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A nanoslit is a long narrow opening between two parallel plates that are nanometers apart from each other.
When an electrolyte solution is present inside a nanoslit, an overlapped electrical double layer (EDL) is formed
and there exist distributions of the osmotic pressure and the Maxwell stress across the nanoslit. It is well known
that the total normal stress (osmotic pressure contribution + Maxwell stress contribution) in the direction normal
to the nanoslit surface is uniform and the value is the same as the osmotic pressure at the centerline. On the other
hand, it is not well known that the total normal stress in the direction parallel to the slit surface is not uniform.
When there is an electrolyte-gas interface inside a nanoslit, this total normal stress in the direction parallel to the
slit surface generates the electrocapillarity effect. In the present work, the electromechanical approach is adopted
to estimate the electrocapillarity effect in terms of the slit surface potential (or the surface charge density), the gap
size, and the bulk ion concentrations. In order to handle the problem analyically, it is assumed that the nanoslit
problem is in the continuum range and the interface is initially flat. The deformation of the interface due to the
nonuniform total normal stress along the interface is also obtained by using the first order perturbation method.
The significance of the present work can be manifested by the fact that external voltage is frequently used in
nanoscaled systems and the electrocapillarity effect should be considered in addition to the intrinsic capillarity
due to surface tension.
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I. INTRODUCTION

When an electrode is immersed in an electrolyte solution,
the attracted counterions push each other to exhibit collectively
the electrocapillarity phenomenon. If there is a thin dielectric
layer between the electrolyte solution and the electrode,
external voltage can be applied and significant change of the
(apparent) contact angle can be achieved. This kind of contact
angle change is called electrowetting on a dielectric or in short,
electrowetting [1].

Electrowetting has been regarded as a very efficient tool
for the handling of microfluids [1–5]. Indeed it has been
applied in various areas such as actuation of microfluids and
optomicrofluidics [6,7]. The availability of a high quality
thin dielectric layer enables low-voltage electrowetting and
even more promising applications are now possible [8]. The
principle of electrowetting has also been applied in a reverse
way. A noble mechanical-to-energy conversion method was
proposed based on the reverse electrowetting phenomenon [9].

Theories on the electrowetting phenomenon started with the
well-known Lippmann equation which predicts the (apparent)
contact angle change as a function of voltage [10]. The
Lippmann equation is based on the assumption that the
drop is perfectly conducting as mercury. So, there have
been several efforts to extend the theory for more general
situations. In this direction, there are basically two approaches:
the free-energy-based approach and the electromechanical
approach. Buehrle et al. [11] used free-energy formulation
to extend the theory to an electrolyte system. Biesheuvel
[12] obtained electrostatic free energy considering chemical
work as well as electrical work. On the other hand, Jones
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[13] and Kang [14] showed that the Lippmann equation can
be derived by the electromechanical approach. Then Kang
et al. [15] applied the same approach to extend the theory
for the aqueous electrolyte system, which has finite thickness
of electrical double layer (EDL). The theory has been further
extended to include the steric effects of ions in the electrolyte
solution [16,17]. The electromechanical approach has also
been adopted for computation of the wetting tension in ac
electrowetting [18,19].

Recently, the interest in the electrowetting and electrocap-
illarity phenomena has been expanded down to the nanoscale
and there have been considerable works. Because of the size of
the problem, most of them are for the electrocapillarity effect.
Research on the nanoscale electrocapillarity phenomenon can
be categorized into two groups according to the nanotube
diameter [20]: (i) a nanotube of diameter less than 10 nm,
and (ii) a nanotube of diameter equal to or greater than
10 nm. The first category problems have been studied quite
actively in order to see the noncontinuum behaviors [21,22].
These problems have been analyzed mostly by the molecular
dynamics simulation to understand the wetting phenomena in
a subnanometer scale such as in a carbon nanotube [23]. One
important finding is that there may exist a water-depleted layer
between water and the hydrophobic nanoscale surface because
of hydrogen bonding [22].

