crystal cell consisting of a nematic
liquid-crystal layer of thickness a sandwiched between two
large parallel plates: The alignment can be either homeotropic
[Fig. 1(a)] or planar [Fig. 1(b)]. A fixed voltage V is applied
across the cell and hence an electric field

E = E(z)ẑ (5)

along the z direction appears inside the cell. The electric
displacement reads [24]

D = ε0[ε⊥E + (�ε)(E · n̂)n̂], (6)

where ε0 is the permittivity of vacuum; ε⊥ and ε‖ are, respec-
tively, dielectric susceptibilities perpendicular and parallel to
the director; �ε = ε‖ − ε⊥ denotes the dielectric anisotropy;
and n̂ = n̂(z). In the absence of free charge one has ∇ · D = 0
and thus the z component of D is constant across the cell;
in addition, it is related to the surface free charge density
σ = ẑ · D on the bottom surface of the nematic cell. If we now
return to Eq. (6), we find that

E(z) = σ

ε0[ε⊥ + (�ε)(n̂ · ẑ)2]
. (7)
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FIG. 1. (Color online) Cell of thickness a containing nematic
liquid crystal connected to a fixed voltage source: (a) homeotropic
alignment and (b) planar alignment. On the right, the coordinate
system defines the angles θ for the director.

The equilibrium configuration of the director is found by
minimizing [24]

g =
∫ a

0

(
f − 1

2
D · E

)
dz (8)

with respect to θ (z) and ρ(z) and subject to the constraint of
global mass conservation∫ a

0
ρ(z) dz = M (9)

and fixed voltage ∫ a

0
E(z) dz = V. (10)

In contrast to the assumption made in Ref. [12] (see the
Introduction), we emphasize that no relevant dependence of the
Frank constants on ρ is assumed from now on [5]. Applying
techniques from the calculus of variations to isoperimetric
problems [25], the equilibrium configuration is obtained by
solving the following set of coupled equations:

∂f̃

∂σ
= 0, (11)

d2

dz2

(
∂f̃

∂ρzz

)
− d

dz

(
∂f̃

∂ρz

)
+ ∂f̃

∂ρ
= 0, (12)

∂f̃

∂θ
− d

dz

(
∂f̃

∂θz

)
= 0, (13)

in which θz ≡ dθ/dz, ρz ≡ dρ/dz, ρzz ≡ d2ρ/dz2,

f̃ = f − 1

2
D · E + μρ + λE

= f + μρ + 2λσ − σ 2

2ε0[ε⊥ + (�ε)(n̂ · ẑ)2]
, (14)

μ and λ are (constant) Lagrange multipliers, and use of D · E =
σE(z) has been made. The substitution of f̃ in Eq. (11) gives
us directly

λ = σ (15)

and then the case of constant voltage is mapped onto the case
of constant charge [24]. In addition, since ∂f̃ /∂ρ = μ, we see
that Eq. (12) can be immediately integrated to yield

d

dz

(
∂f̃

∂ρzz

)
−

(
∂f̃

∂ρz

)
+ μz = C, (16)

where C is a constant of integration. In order to compare
our results with those reported in Ref. [12], we shall assume
throughout the paper the strong-anchoring boundary condition,
i.e.,

θ (0) = θ (a) = 0 (17)

and (
dρ

dz

)
z=0

=
(

dρ

dz

)
z=a

= 0. (18)

III. HOMEOTROPIC ALIGNMENT

For homeotropic geometry, the case of interest is that of
negative dielectric materials. In considering this, we set

�ε = −|�ε| (19)

for convenience. Now we see from Fig. 1(a) that

n̂ · ẑ = cos θ (z) (20)

and thus Eq. (14) becomes

f̃ = 1

2
(K1 sin2 θ + K3 cos2 θ )

(
dθ

dz

)2

+ 1

2
B(ρz)

2 + μρ

+ [u1ρzz + u2(ρz)
2] cos2 θ + σ 2

2ε0(ε⊥ − |�ε| cos2 θ )
.

