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Laércio Dias and Fernando Parisio
Departamento de Fı́sica, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil

(Received 23 April 2014; published 29 September 2014)

Minimal fragmentation models intend to unveil the statistical properties of large ensembles of identical objects,
each one segmented in two parts only. Contrary to what happens in the multifragmentation of a single body,
minimally fragmented ensembles are often amenable to analytical treatments, while keeping key features of
multifragmentation. In this work we present a study on the minimal fragmentation of regular polygonal plates
with up to 100 sides. We observe in our model the typical statistical behavior of a solid torn apart by a strong
impact, for example. We obtain a robust power law, valid for several decades, in the small mass limit. In the
present case we were able to analytically determine the exponent of the cumulative probability distribution to be
1/2. Less usual, but also reported in a number of experimental and numerical references on impact fragmentation,
is the presence of a sharp crossover to a second power-law regime, whose exponent we found to be between 1/3

and 1 depending on the way anisotropy is introduced in the model.
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I. INTRODUCTION

Multifragmentation of solids in its various forms [1–3] is
amongst the toughest problems in the physics of complex
systems, especially regarding the prospects to reach closed
analytical results of some generality. Very few statistical
fragmentation models are amenable to a fully analytical
approach, among them, the random fragmentation of a line [4],
the model by Mott and Linfoot to describe the fragmentation
of a flat surface into rectangles with random side lengths [5]
(for a recent account see [6]), and the minimal fragmentation
of an ensemble of rectangular plates [7]. Although all these
constructions in the realm of geometrical probability [8]
are highly idealized, they do shed some light into more
realistic aspects of multifragmentation problems, for instance,
the existence of power-law regimes in the fragment size
distribution in the limit of small mass [7].

The minimal fragmentation (MF) model of planar objects
consists in considering a large collection of identical bodies
split in two fragments only, instead of a single body cracked in
a large number of pieces [7]. In our minimal fragmentation
model for a polygon, a crack is represented by a straight
segment that is fully characterized by two random variables:
l ∈ [0,L] representing one of the crack limits intersecting the
border of the plate, with L being the polygon perimeter, and,
φ ∈ [−π/2,π/2] being the angle between the segment and
the normal direction to the side selected by the variable l.
Initially we do not consider any directional or positional bias
such that l and φ have uniform distributions. Of course, there
are many other ways to uniformly cut the plate. As discussed
in several earlier works, there is no a priori prescription to
define the partitioning of a body with a dimension greater
than one. Different, reasonable prescriptions lead to quite
distinct results, a fact that is clearly illustrated by the Bertrand
paradox (1907) [8]. Since we are interested in situations
where the cracks either originate or cross the boundaries
of polygons without any bias and isotropically, we assume
that the segmentation line has a uniform probability to cross
any interval in the boundary of the rectangle, the angular
distribution of the lines being also uniform. Other situations
can be considered, as for example, breaking isotropy by

selecting a preferred direction for the crack, which amounts to
a nonuniform distribution for φ. We will return to this point
later.

The fact that we are considering regular polygons only is a
strong constraint, but we initially note that the analytical results
presented here, in combination with numerical calculations,
would be hardly obtained for irregular polygons. In addition,
one clear situation where MF models may apply is the
propagation of a failure on a tiled floor, where, typically, a
fragmented tile is traversed by the crack only once. The tiling
is usually made of regular polygons, one example being the
honeycomb, where a flat surface is covered with hexagons.

A point that deserves attention in MF models, since it might
be counterintuitive at first glance, is that they mainly produce
very small masses. When a solid is shattered, the proliferation
of “zero”-size particles is more or less expected and, under
certain reasonable conditions, it has been formally shown
to occur [9–12], even in cases where stopping mechanisms
are incorporated in the models [13]. It is interesting that
in an ensemble of minimally fragmented objects the same
phenomenon persists as it has been illustrated in [7] and
confirmed here.

In this work we consider the MF of a regular polygon with
total mass M uniformly distributed over its surface. Our objec-
tive is to study the most commonly recorded quantity in exper-
iments and simulations, namely, the distribution of fragment
masses. For the sake of mathematical convenience our reason-
ing will be in terms of the cumulative probability distribution

P(m) =
∫ m

0
dm′ p(m′),

where p(m′) is the probability density function. In experi-
mental papers it is more usual to use P>(m), the probability to
find a fragment with mass larger than m (it is easier to collect
larger fragments first). Of course, P(m) = 1 − P>(m).