In the second category problems of O(10 nm), the EDL
is expected to be overlapped, but noncontinuum behaviors
are not necessarily expected. These problems have been
studied experimentally with some applications in mind (e.g.,
development of smart material), where a considerable amount
of volume of liquid is to be handled [24,25]. They measured
the extra pressure that is needed to be applied to the external
fluid in order to make a balance to the electrowetting or
electrocapillarity effect in a nanotube. However, interpretation
of their results has been based on the classical Lippmann
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equation due to the lack of appropriate theories. Indeed,
differently from the noncontinuum range problems, systematic
analysis has not been performed on the problems in the
continuum range of O(10 nm) scale.

When the EDL is overlapped in an electrowetting or
electrocapillarity problem, several things are different from the
conventional macroscale counterpart [26–29]. First, coions are
reduced within the nanotube or nanoslit even at the centerline.
In other words, the coion concentration is smaller than the
bulk value. Secondly, the electrical stress is not concentrated
near the triple contact line (TCL), but it is distributed over the
whole interface to result in some smooth distribution. In the
case of macroscale electrowetting, the concentrated electrical
stress near TCL results in the change of apparent contact angle
[16,30]. However, in the case of overlapped EDL, the smoothly
distributed electrical stress does not cause the contact angle
change right at the triple contact line.

The above facts are fundamentally different from the
macroscale problems and provide the motivations of the
current research. In the present work, continuum analysis
based on the electromechanical method is adopted to study
the characteristics of electrocapillarity effect in the scale
of O(10 nm). (Extension to the electrowetting problem is
straightforward, but for simplicity, it is not considered here.)
The Poisson-Boltzmann equation is solved for the overlapped
EDL, and the solution is used to estimate the electrocapillarity
effect. As will be shown later, the electrocapillarity effect is
represented by the sum of the osmotic pressure contribution
and the Maxwell stress contribution. Then the deformed
interface shape is also predicted by the first order domain
perturbation technique. Although we are interested in both the
nanotube and nanoslit problems, for simplicity, we consider
only the two-dimensional problem of electrocapillarity effect
in a nanoslit in the present work. In order to handle the
problem analytically, two limiting situations are considered:
(i) the low surface potential limit to have the linearized
Poisson-Boltzmann equation [28,29], and (ii) the high surface
potential limit for which it is assumed that only the counterions
are present inside the nanoslit.

II. NORMAL STRESS EXERTED ON A SURFACE IN
ELECTROLYTE

When there is no fluid flow and no gravity effect, the total
stress can be described as the sum of the osmotic pressure
contribution and the Maxwell stress contribution

T = −πI + εε0
[
EE − 1

2E2I
]
, E = E (x) ex (1)

where π is the osmotic pressure [31,32]. In the case of the
nanoslit, we assume that the electric field has only the x

component.

A. Normal stress exerted on a surface parallel to the slit axis

Let us first consider the normal stress exerted on the
plane S1, which is a plane parallel to the slit axis, as shown
in Fig. 1. Then Txx is the inward x-directional normal stress
exerted on the surface S1. The outward normal stress −Txx

acts like the pressure but it is not isotropic. So, we denote it by

FIG. 1. The total normal stress (osmotic pressure contribution +
Maxwell stress contribution) exerted on the plane parallel to the slit
axis (S1) and that exerted on the plane perpendicular to the slit axis
(S2).

Pxx and it is given as

−Pxx ≡ Txx = −π (x) + εε0

2
E(x)2. (2)

In Eq. (2), the osmotic pressure can be obtained from the
relation

∇π = ρf E and ρf = εε0∇ · E, (3)

where ρf is the free charge density [16]. For the unidirectional
electric field given in Eq. (1), we have

π (x) = εε0

2
E2

x + const = εε0

2
E2 + const = εε0

2
E2 + π (0).

(4)

At the centerline of the nanoslit, the electric field vanishes
and we have Eq. (4). By substituting (4) into (2), we have a
very important relation

−Pxx = Txx = −π (0) = const with respect to x. (5)

The total outward normal stress on the plane S1 is constant
across the slit width and the value is the same as the osmotic
pressure at the centerline. This is the well-known result
which is available in a reference such as Israelachvili [33].
Further noteworthy works on the repulsive pressure along the
same direction have been performed by Biesheuvel and other
researchers [28,34–36]. They used the simplified versions of
the Poisson-Boltzmann equation to obtain the formulas of the
repulsive pressure for certain limiting situations.

