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Aftershocks in a frictional earthquake model
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Inspired by spring-block models, we elaborate a “minimal” physical model of earthquakes which reproduces
two main empirical seismological laws, the Gutenberg-Richter law and the Omori aftershock law. Our point is to
demonstrate that the simultaneous incorporation of aging of contacts in the sliding interface and of elasticity of
the sliding plates constitutes the minimal ingredients to account for both laws within the same frictional model.
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I. INTRODUCTION

Two very well known, empirically established laws of
planetary scale friction (i.e., seismology) are the Gutenberg-
Richter (GR) law [1] and the Omori law [2]. The former states
that the number of earthquakes with magnitude �M scales
with M as

N (M) ∝ 10−bM ∝ A−2b/3, (1)

where the dimensionless magnitude is defined as

M = 2
3 log10(A/A0), (2)

where A is a measure of the earthquake amplitude (energy
released, stress drop, etc.), A0 is a constant, and b ≈ 1 (or
more generally b = 0.5–1.5 [3,4]). The Omori law describes
the rate of aftershocks (in excess of the background value) at
time t after the main event,

n(t) = KO/(τc + t)p, (3)

where KO depends exponentially on the magnitude M of
the main shock, log10 KO ∝ M [5], τc has a typical average
value of about 7 h, and p ≈ 1 (or more generally p = 0.7–
1.5 [6]). A similar behavior (with �t → −�t) was also
reported for foreshocks [7,8]. Both the GR law and the
Omori law were established through a statistical analysis
of observed earthquakes. Although widely addressed and
discussed theoretically [9–27], a generally accepted frictional
model whose solution simultaneously accounts for both laws
seems to be still lacking.

We build on the time-honored spring-block earthquake
model dating back to Burridge and Knopoff (BK) [9] and
subsequent work [10–14,21–24], where two rough sliding
plates are coupled by a set of contacts which deform when the
plates move relative to one another. The contacts are frictional,
behaving as elastic springs as long as their stresses are below
some threshold, breaking to reattach in a less-stressed state
when the threshold is exceeded. The earthquake amplitude A
is typically associated with the number of broken contacts at a
global slip sliding event—the shock. The BK-type models do
predict a GR-like power-law behavior, but typically for some
particular sets of model parameters (see a detailed analysis of

BK-type models in Refs. [25,26]), and generally only for a
restricted interval of magnitudes �M � 2 [21–24], unlike the
much broader one observed in real earthquakes, and �M > 6
[28]. Beyond that partial failure, the existing earthquake
models do not describe spatial-temporal correlations between
different earthquakes and thus fail altogether to explain
the Omori law. Aftershocks have been generally related to
relaxation [21,22], but that aspect is still in need of proper
integration with others in a single model [18,20].

We undertake that integration in the present work, where
we show that a simultaneous description of both the GR law
and the Omori law can be obtained by models that incorporate
two main ingredients: the elasticity of the sliding plates and
the aging of contacts between the plates.

II. THE MODEL

A. The sliding interface as a set of macrocontacts

As typical in earthquakelike models, we assume two plates,
the top plate (the slider) and the bottom plate (the base),
coupled by a multiplicity of frictional microcontacts. If an
individual microcontact (asperity, bridge, solid island, etc.)
has a size rc, then its elastic constant may be estimated as
kc ∼ ρc2

t rc, where ρ is the mass density and ct is the transverse
sound velocity of the material which forms the asperity.

Elastic theory introduces a characteristic distance λc known
as the elastic correlation length, below which the frictional
interface may be considered as rigid [29–31]. Roughly it
may be estimated as λc ∼ a2

cE/kc, where ac is an average
distance between the microcontacts and E is the slider Young
modulus. A set of Nc = λ2

c/a
2
c microcontacts within the area λ2

c

constitutes an effective macrocontact [31,32] with the elastic
constant k = Nckc � Eλc. The macrocontact is characterized
by the shear force Fi(ui), where ui is the displacement of
the point on the slider to which the ith macrocontact is
attached. The function Fi(ui) may be calculated with the
master equation approach [33,34] provided the statistical
properties of microcontacts are known. Because of a strong
(Coulomblike) elastic interaction between the microcontacts at
distances r < λc, the effective distribution of threshold values
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for frictional microcontacts reduces to a narrow Gaussian
distribution; i.e., it is close to the δ function [31]. In this case Fi

linearly increases with ui until the macrocontact undergoes the
elastic instability [31,34–36], when (almost all) microcontacts
break and the macrocontact slides.