The article is organized as follows: in the next section we
give a few preliminary definitions and in Sec. III we start with
the MF of triangular plates. In Sec. IV we review some results
found in [7] on the MF of squared plates. Section V presents a
study of circular plates minimally fragmented. In Sec. VI the
case of regular polygons with an arbitrary number of sides is
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considered. In Sec. VII we introduce anisotropy in the model.
Our main conclusions are summarized in Sec. VIII.

II. PRELIMINARY DEFINITIONS

We will denote the cumulative probability distribution
associated to an ensemble of n-sided regular polygons by
P (n)(m). For a fixed point in its perimeter, i. e., for a fixed value
of l, it is useful to define the auxiliary distribution P (n)(m|l),
such that

P (n)(m) = 1

L

∫ L

0
dl P (n)(m|l), 0 � m � M. (1)

Notice that P (n)(m|l) stands for the conditional probability
to get a fragment with mass smaller than m out of the
subensemble in which all the cracks started at the same point
on the perimeter. An important feature in MF is that only
two fragments are generated per event. For each fragment of
mass m, there is another one with mass M − m, and, thus,
P (n)(m) = P (n)

> (M − m) = 1 − P (n)(M − m). In particular,
for m = M/2 we have P (n)(m) = P (n)(M − m) = 1/2. This
implies that all information can be captured by taking into
account only the smallest fragment for each event in the
ensemble. Thus, without loss of generality, one can work with
the normalized mass μ = 2m/M , where 0 � m � M/2 or,
equivalently, 0 � μ � 1, with P (n)(μ = 1) = 1. We get

P (n)(μ) = 1

L

∫ L

0
dl P (n)(μ|l), 0 � μ � 1, (2)

which, of course, presents the same properties of (1).

III. TRIANGLE

Let us begin with the simplest polygon in Euclidian
geometry. Consider an equilateral triangle with perimeter L =
6a and uniform mass distribution. To deal with its MF, first, we
see that it is sufficient to restrict the variable l to the interval
[0,2a], that is, to integrate (2) over one of the equivalent sides.
In addition, note that all possible shapes resulting from the
MF of an equilateral triangle are schematically described in
Fig. 1 by fragments of type 1̄ (triangles), type 2̄ (trapezoids),
or type 3̄ (triangles), which makes it clear that, because of the

1̄

2̄

3̄

a 0l

φ

FIG. 1. (Color online) Three minimal fragmentation events rep-
resented on the same equilateral triangle. Fragments can be either
triangular or trapezoidal. The small fragments are in the left of cracks
1̄ and 2̄ and in the right of crack 3̄, respectively.

reflection symmetry over the triangle heights, in fact, we only
need to consider the interval [0,a], with 6 multiplying the final
integral. Note carefully the difference between type 1̄ and type
3̄ fragments. In the former the smaller fragment is located at
the left-hand side, while in the latter it is in the right-hand side.
Equation (2) becomes

P (3)(μ) = 1

a

∫ a

0
dl P (3)(μ|l), 0 � μ � 1. (3)

Since we are taking φ as a uniform random variable,
P (3)(μ|l) = �φ/π , where �φ stands for the angular interval
for which the fragment mass is smaller than μ. Let us calculate
P (3)(μ|l) in detail for type 1̄ fragments. First note that the
maximum mass (nonnormalized) is

√
3a(a − l)/2, implying

that, for a fixed value of l, μ � 1 − l/a. Equivalently, if we
fix a value for μ, we get l � a(1 − μ). If a realization of the
random variable φ is such that a fragment type 1̄ is produced,
then μ = (1 − l/a)2/(1 − √

3 tan φlim), where φlim is the angle
for which the fragment mass is exactly μ. We get φlim =
tan−1[1/

√
3 − (1 − l/a)2/

√
3μ]. Therefore, for fragments of

type 1̄ we obtain �φ = φlim − (−π/2), which leads to

P (3)
1̄ (μ|l) = 1

π

{
π

2
+ tan−1

[
1√
3

− (1 − l/a)2

√
3μ

]}
. (4)