B. On a surface perpendicular to the slit axis

In the case of a surface perpendicular to the slit axis such
as S2 in Fig. 1, we have the outward normal stress on S2 as

−Pzz = Tzz = −π − εε0

2
E2. (6)

By comparing this equation with Eq. (2), we should
note that there is a sign change in the Maxwell stress
contribution. This makes the Pij field anisotropic and the
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outward normal stress exerted on the surface perpendicular
to the slit axis is not uniform across the slit width. As will
be shown later, this nonuniform distribution of Pzz causes
the interface deformation. A similar lateral pressure concept
has been adopted for the problem of microcantilever with
polyelectrolyte brush [37] and the elastomer problem [38].

III. NORMAL STRESS EXERTED ON THE
ELECTROLYTE-GAS INTERFACE UNDER THE
CONSTANT SURFACE POTENTIAL CONDITION

Let us now consider the electrolyte-gas (or electrolyte-
dielectric fluid) interface as shown in Fig. 2. We can consider
any deformed interface in principle, but here we limit our
attention only to the flat interface in order to treat the
problem analytically. Here we further assume that the electric
permittivity of the electrolyte is much larger than that of the
gas (or dielectric fluid), i.e., ε � εout. Then the component
of the electric field normal to the interface vanishes and
the assumption that E = Eex = E(x)ex is still valid up to
the electrolyte-gas interface. Since there is no osmotic pressure
inside the gas phase and the electric permittivity of gas phase
(or dielectric fluid phase) is much smaller than that of the
electrolyte phase, the normal stress contribution inside the gas
phase can be neglected compared to the electrolyte counterpart.

The outward normal stress on the electrolyte-gas interface
Pzz results in the capillary rise in the gravity field as shown
in Fig. 3(a). When the capillary rises, the inside pressure Pin

is reduced. But Pzz compensates the reduction of the inside
pressure and makes a balance to the outside pressure Pout. In
the case of the closed slit as shown in Fig. 3(b), the electrolyte
penetrates deeper into the slit until Pout is increased due to
compression to make the balance with Pin + Pzz.

For computation of Pzz by Eq. (6), we need the electric
field distribution across the slit and the osmotic pressure at
the centerline. To do that, we need to solve the Poisson-
Boltzmann (PB) equation for the nanoslit problem. However,
as well known, the analytical solution is not available for the
full nonlinear PB equation for the finite domain problem.

FIG. 2. The outward total normal stress exerted on the interface
of electrolyte and dielectric fluid (e.g., gas).

Therefore, we consider two limiting cases, where analytic
solutions are known for the approximate PB equations. They
are (i) the low surface potential limit for which the linearized
PB equation is solved, and (ii) the high potential limit for
which it is assumed that coions are completely removed from
the slit (i.e., only counterions are present inside the slit).

A. Low surface potential limit

We assume that one end of the nanoslit is connected to a
large reservoir where both the positive and the negative ions
have the same concentrations (the number density) nb. In the
case of low-voltage limit, i.e., |zeψ/kT | � 1, we have the
linearized Poisson-Boltzmann equation

ψ ′′ = κ2ψ, κ2 = 2z2e2nb

εε0kT
, (7)

where ψ is the electric potential, V is the surface electric
potential at the electrode, and κ is the inverse of the Debye
length.