Thus, we assume that each macrocontact (simply called
contact from now on) is characterized by the shear force
Fi = kui and by the threshold value Fsi . The contact stretches
elastically so long as |Fi | < Fsi , but breaks and slides when
the threshold is exceeded. When a contact breaks, its shear
force drops to Fi ∼ 0, and evolution continues from there,
with a new freshly assigned value for its successive breaking
threshold.

The macrocontacts are elastically coupled through the
deformation of the slider’s bulk. The elastic energy stored
between two nearest neighboring (NN) contacts, i and j ,
in a nonuniformly deformed slider may formally be written
as 1

2K(ui − uj )2, where K is the slider rigidity defined
below in Sec. II B. Within this multiscale theory of the
frictional interface, the sliding proceeds through creation and
propagation of self-healing cracks treated as solitary waves
[31,32].

B. Elastic model of the sliding plate

An earthquake corresponds to a release of elastic energy
accumulated in a body of the plate during its previous slow
motion. Therefore, any earthquake model has to include the
plate elasticity. In a majority of earthquakelike models this
is done indirectly through introducing an interaction between
neighboring contacts. For example, the most widely studied
Olami, Feder, and Christensen (OFC) model [12] assumes
that when the stress on one of the contacts reaches the
threshold value σs , it breaks, and the accumulated stress is
equally redistributed over the NN contacts, increasing their
stresses on ασs , where α < 1/4 is a parameter. This may
stimulate the NN contacts to break too, creating an avalanche
of contact breaking—a large shock. The distribution of shock
magnitudes in this case may follow the power law. However,
such explanation of the GR law is not “robust”—the power
law is observed for some sets of model parameters and for a
restricted interval of earthquake magnitudes, typically much
smaller than that observed in real earthquakes. Instead, the
GR law may be associated with macrocontact aging alone as
discussed previously [24] (see also Sec. II C).

Nevertheless, the incorporation of the plate elasticity into
a realistic earthquake model is still important because, as
we show in this work, it is responsible for aftershocks.
When one of the macrocontacts breaks and slides, the stress
on neighboring contacts increases causing them to break
as well, and this process continues for some distance 	,
where the contact stress drops lower than (but close to)
its threshold value. During propagation of this “breaking
wave”—corresponding to a large earthquake, or the main
shock—the previously accumulated elastic energy is released.
But an important issue is that the stress is not completely
relaxed—the region where the wave was arrested retains a
stress close to the threshold value and thus represents a source
for the next earthquake—the aftershock.

K

K
K

k

u x

u x
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FIG. 1. (Color online) The model. The top block (TB) is split in
rigid blocks of size λc × W × H connected by springs of the elastic
constant KL. The interface layer (IL) is split in rigid blocks of size
λc × W × λc connected by springs of the elastic constant K . The TB
and the IL are coupled by springs of the elastic constant KT. The IL is
connected with the rigid bottom block (BB) by contacts, represented
by “frictional” springs of the elastic constant k, which break when
the local stress exceeds a threshold value.

The driving force which supports the propagation of the
breaking wave is the stress accumulated in the body of the
plate; i.e., the latter plays the role of a “stress reservoir.”
Because of the long-range character of stress distribution in
an elastic body (the stress decays with distance according to
a power law), this effect cannot be described by OFC-like
models, where the stress is localized; therefore one has to use
a three-dimensional (3D) model of the plate. A full-fledge
simulation of a 3D earthquake model seems still out of reach
of modern computer power. Instead, here we propose the
two-layer model of the sliding plate, where one layer (IL)
plays the same role as in BK-type models, while the second
layer (TB) plays the role of a massive tectonic plate, where the
elastic stress is accumulated.