Similarly, for fragments of type 2̄ we have μ ∈ [1 − l/a,1]
for a fixed value of l, or l ∈ [a(1 − μ),a] for a fixed value of
μ. The normalized mass is given by μ = 2 − (1 + l/a)2/(1 +√

3 tan φlim), yielding

P (3)
2̄ (μ|l) = 1

π

{
π

2
+ tan−1

[
(1 + l/a)2

√
3(2 − μ)

− 1√
3

]}
, (5)

where �φ = φlim − (−π/2). For fragments of type 3̄ we have
0 � μ � 1 and 0 � l � a. They will occur for nonnegative
values of φ in the interval [φlim,π/2], where φlim is the angle
corresponding to μ = 1, hence �φ = π/2 − φlim. For allowed
values of l and φlim we get a normalized mass given by
μ= (1 + l/a)2/(1 + √

3 tan φlim), and consequently

P (3)
3̄ (μ|l) = 1

π

{
π

2
− tan−1

[
(1 + l/a)2

√
3μ

− 1√
3

]}
. (6)

Gathering together expressions (4), (5), and (6), the cumulative
probability distribution (3) becomes

P (3)(μ) = 1

a

[∫ a(1−μ)

0
dl P (3)

1̄ (μ|l) +
∫ a

a(1−μ)
dl P (3)

2̄ (μ|l)

+
∫ a

0
dl P (3)

3̄ (μ|l)
]

,

which can be integrated and, after some algebra, results in

P (3)(μ) = 1 − 1

2π

{
12 tan−1

(
1 − μ√

3

)

−
√

6μ

[
π − 2 tan−1

( √
2μ

2 − μ

)]

+
√

6(2 − μ)

[
π − 2 tan−1

(√
2(2 − μ)

μ

)]}
.

(7)
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All information about the ensemble is contained in the above
relation.

We will refer to the limit of very small fragment mass as
the dust regime. The result found in (7) implies that P (3)(μ)
behaves as a power law in this limit. Explicitly,

P (3)(μ) ≈
√

3

2
μ

1/2, for μ → 0. (8)

We leave a more detailed discussion on this behavior to a later
section, after we have presented our results for general regular
polygons.

IV. SQUARE

In this section we will recast some analytical results
previously obtained in [7]. We consider this review to be
necessary in order to clarify our procedure in the case of regular
polygons with an arbitrary number of sides. In Eq. (9) of [7] the
mass distribution for rectangles of arbitrary aspect ratios γ is
given within the same MF model. To obtain the corresponding
distribution P (4)(μ) for an ensemble of squares we simply
set γ = 1. The obtained expression, after some trigonometric
simplification, can be written as

P (4)(μ) = 2

π
(μ + 1) tan−1(μ)

+
√

2μ

π

{
π − 2 tan−1

( √
2μ

1 − μ

)}
. (9)

For the sake of clarity, let us derive the above expression
by employing the same ideas of the previous section. In Fig. 2
we present all possible fragment geometries: types 1̄ and 4̄ are
triangles, while types 2̄ and 3̄ are trapezoids. Reflection upon
the vertical symmetry axis makes type 1̄ fragments become
type 4̄ fragments, as well, type 2̄ fragments are turned into
type 3̄ fragments. Thus, if for each value of l, we consider
only fragments of types 1̄ and 2̄, we have exactly half of the
total number. Therefore, we obtain

P (4)(μ) = 2

a

[∫
dl P (4)

1̄ (μ|l) +
∫

dl P (4)
2̄ (μ|l)

]
. (10)

1̄

2̄ 3̄

4̄

a 0l

φ

FIG. 2. (Color online) MF of a square. Small fragments can have
geometrical forms according to cracks of type 1̄, 2̄, 3̄, or 4̄. Smaller
fragments are in the left-hand side in the two first cases and in the
right-hand side in the two last cases.