(21)

When we insert Eq. (21) into Eq. (16) we obtain

− u1

(
dθ

dz

)
sin(2θ ) − (B + 2u2 cos2 θ )

(
dρ

dz

)
+ μz = C.

(22)

By virtue of (17) and (18), it is straightforward to find that
C = 0 and also μ = 0. Therefore, the space derivatives of ρ

and θ are interrelated as follows:

dρ

dz
= − u1 sin(2θ )

B + 2u2 cos2 θ

(
dθ

dz

)
. (23)

Now we substitute Eq. (21) into Eq. (13). A little calculation
yields

(K1 sin2 θ + K3 cos2 θ )
d2θ

dz2
+ 1

2
(K1 − K3)

(
dθ

dz

)2

sin(2θ )

+ |�ε|σ 2 sin(2θ )

2ε0[ε⊥ − |�ε| cos2 θ ]2
+

[
u1

d2ρ

dz2
+ u2

(
dρ

dz

)2
]

× sin(2θ ) = 0. (24)

In the following, we explore the consequences of Eqs. (23)
and (24).
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A. Uniform density

First, we examine the equilibrium configuration with
uniform mass density as follows:

ρ(z) = M

a
. (25)

When this is put into Eq. (23), we find that the relationship

u1

(
dθ

dz

)
sin(2θ ) = 0 (26)

must be satisfied for all values of z between 0 and a. This,
together with the boundary condition (17), implies

θ (z) = 0, (27)

which also satisfies Eq. (24). Upon returning to Eq. (10), we
thus eliminate σ in favor of V ,

σ = ε0ε‖
a

V. (28)

Finally, Eq. (8) furnishes the corresponding free energy for the
nondistorted director profile,

g = −ε0ε‖
2a

V 2. (29)

B. Nonuniform density

Next we shall discuss the case in which inhomogeneities
in density appear. To proceed with the analytical calcula-
tion, it is necessary to employ a simplifying approximation.
Specifically, we limit ourselves to describe the vicinity of the
Fréedericksz transition in which θ � 1. Thus, by neglecting
terms of O(θ5), we find that[

u1
d2ρ

dz2
+ u2

(
dρ

dz

)2
]

sin(2θ ) = − 4u2
1

B + 2u2

(
d2θ

dz2

)
sin2 θ

− 2u2
1

B + 2u2

(
dθ

dz

)2

sin(2θ ) + O(θ5). (30)

The reason for keeping sin2 θ and sin(2θ ) in the right-hand
side of Eq. (30), instead of replacing them with θ2 and 2θ ,
respectively, as would expected, lies in the fact that after the
substitution of Eq. (30) in Eq. (24) we arrive at

(K ′
1 sin2 θ + K3 cos2 θ )

d2θ

dz2
+ 1

2
(K ′

1 − K3)

(
dθ

dz

)2

sin(2θ )

+ |�ε|σ 2 sin(2θ )

2ε0[ε‖ + |�ε| sin2 θ ]2
= 0, (31)

where

K ′
1 = K1 − 4u2

1

B + 2u2
(32)

is the renormalized constant for splay and assumed to be
positive. Here we have eliminated cos2 θ that is present in the
third term of Eq. (24) in favor of sin2 θ in going to Eq. (31).
Therefore, the net result of considering inhomogeneities in
density is to renormalize the constant for splay only [see
Eq. (24) with u1 = u2 = 0] and we can proceed, within an
error of O(θ5), without more approximations. It turns out that

the differential equation (31) is exactly soluble [24]. In fact,
after multiplying it by dθ/dz, it can be cast in the form

d

dz

[
1

2
(K ′

1 sin2 θ + K3 cos2 θ )

(
dθ

dz

)2
]

− d

dz

[
σ 2

2ε0[ε‖ + |�ε| sin2 θ ]

]
= 0, (33)

which is immediately integrated to yield

(K ′
1 sin2 θ + K3 cos2 θ )

(
dθ

dz

)2

− σ 2

ε0[ε‖ + |�ε| sin2 θ ]
= C ′.