To be specific we elaborate here the simplest one-
dimensional (1D) version of the model, where the contacts
constitute a regular chain of length L = Na with the spacing
a = λc as shown schematically in Fig. 1 [see Appendix A
for how the 1D model may be “deduced” from the 3D
elastic model of the plate and the corresponding parameters,
Eqs. (4)–(6) below, defined]. The base (the bottom block BB)
is assumed to be rigid, whereas the elastic top plate (the top
block TB, the slider) of length L, width W (in our 1D model
we must set W = λc), and an effective height (thickness) H

is modeled by the chain of N = L/a rigid blocks coupled by
springs of elastic constant

KL = Eλc (H/λc) (4)

(note that H � λc must hold for the correlation length λc to be
defined). The contact between the TB and the BB is described
as an interface layer (IL) of thickness Hc ∼ λc, consisting of
N contacts coupled by springs with elastic constant

K = Eλc. (5)
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The IL and the TB are coupled elastically with a transverse
rigidity which we model by N springs of elastic constant

KT = Eλc

2(1 + σP)

λc

H
, (6)

where σP is the slider Poisson ratio. Finally, the IL is coupled
“frictionally” with the top surface of the BB—each contact
between the two plates is elastic with stiffness constant k as
long as the local shear stress in the IL is below the threshold.
The interface is stiff if k � K and soft when k � K; here we
concentrate on the latter case.

Now, if a lateral pushing force is applied, for example, to
the left-hand side of the slider as shown in Fig. 1, the stress is
transmitted to each contact due to the elasticity of the slider.
In this case the interface dynamics starts by relaxation of the
leftmost contact which initiates the sliding. This causes an
extra stress on the neighboring contacts, which tend to slide
too, and the domino of sliding events propagates as a solitary
wave [31,32], extending the relaxed domain, until the stress
at some contact falls below the threshold. Such a self-healing
crack propagates for some characteristic length 	—leaving a
relaxed stress behind its passage, but raising the interface shear
stress ahead of the crack. The value of 	 may be estimated
analytically [37]; roughly 	/a is proportional to H/λc as well
as to k/K .

C. Aging of the sliding interface

The importance of incorporation of interface aging—an
effective strengthening of the interface due to slow relaxations,
growth of the contact sizes, or their gradual reconstruction,
chemical “cementation,” etc.—is well known for earthquake
modeling as well as for tribological studies [26]. In particular,
aging is held responsible for a well-known effect—the tran-
sition from stick-slip to smooth sliding with changing of the
sliding velocity v [38]. Typically aging is accounted for phe-
nomenologically by assuming that the friction force decreases
when v increases (the velocity-weakening hypothesis). At the
simplest level, one may just postulate the existence of two co-
efficients, the static friction coefficient μs for the pinned state
and the kinetic friction coefficient μk < μs for the sliding state.

In the earthquakelike model, where the contacts continu-
ously break and reform, it is natural to assume that newborn
contacts have initially a small (e.g., zero) breaking threshold
which then grows with the lifetime of the pinned contact. In
the simplest variant one may introduce simply a delay time by
assuming that the contact reappears after some time τd (so that
for times t < τd the threshold is zero).

In our model, where one macrocontact is represented by
many microcontacts which break and reform, it is natural
to assume that the macrocontact possesses its own internal
dynamics corresponding to a stochastic process. Let Fsi be a
threshold value for contact i. Even assuming, as we do, that
newborn contacts emerge with a vanishing breaking threshold
Fsi ∼ 0, that threshold value will grow with time due to contact
aging. We assume that the stochastic evolution of contact
thresholds is described by the simplest Langevin equation:

dFsi(t)/dt = K(Fsi) + Gξ (t), (7)

where K(Fsi) and G are the so-called drift and stochastic
forces, respectively [39], and ξ (t) is the Gaussian random
force, 〈ξ (t)〉 = 0 and 〈ξ (t) ξ (t ′)〉 = δ(t − t ′). Equation (7) is
equivalent to the Fokker-Planck equation for the distribution
of thresholds Pc(Fsi ; t) (see Appendix B):

∂Pc

∂t
+ dK

dFsi

Pc + K
∂Pc

∂Fsi

= 1

2
G2 ∂2Pc

∂F 2
si

. (8)

Our main assumption, Ref. [24], is that the drift force is
given by

K(Fsi) =
(

2πFs

τ0

)
β2 1 − Fsi/Fs

1 + ε(Fsi/Fs)2
, (9)

while the amplitude of the stochastic force is

G = (4π/τ0)1/2βδFs, (10)

where β and ε are two dimensionless parameters, and the
model parameters τ0, Fs , and δ ≡ δFs/Fs define the space-time
scale and are fixed below in Sec. III.