The solution of (7) satisfying ψ ′(0) = 0 and ψ(h) = V is

ψ(x) = V
cosh κx

cosh κh
(8)

and the x-directional electric field as

Ex = −ψ ′(x) = −V κ
sinh κx

cosh κh
. (9)

Therefore, the number density of ions along the slit
centerline and the total number density are

n(0) = 2nb cosh

[
zeV

kT

1

cosh κh

]

� 2nb

[
1 + 1

2

(
zeV

kT

)2 (
1

cosh κh

)2
]

. (10)

In the above, the low-voltage approximation has been
adopted for the final step. Therefore the osmotic pressure along
the centerline is

π (0) � 2nbkT + nbkT

(
zeV

kT

)2 1

(cosh κh)2
≡ πb + πe(0),

(11)

where πb is the osmotic pressure in the bulk and πe(0) is
the extra osmotic pressure due to the electric field effect. By
substituting (9) and (11) into (6), we have the formula for the z-
directional (outward) normal stress exerted on the electrolyte-
gas interface due to electric field effect as

Pzz(x) = nbkT

(
zeV

kT

)2 2 cosh 2κx

cosh 2κh + 1
+ 2nbkT . (12)

B. High surface potential limit

In the limit of high voltage V at the wall, the coions are
excluded and the concentration becomes negligible inside the
nanoslit. Thus, we may assume that only the counterions
are present inside the nanoslit. With this approximation, we
can obtain the analytical solution of the nonlinear Poisson-
Boltzmann equation [33]. At the centerline of the nanoslit, the
concentration of the counterions and the potential are denoted
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FIG. 3. The outward normal electrical stress Pzz results in the capillary rise in the gravity field [case (a)] or deeper penetration into a closed
slit [case (b)].

by n0 and ψ0. We have only negative ions in the slit if V > 0
and only positive ions in the case of V < 0. With the electric
potential ψ0 and the number density n0 at the centerline, the
governing equation and the boundary conditions are given as

ψ ′′ = ±
(

zen0

εε0

)
e±ze(ψ−ψ0)/kT , ψ ′(0) = 0, ψ(h) = V,

(13)

where ± denotes the positive V and negative potential,
respectively. In this problem, we must note that the bulk
concentration nb and V may be specified. On the other hand,
the values at the centerline of the nanoslit, n0 and ψ0, must be
determined as part of the solution.

The solution of (13) that satisfies the symmetry condition
at the centerline is [33]

ψ(x) = V ± 2kT

ze
ln

[
cos Kh

cos Kx

]
withK2 = z2e2n0

2kT εε0
. (14)

FIG. 4. Plot of Kh vs κh with the parameter |V ∗| [Eq. (16)].

The number density distribution n(x) is obtained from
(14) as

n(x) = n0e
±ze(ψ−ψ0)/kT = n0

cos2 Kx
= nbe

ze|V |/kT cos2 Kh

cos2 Kx
.

(15)

In (15), the fact n0 = nb exp[|zeψ0| /kT ] is used. By
substituting the expression of n0 in (15) into (14), we have

(Kh)2

cos2 Kh
= (κh)2

4
eze|V |/kT ≡ (κh)2

4
e|V ∗|, (16)

where the dimensionless potential is scaled with the thermal
voltage Vtherm = kT /ze. For the given values of κh and V , we
can compute the corresponding value of Kh by using (16).
In Fig. 4, the plot of Kh vs κh is shown with |V ∗| as a
dimensionless parameter.

The x-directional electric field is obtained from (14) as

Ex = −ψ ′ = ∓
√

2kT n0

εε0

sin Kx

cos Kx
. (17)

On the other hand, the osmotic pressure inside the elec-
trolyte is obtained from (15) as

π (x) = n(x)kT = n0kT
1

cos2 Kx
. (18)

Therefore, the total outward normal stress is obtained from
(6) as

Pzz(x) = εε0[E(x)]2 + π (0) = n0kT (2 tan2 Kx + 1). (19)
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IV. NORMAL STRESS EXERTED ON THE
ELECTROLYTE-GAS INTERFACE UNDER THE
CONSTANT SURFACE CHARGE CONDITION

In many nanoslit or nanochannel systems, the wall con-
dition may be characterized by the constant surface charge
[39,40]. So, in this section, we want to transform the results of
the previous section to the ones for the constant surface charge
condition. For the analysis, we again consider two limiting
cases of low surface charge limit and high surface charge limit.