For type 1̄ fragments and a fixed value of l, μ � 1 − l/a,
or equivalently, for a fixed value of μ, l � a(1 − μ). For
these fragments the normalized mass is given by μ = −(1 −
l/a)2/ tan(φ). From the last relation we obtain φ = φ(μ)
and �φ1̄. By the same token, for fragments of type 2̄, μ ∈
[a(1 − μ),a] and μ = 2(1 − l/a) + tan(φ). Thus, we have

P (4)(μ) = 2

a

{∫ a(1−μ)

0

1

π

[
π

2
− tan−1

(
(1 − l/a)2

μ

)]
dl

+
∫ a

a(1−μ)

1

π

[
π

2
+ tan−1(μ − 2(1 − l/a))

]
dl

}
,

which after integration yields (9).
The dust-regime power law is found from (9) by expanding

around μ = 0, which results in

P (4)(μ) ≈
√

2 μ
1/2, for μ → 0, (11)

which, apart from the multiplicative constant, coincides with
the result for the triangle.

The next case one should address would be that of a
regular pentagon. However, the modest n = 5 is already
almost prohibitive in terms of analytical calculations, and
the difficulty quickly increases with n. Thus, for n � 5, our
approach will be mainly numerical. There are, however, some
partial analytical results that can be obtained in the general
case. For simplicity, in the next section we jump to the most
symmetrical case, corresponding to the limit n → ∞.

V. CIRCLE

In the limit n → ∞ the polygon becomes a circle, the
crack being a chord linking two perimeter points. Due to the
continuous rotational symmetry, we can always admit that one
of these points is fixed. Let O be this fixed point. Thus, φ

represents the angle between the diameter line containing O

and the crack [see Fig. 3(a)].
Reflection symmetry about the diameter implies that we

just need to consider 0 � φ � π/2 rad. Observe that φ = 0
produces μ = 1 whereas φ = π/2 rad produces μ = 0. Since
φ is a random variable with uniform distribution, we get the

O

φ

(a)

θ

(b)

FIG. 3. (Color online) Two ways to produce a minimally frag-
mented disk. In (a) we pick the chord defined by the angle φ. Due
to the continuous symmetry of the circle, one only has to consider
a single perimeter point. In (b) the chord is always perpendicular
to the diameter with the incidence of the crossing point uniformly
distributed over the length of the diameter.
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FIG. 4. (Color online) “Shapes” of the cumulative probability
distributions for triangles, squares, and circles minimally fragmented.
The inset depicts the same functions in a log-log plot.

following cumulative probability distribution

P(μ) = �φ

π/2
= π/2 − φ(μ)

π/2
, (12)

where we need to obtain φ(μ). However μ(φ) is given by

μ = 1 − 2

π
[φ + cos φ sin φ], (13)

which turns out not to be invertible due to its transcendental
nature. One can solve the equation numerically and find the
curve that represents the mass distribution. Also, we can
simulate a few thousands of MF events and estimate the
cumulative probability distribution. The result of such an
approach is shown in Fig. 4 together with plots of functions (7)
and (9). Although the shapes of these curves are almost
indistinguishable in a cartesian plot, an equivalent log-log plot
shows that there are quite distinct power laws involved. We can
obtain more precise information, at least in the dust regime,
from (13). Here, small masses are equivalent to φ ≈ π/2 rad,
that is,

μ ≈ 4

3π

(
π

2
− φ

)3

, (14)

to the lowest nonvanishing order. Replacing this approximation
in (12), again, we obtain a power-law

P(μ) ≈
(

6

π2

)1/3

μ
1/3, for μ → 0. (15)

Interestingly enough, this time, the exponent is 1/3. This result
leaves us with two extrapolation hypotheses for arbitrary n

that stand out as, arguably, the most reasonable ones. Either (i)
although the triangle and the square present the same exponent
in the dust regime, starting from the pentagon, the exponent
continuously decreases until its asymptotic value of 1/3 for
n → ∞, or (ii) the exponent for all regular polygons with a
finite number of sides is 1/2, becoming 1/3 only for the circle.

As we will see in the next section, this issue is a sensitive
one and must be handled with care. Indeed, we will show that
supposition (i) is wrong and, although (ii) is correct, it does
not tell the whole story.