With this choice, the stationary solution Pc0(Fsi) of
Eq. (8) corresponds to the Gaussian distribution Pc0(Fsi) =
(2π )−1/2(δFs)−1 exp[− 1

2 (1 − Fsi/Fs)2/δ2] in the case of ε =
0, while for ε > 0 the threshold distribution has a power-

law tail, Pc0(Fsi) ∝ F
−1/εδ2

si for Fsi � Fs . Therefore, the
dimensionless parameter ε determines the deviation of the
threshold distribution from the Gaussian shape, while β

corresponds to the rate of aging.
The stochastic dynamics alone leads to the power-law

distribution of thresholds in the stationary state. Thus, if
the plate moves adiabatically, v → 0, then at t → ∞ the
distribution of earthquake magnitudes will follow the GR-like
law even for M → ∞. However, when v > 0, there is a
competition between the growing process and the continuous
contact breaking due to sliding, and the maximal magnitude
of earthquakes is restricted. For the steady state motion the
corresponding solution may be found analytically with the
master equation approach [24]; it gives

Mmax ∝ log10(β/
√

v). (11)

III. SIMULATION

In simulations we typically used a chain of N = 901
macrocontacts with the periodic boundary condition. Four
parameters of our model may be fixed without loss of
generality: a = 1 (the length unit), K = 1, m = 1 (mass
of the macrocontact), and Fs = 1. Then, the characteristic
frequency is ω0 = (K/m)1/2 = 1, so that the unit of time is
τ0 = 2π/ω0 = 2π .

For the elastic slider we used NL ≡ H/λc = 100 so that
KL = NLK and KT = K/(2.6 NL). We took σP = 0.3 for the
Poisson ratio, and M = NLm for the mass of TB blocks. The
top layer of the slider is driven through springs attached to
the TB blocks, each with the elastic constant Kd = 0.03K , the
springs ends moving with the constant velocity v = 0.01. In
simulations, the contacts’ elastic constant is k = 0.03K and
the thresholds’ dispersion parameter δFs = 0.1Fs ; that yields
a characteristic distance for self-healing crack propagation
	 � 100a [37]. A contact aging parameter ε = 75 yields a
GR distribution with b ≈ 1 (see Ref. [24]); a reasonable rate of
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aging is chosen as β = 1. The newborn contacts emerge with
the threshold Fsi taken from the Gaussian distribution with the
average Fs,nb = 0.01Fs and the deviation δFs,nb = Fs,nb. In the
initial state, all contacts are relaxed, Fi = 0, and all thresholds
correspond to newborn contacts. Then, the equations of
motion for all blocks (with a viscous damping coefficient
η = 1) together with the Langevin equations for contact
breaking thresholds are solved with the time step �t = 0.01.
The total simulation time required is tmax = 2 × 107 (taking a
typical velocity of a tectonic plate v ∼ 30 mm/yr ≈ 3 × 10−9

m/s and a distance between the contacts a ∼ 1 mm, we obtain
that the time step �t = 0.01 in simulation with a = 1 and
v = 0.01 corresponds to a real-time step ∼ 30 s and the total
time ∼6 × 1010 s ∼ 2 × 103 yr). In contrast to the cellular
automaton algorithm typically used in simulations of the BK
model [9], in the present work we use, following Carlson and
Langer [10], an alternative algorithm with a fixed time step
�t . Although in this case more than one contact breaking
event may take place in a single time step (which corresponds
to an earthquake in our model with “living” macrocontacts)
that does not alter our main results (e.g., see discussion in
Ref. [24]). We define the (dimensionless) quake amplitude as
the sum of force drops on contacts at every time step,

A(t) =
∑

i

�Fi(t)/Fs , (12)

and the rate of shocks n(t) as the number of shocks per one
time step (regardless of their amplitude).

The results are presented in Figs. 2 and 3. A typical time
sequence of earthquake shock sizes is that of Fig. 2(b). On a
large time scale, the function A(t) appears stochastic. On a
finer scale though [Fig. 3(b)] one can distinguish separated

FIG. 2. (Color online) Time evolution of the system: (a) the
frictional force F (t), and (b) the (global) amplitude of earthquakes
A(t) versus time. (c) Statistics of earthquake magnitudes presented in
panel (b) (the first 33% of data discarded) showing the GR power-law
behavior; the dashed line corresponds to the exponent b = 1.

FIG. 3. (Color online) Typical earthquake in our model: (a) the
color map of the earthquake amplitude on the (t,x) plane, and (b) the
earthquake amplitude A(t) versus time.

shock blocks, each with a large main shock followed by
aftershocks.