A. Low surface charge limit

When we consider the case of constant wall charge with the
surface charge density σw, we again assume that the potential
is low, i.e., |zeψ/kT | � 1. Then we have

ψ ′′ = κ2ψ, ψ ′(0) = 0, εε0ψ
′(h) = σw. (20)

The solution of (20) is

ψ(x) =
(

σw

εε0κ

)
cosh κx

sinh κh
. (21)

By comparing (21) with (8), we can see that the potential
distribution is the same as the case of constant voltage with

V = σw

εε0κ

(
cosh κh

sinh κh

)
. (22)

By substituting the above relation to the results in previous
sections, we can derive the results for the case of constant
surface charge. Specifically, we substitute (22) into (12) to
have the expression of the average outward normal stress due
to electric effect in terms of the surface charge.

P̄ e
zz = σ 2

w

4εε0

(
sinh 2κh

(sinh κh)2

1

κh

)
. (23)

From (23), we can see that the normal stress is proportional
to the square of the surface charge in the low surface charge
limit.

B. High surface charge limit

In the case of constant wall surface charge density with σw,
the governing equation and the boundary conditions are

ψ ′′ = ±
(
zen0

εε0

)
e±ze(ψ−ψ0)/kT , εε0ψ

′(h) = σw, ψ ′(0) = 0.

(24)

The solution of the governing equation with the boundary
condition at x = 0 is given in (14). By using the solution, we
apply the surface charge condition [εε0ψ

′(h) = σw] to have

2kT εε0

zeh
(Kh) tan(Kh) = |σw| . (25)

For the given surface charge, the intermediate parameter
(Kh) is determined by solving Eq. (25). Then the extra outward
normal stress can be computed by the previous Eq. (19), i.e.,

P̄zz = 2εε0

(
kT

zeh

)2

[2(Kh) tan(Kh) − (Kh)2]. (26)

Equation (26) together with Eq. (25) is one of the major
results in the present work. For the given surface charge,
we can predict the average outward normal stress due to the
electrocapillarity effect.

V. DEFORMATION OF THE ELECTROLYTE-GAS
INTERFACE UNDER CONSTANT CONTACT ANGLE

CONDITION

In this section, we are concerned with the interface
deformation due to nonuniform outward normal stress [41].
Computation of the interface deformation starts with the
normal stress condition [42] which includes surface tension.

n · (n · Tout) − n · (n · Tin) = γ∇ · n, (27)

Tout = −P h
outI, Tin = −πI + Te − P h

inI. (28)

Here, the superscript h denotes the hydrostatic pressure and the
surface tension γ is assumed to be constant for simplicity. (The
surface tension is a function of the electrolyte concentration
as shown by Onsager and Samaras [43], but the variation is
relatively small compared to the value of pure water [43,44].)
In order to treat the problem analytically, we use the domain
perturbation technique and we introduce the shape function of
the interface

F (x,z) = z − f (x) = 0. (29)

Then we have the governing equation for the first order
deformation as

f ′′ = − 1

γ

[
Pzz − (

P h
out − P h

in

)] ≡ − 1

γ
[Pzz − 	P h].

(30)

A. Low surface potential limit

As mentioned earlier, for analytical treatment, we consider
only the case of the initially flat interface. If the initial shape
is not flat, we can handle the problem in the same way with
the help of numerical computation of the stress field. The
governing equation for the first order deformation is Eq. (30)
and the boundary conditions are

f ′ (0) = 0, f ′ (h) = 0 = given value. (31)

The boundary condition at the wall (x = h) represents the
assumption that the contact angle is not changed due to the
change of ion concentration distribution. This assumption has
been accepted for the electrowetting problem [11,16].