(34)

The constant

C ′ = − σ 2

ε0[ε‖ + |�ε| sin2 θm]
(35)

is determined by imposing symmetric distortion around z = a
2 ,

that is, (
dθ

dz

)
z= a

2

= 0, (36)

θ
(
z = a

2

)
= θm, (37)

where θm is the maximum angle. The solution with dθ/dz � 0
and valid in the range 0 � z � a/2 is given by the following
pair of coupled equations:∫ θ

0
I (α) dα = zσ√

ε0
, (38)

∫ θm

0
I (α) dα = aσ

2
√

ε0
, (39)

where

I (α) =
√

K ′
1 sin2 α + K3 cos2 α

×
(

1

ε‖ + |�ε| sin2 α
− 1

ε‖ + |�ε| sin2 θm

)−1/2

= ε‖
√

K3√|�ε|√θ2
m − α2

(1 + A1α
2 + A2θ

2
m + A3α

4

+A4α
2θ2

m + A5θ
4
m + · · · ), (40)

and

A1 = K ′
1

2K3
+ |�ε|

2ε‖
− 1

3
, (41)

A2 = |�ε|
2ε‖

+ 1

6
, (42)

A3 = K ′
1|�ε|

4K3ε‖
+ K ′

1

6K3
− 1

8

(
K ′

1

K3

)2

− |�ε|
3ε‖

− 1

8

( |�ε|
ε‖

)2

− 1

45
, (43)
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A4 = K ′
1|�ε|

4K3ε‖
+ K ′

1

12K3
+ 1

4

( |�ε|
ε‖

)2

− |�ε|
12ε‖

− 1

45
, (44)

A5 = 7

360
− |�ε|

12ε‖
− 1

8

( |�ε|
ε‖

)2

. (45)

For z > a/2, one has

θ (z) = θ (a − z). (46)

The above expansion is useful to proceed with the analytical
discussion and, in addition, is in agreement with our observa-
tion below Eq. (32). Indeed, substituting this result back into
Eq. (39) yields, putting α = θm sin φ,

1 + Aθ2
m + Dθ4

m + · · · = σ

σc

, (47)

in which

A ≡ A1

2
+ A2, (48)

D ≡ 3A3

8
+ A4

2
+ A5, (49)

σc ≡ πε‖
a

√
ε0K3

|�ε| . (50)

It is clear that Eq. (47) admits solution only if σ � σc. In this
case, one finds

θm = 1√
A

(
σ − σc

σc

)1/2[
1 − D

2A2

(
σ − σc

σc

)
+ · · ·

]
.

(51)
To illustrate that the calculation is working properly, in

Fig. 2 we show a graphical comparison between Eqs. (39)
and (51). We now substitute expansion (40) into Eq. (38) and,
after integrating, we obtain

φ0 +
[
Aφ0 − A1

4
sin(2φ0)

]
θ2
m + O

(
σ − σc

σc

)2

= πσz

aσc

,

(52)
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FIG. 2. (Color online) Maximum angle versus σ/σc for K1 =
6.4 × 10−12 N, K3 = 10 × 10−12 N, |�ε| = 1.0, and ε‖ = 3.0. The
solid line is obtained from Eq. (39) and the dots are calculated using
Eq. (51).
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FIG. 3. (Color online) θ (z) versus z/a for K1 = 6.4 × 10−12 N,
K3 = 10 × 10−12 N, |�ε| = 1.0, and ε‖ = 3.0. The solid line is
obtained from Eq. (38) using θm = 0.7854 and σ/σc = 1.2602, and
the dots are calculated using Eq. (56).

where

θ (z) = θm sin(φ0). (53)

Next we put

φ0 = πσz

aσc

+ δφ0 (54)

into Eq. (52) and, after retaining terms up to first order in δφ0,
we obtain

δφ0 =
[
A1

4
sin

(
2πσz

aσc

)
− Aπσz

aσc

]
θ2
m + O

(
σ − σc

σc

)2

.