IV. ANALYSIS OF RESULTS

We can now analyze the earthquake shocks for their
characteristics, distribution, and correlations in space and
time. To do that efficiently, we first remove from the analysis
the small “background” earthquakes with amplitudes below
some level—we retain only A > 2 〈A(t)〉 [broken red line
in Figs. 2(b) and 3(b)]. Next, we single out the main
earthquakes above some level AMEQ; we took here AMEQ =
0.2Amax [red solid line in Figs. 2(b) and 3(b)]. We also used
the following rescaling procedure to distinguish from one
another main earthquakes that may occur too close: If nMEQ

is the total number of main earthquakes, call σ = S/nMEQ

the average area occupied by a single main earthquake on
the (t,x) plane, with S = tmaxL. We then rescale the time
coordinate t → τ = t/α with α = σ/λ2, where λ is some
distance chosen in such a way that the distribution of main
earthquakes on the (τ,x) plane becomes isotropic (λ ≈ 235
for the parameters used in Fig. 2). We can now scan all
main earthquake coordinates on the (τ,x) plane and, if the
distance ρij = [(τi − τj )2 + (xi − xj )2]1/2 between two main
earthquakes i and j is smaller than some value ρcut (we
chose ρcut = 0.75 λ), then only the larger of these two main
earthquakes remains as the main earthquake, while the lower
one is removed from the list of main earthquakes.

With this protocol we have obtained a set of well-separated
main earthquakes isotropically occupying the (τ,x) plane, and
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we may calculate the temporal and spatial distribution of all
earthquakes within some area around every main earthquake—
we count the earthquakes separated from the corresponding
main earthquake by less than ρ0 = ρcut/3. Then we collapse
all data together, designating τ = 0 for every main shock
and normalizing shock amplitudes on the corresponding main
shock value (because the data so obtained are still noisy, we
coarsened the distribution with an extra width �ρ in the (τ,x)
plane, using �ρ = ρ0/31).

The earthquake distribution—our main result—is presented
in Fig. 4. One can clearly see that the aftershocks satisfy the
Omori law (Fig. 4). The number of aftershocks [the coefficient
KO in the Omori law (3)] depends exponentially on the
magnitude M of the corresponding main shock [Fig. 4(c)],
although the numerical coefficient of the exponent (∼9/2)
is essentially larger than that reported for real earthquakes
(∼1/2 − 2/3, see Ref. [5]); this may be connected with the fact
that the “earthquake amplitude” A defined in our 1D model
is not exactly equivalent to the seismic moment MO used in
the analyzing of earthquake statistics. The spatial correlation
between the shocks decays exponentially in our 1D model
unlike in real earthquakes, where the aftershock amplitude
decays the power law with distance owing to 3D elasticity
[40]; since the origin of that discrepancy is so very clear, it

FIG. 4. (Color online) (a) Foreshock and aftershock statistics:
the rate of fore- and aftershocks n(τ ) (solid circles) and the shock
amplitudes A(τ ) (open diamonds) relative to the corresponding
main shock. The curves demonstrate the Omori law. (b) Aftershock
statistics in log-log scale. (c) The coefficient KO in Eq. (3) as a
function of the amplitude of the main shock in log-log scale. The line
shows the KO ∝ A3 ∝ 104.5M dependence.

does not worry us. Foreshocks are also observed in simulation,
typically with a smaller value of the lag time τc.

V. CONCLUSIONS

The spring-block frictional model elaborated and solved
in this article confirms and details the mechanism through
which elasticity of the sliding plates and contact aging enter as
the key ingredients of a minimal earthquake model. Without
either of them, the coexistence of the GR power-law energy
distribution with Omori’s power-law aftershock distribution
would not occur. In the earlier model of Ref. [24] it was shown
instead how the GR earthquake law could arise due to contact
aging alone. Explicit incorporation of the slider’s elasticity
done here provides also the spatial-temporal distribution of
earthquakes in fair accordance with the Omori aftershock law.

The magnitude of the largest earthquake is controlled in the
present model by the parameter β, the rate of aging relative to
the driving velocity. The spatial radius of aftershock activity is
controlled by the length 	, the self-healing crack propagation
distance.

As a sobering remark in closing, stimulated by one reviewer,
we should observe that the present modeling has no pretense
to represent the full complexity of real earthquakes. In
experimental aftershock sequences the first aftershock has
usually a magnitude one unity smaller than the main shock
(Bath’s law [41]) whereas in the numerical result [Fig. 3(b)]
we have clusters of consecutive earthquakes with about the
same amplitudes. Also, the dependence of the coefficient KO

in the Omori law on the main shock magnitude is poorly
reproduced in the present 1D model. Besides, the true number
of foreshocks is typically much smaller than that obtained here
(Fig. 4).