The unknown value of pressure difference 	P h ≡ (P h
out −

P h
in) is determined to satisfy the condition of the given contact

angle, i.e., f ′(h) = 0 in Eq. (31). To derive the condition
formally, we integrate (30) with the symmetry condition at
x = 0 of (31) to have

	P h = (
P h

out − P h
in

) = 1

h

∫ h

0
Pzzdx = P̄zz. (32)

The result (32) tells us that we need to apply the required
pressure difference that balances the average outward normal
stress.
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FIG. 5. Plot of f ∗/(CaπV ∗2) vs x∗ with parameter κh. The inter-
face is pushed outward more near the wall than the center [Eq. (34)].

The deformation of the interface using Eq. (30) satisfying
the boundary conditions (31) is

f (x)

h
= εε0(kT /zeh)2h

4γ

(
zeV

kT

)2

× [− cosh 2κx + 1 + (κx)(x/h) sinh 2κh]

(cosh 2κh + 1)
. (33)

We have f (0) = 0 and f ′(x) � 0 for 0 � x � 1 from (31).
This means that electrical stress pushes out the interface more
near the surface than near the center. The result (33) may be
rearranged in a nondimensional form as

f ∗(x∗)

(CaπV ∗2)
= 1

2

{− cosh[2(κh)x∗] + 1 + (κh)x∗2 sinh 2κh}
(cosh 2κh + 1)

(34)

with

Caπ = εε0(kT /zeh)2h

2γ
, (35)

where x∗ = x/h is the dimensionless coordinate, and
f ∗(x∗) = f (x)/h is the dimensionless deformation. In (35),
Caπ is the capillary number based on the electric potential
corresponding to thermal energy (thermal voltage) and V ∗ is
the dimensionless voltage scaled with the thermal voltage as
before. In Fig. 5, the plot of f ∗/(CaπV ∗2) vs x∗ is given for
several values of κh and we can see the effect of the increased
bulk concentration by using the fact κ ∝ (nb)1/2.

B. High surface potential limit

The deformation of interface under high surface potential
limit is

f (x) = n0kT

γ

[
2

K2
ln[cos Kx] + tan Kh

Kh
x2

]
(36)

or in dimensionless form with f ∗ = f/h,x∗ = x/h,

f ∗(x∗) = 4Caπ {2 ln[cos(Khx∗)] + (Kh) tan(Kh)x∗2},
(37)

where the relationship between n0 and nb is used [Eq. (15)]. In
Fig. 6, f ∗(x∗)/Caπ vs x∗ is shown with a parameter κh for a
fixed value of |V ∗| = 0.5. By comparing Figs. 5 and 6, we can

FIG. 6. Plot of f ∗(x∗)/Caπ vs. x∗ with V ∗ = 0.5 and several
values of κh [Eq. (37) together with Eq. (16) to compute Kh for the
given κh and V ∗].

see that the deformation behavior is very similar in both limits
of the low and high surface potentials. However, the degree of
deformation is much larger in the case of high potential limit.
(By substituting |V ∗| = 0.5 into Fig. 5, we can see how large
the deformation is for the same surface potential.)

VI. DEFORMATION OF THE ELECTROLYTE-GAS
INTERFACE UNDER FIXED CONTACT POINT

Now we consider the case of anchored contact points at
z = 0, which cannot move. For this case, as before, we assume
that the original interface shape is given by the balance between
the osmotic pressure and the applied pressure, i.e.,

	P h
0 = P h

out − P h
in = πb = 2nbkT . (38)

In the previous case of constant contact angle, 	P h =
P h

out − P h
in has to be changed to make a balance 	P h = P̄zz.

On the other hand, in this fixed contact point case, we do not
have to change the pressure difference. Thus we just assume
that 	P h = 	P h

0 = πb even under the electric field effect and
we have the governing equation and the boundary conditions
for the shape function f (x) as

f ′′ = − 1

γ
[Pzz(x) − πb] = − 1

γ
P e

zz(x) (39)

with f ′(0) = 0, f (h) = 0. The second boundary condition
stands for the anchored contact point.