Although in the remainder of this work we will be restricted
to the aforementioned prescription [Fig. 3(a)], we recall that
there are many different ways to “uniformly” cut a disk, e.g.,
to select an arbitrary diameter and then to make an orthogonal
cut with uniform probability over the diameter length [see
Fig. 3(b)]. In this case it is easy to show that the mass of small
fragments is approximately given by μ ≈ 4θ3/3π , which is
analogous to Eq. (14) if we note that in this case a small mass
directly corresponds to a small θ . The key point comes from
the cumulative probability for small fragments, P(θ ) = (R −
R cos θ )/R ≈ θ2/2, which, due to its quadratic dependence on
θ , leads to a different power law:

P(μ) ≈
(

3π

27/2

)2/3

μ
2/3, for μ → 0.

This last prescription, as it stands, is less natural when we
address polygons (there is no diameter), and for this reason, we
will employ the first prescription, referring to the perimeter,
which can be trivially extended to polygons. Furthermore,
luckily, the exponent 2/3 and, in fact, all the results associated
to the second prescription are obtained within the first scenario
when we replace the constant angular probability distribution
by a probability density given by p(φ) = cos φ. This will be
shown in Sec. VII [see Eq. (21)].

VI. ARBITRARY REGULAR POLYGON

As we did for the MF of a circle, we can also find
the exponent associated to the dust regime analytically for
an arbitrary polygon. Indeed, notice that this regime must
come exclusively from triangular fragments (type 1̄ or type
n̄ generalizing Fig. 2), because only these fragments can have
vanishingly small masses, leading to an expression analogous
to (10), however, without the second term. Thus, we need to
evaluate

P (n)(μ) ≈ 2

a

∫
dl P (n)

1̄ (μ|l). (16)

For a fixed value of l, all type 1̄ fragments comply with

μ � 4

n

(
1 − l

a

)
tan

(
π

n

)
sin

(
2π

n

)
,

or, for a fixed μ, l � a(1 − fnμ), where

fn = n

4 tan(π/n) sin(2π/n)
,

for any finite n. So, integration limits are defined. Now, we
recall that �φ/π = [φlim − (−π/2)]/π . In the present case

φlim = − tan−1

[
an + (1 − l/a)2

bnμ

]
,
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where an = cot(2π/n) and b−1
n = (4/n) tan(π/n). Gathering

all these elements in (16), we get

P (n)(μ)

≈ 1 − fnμ − 2

aπ

∫ a(1−fnμ)

0
dl tan−1

[
an + (1 − l/a)2

bnμ

]
.

(17)

For μ ≈ 0 one can write∫ a(1−fnμ)

0
dl tan−1[· · · ]

=
∫ a

0
dl tan−1[· · · ] − afnμ tan−1[· · · ].

Hence, we get P (n)(μ) ≈ √
n
2 μ

1/2 − cn μ + O(μ2), where

cn = fn

{
1 + 2

π

[
sin

(
2π

n

)
− tan−1

(
cot

(
2π

n

))]}
.

Therefore, to the lowest order we obtain

P (n)(μ) ≈
√

n

2
μ

1/2, for μ → 0. (18)

This result shows unequivocally that hypothesis (ii) in the
previous section is correct: all regular polygons with a finite
number of sides present an exponent of 1/2 in the dust regime.

An important point here is the distinction between the
rather mathematical limit μ → 0 and the limit of small masses
that can be actually accessed by numerical simulations or
experimentation. In this regard, we remark that if we look
at a regular polygon with, say n = 20, from a modest distance,
it will probably appear to be a perfectly smooth disk. This
observation suggests that, although the exponent for the dust
regime (μ → 0) is 1/2, the exponent 1/3 should also appear
for values of μ above some threshold (still satisfying μ� 1),
characterizing a crossover in the mass distribution.