Future improvements of the model will clearly be needed
to account for these additional aspects, besides the very basic
ones which it presently deals with. The study of a 2D model of
the interface and a 3D model of the elastic slider would provide
a power-law earthquake spatial distribution. More generally
we think one can build on this basic modeling and describe,
through extensions and adjustment of model parameters and
ingredients, the greater complexity of real earthquakes.
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APPENDIX A: TWO-LAYER MODEL OF
THE ELASTIC PLATE

There is no way to reduce the 3D elastic model of the
tectonic plate to a 1D model rigorously, but one may define
a 1D model that leads to qualitatively reasonable results. Let
us consider the 3D elastic slider of size L × W × H̃ with the
longitudinal rigidity K = EWH̃/L and the transverse rigidity
KT = [E/2(1 + σP)](LW/H̃ ). For numerical study, we split
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FIG. 5. (Color online) (a) The shear stress σ in the interface
versus x for the 3D slider of size 100a × 3a × 38a with the mass
density ρ = 1.19 × 103 kg/m3, the sound speeds cl = 2680 m/s and
ct = 1100 m/s (the parameters corresponding to Plexiglass experi-
mentally studied in Ref. [43]), and k/K = 0.03. (b) Dependence of
the length L1/2 on the height of the applied pushing force h (symbols,
numerics); lines show the 1D model dependencies L1/2(heff ) with
heff = H (blue solid line) and heff = H/2 (red dashed line).

it into cubes of linear size a. The interaction between the
NN cubes in the isotropic case is described by two constants,
the longitudinal elastic constant κl = ρc2

l a and the transverse
one, κt = ρc2

t a, where ρ is the mass density and cl (ct ) is the
longitudinal (transverse) sound speed [42].

Then, let the slider be coupled with the rigid bottom plate
by LW/a2 springs of elastic constant k. If we now apply
the pushing force from the left-hand side of the slider at
a height of h < H̃ , it will produce the stress σ (x) at the
slider-BB interface (we consider the system uniform in the
y direction, along which we apply the periodic boundary
condition). The function σ (x) for the 3D slider roughly follows
a power law, σ (x) ∝ x−ν , where the exponent ν < 3 depends
on model parameters [see Fig. 5(a)]. To characterize the
decaying function σ (x), we define the length L1/2 where the
stress decreases in two times, σ (L1/2)/σ (0) = 0.5. Figure 5(b)
shows the dependence of L1/2 on the height h where the

pushing force is applied. Of course, a 1D model cannot
reproduce the power-law dependence; the 1D model always
gives the exponentially decaying stress distribution. Our idea
is to construct an effective 1D model that leads to a qualitatively
similar dependence of L1/2 on model parameters.

Let us consider the lowest layer of the slider as the IL so
that it corresponds to a chain of N = L/a cubes coupled with
the BB by springs k and connected between themselves by
springs K = κl = Ea, Eq. (5) (in a general case one may put
K = κlEc/E, where Ec is the Young modulus of the interface,
but we do not see reasons to introduce additional parameters
in our qualitative 1D model).

Then, let us connect rigidly in the z direction the remaining
Nz = H/a (H = H̃ − a) layers of the slider, so that it now
consists of N rigid blocks coupled by springs of elastic
constant KL = NK = EH , Eq. (4), as shown in Fig. 1. Finally,
to reproduce the slider transverse rigidity KT, we couple the
IL and the TB by N springs of elastic constant KT = KT/N ,
which gives Eq. (6) (one may think that we have to put
KT = κt , but this choice does not simulate correctly the slider
transverse rigidity and does not reproduce the dependence of
L1/2 on model parameters qualitatively similar to that of 3D
numerics).