(55)
The use of Eqs. (51), (54), and (55) in Eq. (53) enables us to
write

θ (z) = 1√
A

(
σ − σc

σc

)1/2

sin

(
πz

a

)

×
{

1 + 1

2A

[
A1 cos2

(
πz

a

)
− D

A

](
σ − σc

σc

)
+ · · ·

}
,

(56)

which is valid in the entire range of the variable z, since
Eq. (56) satisfies the relationship given by Eq. (46). We should
like to observe here that θ (z = a

2 ) = θm [see Eq. (51)] and
(dθ/dz)z= a

2
= 0, as required by Eqs. (36) and (37); moreover,

up to O( σ−σc

σc
)3/2, θ (z) given by Eq. (56), satisfies Eq. (24).

Finally, a graphical comparison between Eqs. (38) and (56)
is also shown in Fig. 3, in which the numerical values
θm = 0.7854 and σ/σc = 1.2602 were previously calculated
using Eq. (39). It remains to eliminate σ in favor of V . First,
we manipulate Eq. (10) to bring it into the form

σ

ε0ε‖

∫ a

0

[
1 − |�ε|

ε‖
θ2 + |�ε|

ε‖

( |�ε|
ε‖

+ 1

3

)
θ4 + · · ·

]
× dz = V. (57)

The integration is straightforward and, after a little algebra, we
find that

G

(
σ − σc

σc

)
+ H

(
σ − σc

σc

)2

+ · · · = V − Vc

Vc

, (58)
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where

G = K ′
1ε‖ + K3|�ε|

K ′
1ε‖ + 3K3|�ε| , (59)

H = |�ε|(3|�ε|A + ε‖A − 4ε‖A2 − ε‖A1A + 4ε‖D)

8ε2
‖A3

, (60)

Vc = π

√
K3

ε0|�ε| . (61)

Resolving Eq. (58) for ( σ−σc

σc
) yields

(
σ − σc

σc

)
= 1

G

(
V − Vc

Vc

)
− H

G3

(
V − Vc

Vc

)2

+ · · · . (62)

This must be substituted back into Eq. (56), and the final
expression for θ (z) as a function of the measurable quantity V

is given by

θ (z) = 1√
AG

(
V − Vc

Vc

)1/2{
sin

(
πz

a

)
+

[
A6 sin

(
πz

a

)

+A7 sin

(
3πz

a

)](
V − Vc

Vc

)
+ · · ·

}
, (63)

where

A6 = A1

8AG
− H

2G2
− D

2A2G
, (64)

A7 = A1

8AG
. (65)

Having obtained θ (z), the next step is to return to Eq. (23)
in order to calculate the corresponding mass density profile.
After a little inspection, we see that

dρ

dz
= − u1

B + 2u2

d

dz

[
θ2 + u2 − B

3(B + 2u2)
θ4

]
+ O(θ6) (66)

and thus we obtain

ρ(z) = M

a
+ u1

2AG(B + 2u2)

(
V − Vc

Vc

)(
cos

(
2πz

a

)

+
{

1

G

[
u2 − B

3A(B + 2u2)
− H

G
− D

A2

]
cos

(
2πz

a

)

− 1

4AG

[
u2 − B

3(B + 2u2)
− A1

]
cos

(
4πz

a

)}

×
(

V − Vc

Vc

)
+ · · ·

)
, (67)

where we have used Eq. (9) to calculate the constant of
integration. We are now in a position to obtain the energetic
cost, via Eq. (8), associated with the distortion given by
Eq. (63). The calculation is lengthy albeit straightforward.
We give, therefore, only the final result,

g = −ε0ε‖V 2
c

2a

[
1 + 2

(
V − Vc

Vc

)
+ Z

(
V − Vc

Vc

)2

+ · · ·
]
,

(68)

 1.5
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FIG. 4. (Color online) Plot of Z as a function of r ≡ K ′
1/K1 for

K1 = 6.4 × 10−12 N, K3 = 10 × 10−12 N, |�ε| = 1.0, and ε‖ = 3.0.

where

Z = G − 2H

G3
+ |�ε|

ε‖(AG)2

(
AH

G
+ D

A
− A1

)
. (69)

It is interesting to call attention to the contribution of fddc for
the free energy,

∫ a

0
fddc dz = − π2u2

1(B + u2)

2a(AG)2(B + 2u2)2

(
V − Vc

Vc

)2

+ · · · .