Our numerical simulations corroborate the occurrence of
this behavior. We produced 107 fragmentation events for
each polygon in the range n ∈ {3, . . . ,100}. In each event
the fragment area (mass) was calculated and recorded, and
the first exponent is estimated for values below μc (the
crossover mass) and above μlim, conveniently chosen as we
discuss in what follows. The second exponent is calculated for
μ > μc. The result for the regular polygon with 64 sides is
displayed in Fig. 5, where the crossover at μ = μc (vertical
line) is evident, each power-law regime being valid for several
decades. Actually, power laws (15) and (18) are very good
approximations for the distribution P (n)(μ) in the range of
values of μ < 0.1. In fact, one can precisely determine the
crossover mass by seeking the point where the curves (15)
and (18) coincide:√

n

2
μ

1/2
c =

(
6

π2

)1/3

μ
1/3
c ,

from which we obtain

μc(n) = 288

π4
n−3 ≈ 2.97 n−3. (19)

We see, therefore, that the crossover mass becomes smaller
as the number of sides increases, becoming zero for n →

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

μ
10-4

10-3

10-2

10-1

100

P(
μ)

~μ1/2

~μ1/3

Simulation (n = 64)
μc = 1.1x10-5

FIG. 5. (Color online) Simulation results for the dust-regime
(∼μ1/2 for μ<μc) and for the “disk” regime (∼μ1/3 for
0.1 >μ>μc) for n = 64.

∞ (no crossover for the disk). For n = 15, e.g., μc ≈ 9−4 ≈
1.5×10−4, and the dust regime would hardly be observed in a
hypothetical experiment. In our statistical analysis, to capture
the dust regime, one has to satisfy μlim < μc. For the last
polygon we considered (n = 100) μlim < 10−6.

VII. ANISOTROPY IN THE FRACTURE DIRECTION

In many plausible situations there is no a priori reason to
assume isotropy in the angular distribution followed by the
cracks. Suppose, for example, that a plate suffers a lateral
impact perpendicular to one of its sides [14,15]. This situation
is more likely to generate a fracture more or less parallel to
the impact direction than a nearly tangential crack. Of course,
by including this ingredient in our model we loose the ability
to find complete analytical solutions for the mass distribution
of triangles and squares. Still, we can determine expressions
for the dust regime. We start this section by assuming that
φ obeys a differential distribution given by p(φ) = cos φ,

0 � φ � π/2 rad. Note that this should make the occurrence
of small masses less common in comparison to the isotropic
case.

Let us consider the MF of a circle under this new condition.
The cumulative probability distribution is P(φ) = sin(φ).
However, noting that φ = 0 is equivalent to μ = 1 and that
φ = π/2 rad corresponds to μ = 0, we see that P(φ) is related
to P>(μ) by

P(φ) =
∫ φ

0
dφ′ p(φ′) =

∫ 1

μ

dμ′ p(μ′) = 1 − P(μ); (20)

therefore,

P(μ) = 1 − sin (φ(μ)).

Again, we are not able to write a closed expression for
φ(μ) because Eq. (13), which also holds here, is not in-
vertible. For very small fragments (φ ≈ π/2 rad), we have
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FIG. 6. (Color online) Mass distribution for the isotropic
(∼μ1/3) and anisotropic (∼μ2/3 and ∼μ1) MF of a disk. Note the
absence of the crossover observed for polygons. The deviations for
very small masses are due to numerical imprecision.

P(μ(φ)) ≈ (φ/2 − φ)2/2. Using Eq. (14) we get

P(μ) ≈
(

3π

27/2

)2/3

μ
2/3, for μ → 0. (21)

We, thus, obtain a power law with a larger exponent in accor-
dance to our expectation of getting relatively less fragments
with small masses.

An interesting situation occurs when we consider yet an-
other distribution that is even more restrictive to the appearance
of small fragments, p(φ) = 4 cos2 φ/π2, 0 � φ � π/2. In
this case we get P(φ) = 2(φ − cos φ sin φ)/π , which leads
to the exact result [see Eqs. (13) and (20)]

P (μ) = μ.

In Fig. 6 we show the log-log plots of the cumulative mass
distribution for the MF of a disk in the isotropic and anisotropic
cases for μ between 10−8 and 1. Note the robustness of the
power laws over at least seven decades.