Thus, we came to the effective 1D model of the slider
described in Sec. II B, Fig. 1. This model allows us to find
analytically the stress distribution along the interface, σ (x) ∝
exp(−κ2x), where

κ2
2 = 1

2

[(
κ2 + κ2

T

) −
√
D

]
, (A1)

D = (
κ2 − κ2

T

)2 + 4βκ2κ2
T , (A2)

(aκT )2 = KT /KL, (A3)

(aκ)2 = (k + KT )/K, (A4)

β = KT /(KT + k), (A5)

so that now L1/2 = (ln 2)/κ2. The comparison of the 1D ana-
lytical dependence L1/2(H ) with the 3D numerical one L1/2(h)
is presented in Fig. 5(b). One can see that, if we interpret the
parameter H in our 1D model as some effective thickness
of the tectonic plate where the elastic stress is accumulated,
we could obtain qualitative correct results. Moreover, the 1D
model allows us to find analytically the characteristic length
	—the propagation path of the self-healing crack—which
determines the distance where the stress remains unrelaxed
(and even increases to become close to the threshold) after a
large shock and, therefore, where an aftershock could occur.

Thus, our 1D model of the slider is characterized by two
dimensionless parameters: k/K defines the stiffness of the
interface, and H/a determines the “capacity” of the tectonic
plate, where the elastic stress is accumulated.

APPENDIX B: AGING OF THE CONTACTS

The Langevin equations (7) for the thresholds Fsi have to
be solved numerically. For example, if at t = 0 the threshold
is zero, then the average threshold value will grow with time
according to the power law 〈Fsi〉 ∝ tν at short times as demon-
strated in Fig. 6, where the value of the exponent ν � 0.5 de-
pends on the parameter ε. For εδ2 < 0.5 the average threshold
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FIG. 6. (Color online) Macrocontact aging: growth of the contact
threshold 〈Fsi〉 with its timelife for β = 0.3, δ = 0.1, and ε = 0, 25,
50, 100, and 1000 (see legend). Curves show power-law fits.

〈Fsi〉 = ∫ ∞
0 dF FPc(F ; t) tends to saturate to a finite value at

t → ∞, while for εδ2 � 0.5 it keeps growing with time.
Now let us derive the corresponding Fokker-Planck equa-

tion which will allow us to find some analytical results.
Equation (7) is equivalent to the stochastic equation [39]

dFsi(t) = K(Fsi)dt + Gdw, (B1)

where

〈dw〉 = 0,

〈dw(t) dw(t)〉 = dt. (B2)

Let us introduce the distribution function Pc(Fsi,t |Fsi0,t0)
defined as the conditional probability that the contact i has
the threshold Fsi at time t , if at the previous time t0 it had the
value Fsi0. For an arbitrary function u(Fsi), its average value
〈u〉 at time t is equal to

〈u〉 =
∫

dq u(q)Pc(q,t | · · · ), (B3)

and its derivative over time is

d

dt
〈u〉 =

∫
dq u(q)

∂Pc(q,t | · · · )

∂t
. (B4)

On the other hand, the differential of the function u(q) with
an accuracy up to dt , with the help of Eq. (B1), may be written
in the form

du = (∂u/∂Fsi)dFsi + 1
2

(
∂2u/∂F 2

si

)
dFsidFsi

= (∂u/∂Fsi) [K(Fsi)dt + Gdw(t)]

+ 1
2

(
∂2u/∂F 2

si

)
G2dw(t)dw(t), (B5)

where the second derivative appears because 〈dw〉 ∼ √
dt in

the stochastic equation.
Averaging Eq. (B5) over time using the Ito calculus [39],

dividing both sides of the equation by dt , and taking into
account Eqs. (B2), we obtain

〈du〉
dt

=
〈

∂u

∂Fsi

K(Fsi)

〉
+ 1

2

〈
∂2u

∂F 2
si

G2

〉
. (B6)

The first term in the right-hand side of Eq. (B6) may be
rewritten as〈

∂u

∂Fsi

K(Fsi)

〉
=

∫
dq Pc(q,t | · · · ) K(q)

∂u

∂q

= −
∫

dq u(q)
∂

∂q
[K(q)Pc(q,t | · · · )], (B7)

where we also made the integration by parts. In a similar
way the second term in the right-hand side of Eq. (B6) may
be transformed, if we make the integration by parts two
times. Then, comparing the obtained expression for 〈du〉/dt

with Eq. (B4) and taking into account that the function u(q)
is an arbitrary one, we obtain that the distribution function
Pc(Fsi,t | · · · ) must satisfy the following equation:

∂Pc(Fsi,t | · · · )

∂t
= − ∂

∂Fsi

[K(Fsi)Pc(Fsi,t | · · · )]

+1

2

∂2

∂F 2
si

[G2Pc(Fsi,t | . . .)], (B8)

which is the Fokker-Planck equation (8).
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