A. Low surface potential limit

Now let us consider the case of low surface potential. The
shape function under this condition is

f (x)

h
= 1

2

nbkT h

γ

(
zeV

kT

)2 [
cosh 2κh − cosh 2κx

(κh)2(cosh 2κh + 1)

]
. (40)

The solution in dimensionless form is

f ∗(x∗)

(CaπV ∗2)
= 1

2

[
cosh 2κh − cosh (2(κh)x∗)

(cosh 2κh + 1)

]
, (41)

where x∗ = x/h is again the dimensionless coordinate,
f ∗(x∗) = f (x)/h is the dimensionless deformation, and Caπ

is the thermal capillary number defined earlier below Eq. (35).
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FIG. 7. Plot of f ∗/(CaπV ∗2) vs x∗ in the case of fixed contact
points for the low-voltage limit [Eq. (41)].

The result (41) is shown in Fig. 7, and we can see that a
more convex interface shape is obtained as the electric effect
is increased.

B. High surface potential limit

In the case of the high surface potential limit, the bulk
phase osmotic pressure is negligible compared to the normal
stress due to electric effect, i.e., Pzz(x) ∼ P e

zz(x). Thus by
substituting Eq. (19) into (39), we have the shape function as

f (x) = n0kT

γ

[
2

K2
ln[cos Kx] + 1

2
(x2 − h2)

]
(42)

or in dimensionless form with f ∗ = f/h, x∗ = x/h,

f ∗(x∗) = 4Caπ

[
2 ln[cos(Khx∗)] + (Kh)2

2
(x∗2 − 1)

]
. (43)

Here we should note once again that the parameters (κh) and
|V ∗| can be specified. The parameter (Kh) must be determined
according to Eq. (16). In Fig. 8, f ∗(x∗)/Caπ vs x∗ is shown
with a parameter κh for a fixed value of |V ∗| = 0.5.

VII. DISCUSSION

In the present work, the effect of EDL overlapping on the
electrocapillarity effect inside a nanoslit has been analyzed.

FIG. 8. Plot of f ∗/Caπ vs x∗ for |V ∗| = 0.5 in the case of fixed
contact points for the high voltage limit [Eq. (43) with Eq. (16)].

For analytical treatment, we have considered an initially flat
electrolyte-gas interface and two limiting situations of the low
potential limit and the high potential limit. The results for the
constant surface potential conditions are also transformed to
the results for the constant surface charge conditions.

In the case of low potential limit, the z-directional outward
normal stress is given by Eq. (12). Excluding the second term
in Eq. (12), which is the osmotic pressure due to bulk con-
centration, the extra normal stress generated by the electrical
effect has limiting forms. When κh → 0, the extra normal
stress goes to (nbkT )(zeV /kT )2, and to (nbkT /κh)(zeV /kT )2

when κh → ∞. On the other hand, in the case of high potential
limit, we can predict the normal stress by Eq. (19) together with
Eq. (16). The extra normal stress goes to (nbkT )e|zeV /kT | when
κh → 0, and to [4(nbkT )/κh]e(1/2)|zeV /kT | when κh → ∞.

Here it is noteworthy that P̄ e
zz → P e

xx = πe(0) in the limit
κh → 0. In other words, the axial directional (z-directional)
outward normal stress approaches the value of repulsive
pressure (which is the same as the osmotic pressure at the
centerline). This is because the potential profile becomes
flattened due to the fact that Debye length is much larger
than the slit gap size. Indeed, the expression for the κh → 0
limit agrees with the expression of the repulsive pressure in
Ref. [34] [his Eq. (20)]. However, it should be emphasized
that P̄ e

zz > P e
xx = πe(0) except for that limit, i.e., the axial

outward normal stress is larger than the repulsive pressure.
Another thing we may note is the effect of bulk concentration
[note that κ ∝ (nb)1/2]. Under the constant surface potential
condition, the extra normal stress is proportional to the bulk
concentration of the electrolyte when the electrolyte is dilute
(κh → 0), while it is proportional to the square root of bulk
concentration for the high concentration case (κh → ∞).