(70)
A representative plot of Z as a function of r ≡ K ′

1/K1 is shown
in Fig. 4. Since Z > 1, the free energy (68) is smaller than

that given by Eq. (29): g = − ε0ε‖V 2
c

2a
[1 + 2(V −Vc

Vc
) + (V −Vc

Vc
)2].

Therefore, the elastic energy (4) predicts a Fréedericksz
transition accompanied by inhomogeneities in density.

Moreover, the critical threshold voltage, see Eq. (61),
coincides with that predicted by the Oseen-Frank static theory.

IV. PLANAR ALIGNMENT

For planar geometry, the case of interest is that of positive
dielectric anisotropy,

�ε > 0. (71)

Almost all we need to proceed with the discussion has been
already presented in Secs. II and III. This helps us, therefore,
to simplify the analysis. Noting from Fig. 1(b) that

n̂(z) = x̂ cos θ (z) + ẑ sin θ (z), (72)

we thus find that Eq. (14) becomes

f̃ = 1

2
(K1 cos2 θ + K3 sin2 θ )

(
dθ

dz

)2

+ 1

2
B(ρz)

2 + μρ

+ [u1ρzz + u2(ρz)
2] sin2 θ + σ 2

2ε0(ε⊥ + �ε sin2 θ )
. (73)

The substitution of Eq. (73) into Eq. (16) now implies

dρ

dz
= u1 sin(2θ )

B + 2u2 sin2 θ

(
dθ

dz

)
, (74)
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which should be contrasted with Eq. (23). Note that for B = 0,
the above equation makes the disconcerting prediction that

lim
z→0+

dρ

dz
= ∞, (75)

which we have removed in advance by considering a term
coming from Virga’s theory, without fully adhering to it.
In addition, one sees clearly from Eqs. (23) and (74) [and
confirmed by Eq. (67) and Eq. (84) below] that the u1 term
in Eq. (3) is crucial to trigger density instability and it helps
to reduce the free energy [see Eq. (70) and Eq. (86) below].
After these comments to justify the introduction of 1

2B|∇ρ|2
into fddc, we note that the substitution of Eq. (73) into Eq. (13)
results in

(K3 sin2 θ + K1 cos2 θ )
d2θ

dz2
+ 1

2
(K3 − K1)

(
dθ

dz

)2

sin(2θ )

+ (�ε)σ 2 sin(2θ )

2ε0[ε⊥ + (�ε) sin2 θ ]2
−

[
u1

d2ρ

dz2
+ u2

(
dρ

dz

)2
]

× sin(2θ ) = 0. (76)

A. Uniform density

A nondistorted director profile coexisting with an uniform
mass density profile is compatible with Eqs. (74) and (76).
Therefore, the corresponding free energy reads

g = −ε0ε⊥
2a

V 2, (77)

where we have used σ = (ε0ε⊥/a)V to eliminate σ in favor
of V . This expression should be compared with Eq. (29).

B. Nonuniform density

Following the previously developed scheme of approxima-
tion [see Eq. (30)], we substitute[

u1
d2ρ

dz2
+ u2

(
dρ

dz

)2
]

sin(2θ ) = 4u2
1

B

(
d2θ

dz2

)
sin2 θ

+2u2
1

B

(
dθ

dz

)2

sin(2θ ) + O(θ5) (78)

in Eq. (76) to obtain

(K ′
3 sin2 θ + K1 cos2 θ )

d2θ

dz2
+ 1

2
(K ′

3 − K1)

(
dθ

dz

)2

sin(2θ )

+ (�ε)σ 2 sin(2θ )