Concerning the n-sided polygons under anisotropic MF,
we can not find closed results for P (n)(μ), even in the dust
regime. However, we obtained quite convincing numerical
evidence indicating that the exponent for the dust regime
remains unchanged, being well described by

P (n)(μ) ≈
√

3

n
μ

1/2, for μ → 0, (22)

P (n)(μ) ≈
(

3.6

n

)3/2

μ
1/2, for μ → 0, (23)

for p(φ) ∝ cos φ and p(φ) ∝ cos2 φ, respectively. Given
these results, it is clear that the mass distributions also
present crossovers, as in the isotropic case. The critical
masses which characterize these crossovers, are approximately

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

μ
10-6

10-4

10-2

100

P(
μ)

Isotropic (simulation)
p(φ) ~ cos φ (simulation)

μc = 1.1x10-5 (Isotropic)

μc = 2x10-4 ( p(φ) ~ cos φ )

~μ1/3

~μ1/2

~μ1/2

~μ2/3

FIG. 7. (Color online) Overall results for the MF of a polygon
with 64 sides. The crossover mass is more than ten times larger
in the first anisotropic scenario than in its corresponding value
in the isotropic case. The qualitative features displayed are fairly
independent of n.

given by

μc(n) ≈ 214

3π4
n−3 ≈ 56.1n−3, (24)

μc(n) ≈ 3.63/2n−3 ≈ 6.83n−3, (25)

respectively.
In Fig. 7 we present the numerical results concerning this

section in contrast with those coming from a uniform angular
distribution. The data related to the angular distribution p(φ) ∝
cos2 φ were omitted to preserve the clarity of the plot.

Its is perhaps reasonable to conjecture that the dust-regime
exponent of 1/2 is valid for a large variety of angular
distributions of the fracture directions with a crossover to the
exponent characterizing the fragmentation of a disk (that may
change for different physical situations). Notice that, in the
first anisotropic case which we addressed, the crossover mass
is more than one order of magnitude larger than its value in
the isotropic model.

VIII. SUMMARY AND CONCLUSION

Random patterns in two dimensions are of great practi-
cal [16,17] and academic interest [18] on the one hand, and
are easier than the analogous problems in three dimensions,
on the other hand. However, even in low-dimensional systems,
multifragmentation problems are utterly complex, which, in
general, hinders the possibility of obtaining information other
than numeric. Minimal fragmentation models intend to provide
a more tractable way to deal with, at least, some features
of multiple fragmentation phenomena. Also, they may be of
more direct interest for other classes of problems. Consider,
e.g., a crack propagating on a tiled floor, where typically
each tile is traversed by the failure only once, thus, being
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minimally fragmented. In this situation the presented scheme
would directly describe the observed mass distribution.

We have considered in detail the minimal fragmentation
problem of a disk and of all regular polygons up to 100 sides.
The cumulative mass distribution (number of fragments with
a mass smaller than a certain value) has been shown to be very
well described by a composition of two power-law regimes. In
a range of several decades of fragment masses we found that

P (μ) ∝
{
μ1/2 for μ < μc,

μα for μ > μc,
(26)

where α = 1/3 for the isotropic model and α = 2/3 or α = 1 for
the anisotropic models we addressed. In addition to the robust
character of the first power law, the other general property is the
dependence of the critical mass with the number of sides, given
by μc ∝ n−3 in all studied cases. The nature of this crossover is
related to the fact that even a regular polygon with a few sides
looks like a disk at a sufficient distance. Therefore, one could
call it a “proximity” crossover. The appearance of composite
power laws has been considered one of the most interesting
features in the fragmentation of brittle solids and has been
reported in experiments involving long thin rods [19] and,
more conclusively, in the fragmentation of plates [14,15,20]
as well as in computer simulations [21].

The power-law divergences of themodynamical suscepti-
bilities are a signature of criticality. In the thermodynamic
limit this criticality manifests itself as a lack of characteristic

scales in the onset of second order phase transitions, where
fluctuations can be arbitrarily large. In fragmentation problems
we are, of course, far from equilibrium and, thus, outside the
realm of thermodynamics. In spite of this, the power laws
we found for the MF of flat plates, although less “critical” in
the sense that the mean value of the small fragment mass is
mathematically well defined, present quite large variances.
Consider the case of the disk with inhomogeneous crack
propagation [p(φ) ∝ cos φ]. The normalized mass μ ≈ 0.1
is the largest mass for which (21) is valid. The average mass
of small fragments is 〈μ〉 ≈ 0.008, while �μ ≈ 0.031. Thus,
the root-mean square deviation is more than 30% of the whole
interval [0,0.1], showing that, also in this case, characteristic
scales are not sharply defined.
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