2ε0[ε⊥ + (�ε) sin2 θ ]2
= 0, (79)

where the renormalized constant for bend

K ′
3 = K3 − 4u2

1

B
(80)

is assumed to be positive. Note that the above Euler-Lagrange
equation for θ is mapped onto the one given by Eq. (31) by the
correspondence K ′

1 ↔ K ′
3, K3 ↔ K1, ε‖ ↔ ε⊥, and |�ε| ↔

(�ε). This correspondence also applies to establish a map
between Eq. (57) and the corresponding one for the planar

alignment case:

σ

ε0ε⊥

∫ a

0

[
1 − �ε

ε⊥
θ2 + �ε

ε⊥

(
�ε

ε⊥
+ 1

3

)
θ4 + · · ·

]
dz = V.

(81)

Since θ (z) also satisfies the conditions given by Eqs. (36), (37),
and (46), the solution of (79) thus may be immediately deduced
from Eq. (63). In particular, the threshold voltage is given by

V ′
c = π

√
K1

ε0(�ε)
. (82)

Our prediction for θ (z) differs significantly from that reported
in Ref. [12] [see Eq. (4.24) in which ε → √

(V − V ′
c )/V ′

c ],

θ (z) = A

(
V − V ′

c

V ′
c

)1/2

sin

(
πz

a

)
+ B

(
V − V ′

c

V ′
c

)
sin

(
πz

a

)
+ · · · . (83)

The mass density profile follows from Eq. (74). Up toO(V −V ′
c

V ′
c

),
we find

ρ(z) = M

a
− 2u1K1ε⊥

B[K ′
3ε⊥ + K1(�ε)]

(
V − V ′

c

V ′
c

)
cos

(
2πz

a

)
+ · · · , (84)

whose dependence on V and z coincides with that obtained
in Ref. [12]. Finally, we give the free energy for V � V ′

c as
follows:

g= − ε0ε⊥V ′2
c

2a

[
1 + 2

(
V − V ′

c

V ′
c

)
+ Z′

(
V − V ′

c

V ′
c

)2

+ · · ·
]

,

(85)

where Z′ is obtained from Eq. (69) by using the correspon-
dence described in the text below Eq. (80). A representative
plot of Z′ versus r ′ ≡ K ′

3/K3 is shown in Fig. 5. In passing,
we note that the contribution of fddc for g is given by∫ a

0
fddc dz = − π2u2

1

2a(A′G′)2B

(
V − V ′

c

V ′
c

)2

+ · · · . (86)

We thus arrive at the same conclusion as in the case of
homeotropic alignment, namely that the system undergoes

 1.5

 2

 2.5

 3

 0  0.25  0.5  0.75  1

Z′

r′ 

FIG. 5. (Color online) Plot of Z′ as a function of r ′ ≡ K ′
3/K3 for

K1 = 6.4 × 10−12 N, K3 = 10 × 10−12 N, �ε = 1.0, and ε⊥ = 4.0.
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a Fréedericksz transition driven by V followed by inhomo-
geneities in density. As before, V ′

c coincides with the critical
voltage predicted by the Oseen-Frank static theory.

V. CONCLUDING REMARKS

In conclusion, we have discussed the Fréedericksz tran-
sition in nematic liquid crystals in the framework of the
director-density coupling theory and have found that fddc alone
predicts a singular behavior for ρ. To avoid this nonphysical

divergence, we have then supplemented the theory with the
term 1

2B|∇ρ|2 that penalizes rapid changes in ρ independently
of the orientation of n̂. In doing so, we have shown that the
theory predicts that the Fréedericksz transition is necessarily
accompanied by inhomogeneities in the mass density. It is a
remarkable fact that, within an error of O(θ5), the effect of
fddc + 1

2B|∇ρ|2 on n̂ is to renormalize the Frank constants
K1 (homeotropic alignment) and K3 (planar alignment) only.
Finally, we point out that our results differ from the ones
reported in Ref. [12] and only experimental data can validate
(or invalidate) the competing theories.
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