Under the constant surface charge condition, the above
results can be transformed to the ones shown below. First
in the low surface charge limit, we have from Eq. (23). The
extra normal stress goes to (σ 2

w/2εε0)[1/(κh)2] when κh → 0,
and to (σ 2

w/2εε0)(1/κh) when κh → ∞. For the high surface
charge limit, from Eq. (26) together with Eq. (25) we have
limiting forms. The extra normal stress goes to (kT /zeh)|σw|
when |σw| → 0, and to 2(kT /zeh)|σw| when |σw| → ∞. As
in the case of constant potential, P̄ e

zz → P e
xx = πe(0) in the

limit κh → 0 (or |σ ∗
w| → 0). The expressions for the limiting

cases agree with those for the repulsive pressure in Ref. [34]
[his Eqs. (27) and (37)]. However, we must note once again
that that P̄ e

zz > P e
xx = πe(0) except for that limit.

Under the dilute electrolyte condition (cbulk = 1 mM),
the surface tension of water at room temperature (γ =
71.97 mN/m) and the dielectric constant (εr = 80) are used
to estimate the deformation of shape function in dimen-
sional form. In the low surface potential case [V = 1 mV �
(kT /ze)], the deformation is in the order of femtometers,
which is hardly observable even in a nanochannel with a width
of 50 nm. In the high potential case [V = 1 V � (kT /ze)],
however, the deformation is in the order of several nanometers
and proportional to V 2.

Thus far, no controlled experiment for the electrowetting or
electrocapillarity effect has been performed for a nanoslit of
O(10 nm). So, direct comparison of the results of the present
work with the experimental results is not possible. We have
only the experimental results of related nanopore problems.
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Kong and Qiao measured the extra pressure that is needed to
be applied to the external fluid in order to make a balance to
the electrocapillarity effect [24]. Their electrode had randomly
generated nanopores of the average size r = 480 nm. Lu et al.
also measured the needed extra pressure for the nanopores that
are present in the confined region between the folded structures
of an insulated electrode [25]. They observed qualitatively
similar behaviors of the extra pressure. When the potential
is small, the increasing rate of the extra pressure is small.
On the other hand, for higher applied potential, the slope
becomes much larger as we can see for the high potential
limit. For the even higher potential values, they observed that
the slope becomes small again. This saturation behavior has
not been predicted by our current theoretical model. For this
behavior, Lu et al. speculated that one possible reason is the
steric effects of ions. In the nanopores, the sizes of ions cannot
be totally neglected [45]. For the analysis of this behavior,
previous works on the steric effects of ions may be consulted
[16,46].

Another related problem is the electric-field-induced wet-
ting and dewetting in a single hydrophobic nanopore [47].
When the hydrophobicity is not perfect, the electrolyte droplets
can be trapped with the anchored boundary condition. If
an electric field is applied in this situation, the droplets
are extended in the electric field direction and they are
connected to each other to make a path of electric current.
That situation is very similar to the situation in Fig. 7 or 8,
where the electrolyte-gas interface is elongated near the slit
center.

VIII. CONCLUSIONS

We have analyzed the effect of EDL overlapping on the
electrocapillarity in a nanoslit of O(10 nm) and have predicted
the average outward normal stress generated by externally
applied voltage or a given surface charge density. The normal
stress in the direction parallel to the slit axis (the normal
stress exerted on the surface perpendicular to the slit axis)
is analytically studied under two limiting cases: low surface
potential or charge case (|zeψ/kT | � 1), and high surface
potential or charge case (|zeψ/kT | � 1). One of the important
findings of the present work is that the total normal stress
(osmotic pressure contribution + Maxwell stress contribution)
is not isotropic. It is well known that the total normal stress in

the direction perpendicular to the slit axis is uniform across the
slit width and the value is the same as the osmotic pressure at
the centerline. On the other hand, it has not been well known
that the total normal stress in the direction parallel to the slit
axis is not the same as that in the perpendicular direction.
Furthermore, the value of the normal stress in the parallel
direction is not uniform across the slit width.

From the analysis, it is shown that the extra normal stress
due to electrical effect is symmetric with respect to the sign of
applied voltage as in the case of the macroscale electrowetting
or electrocapillarity effect. In the low surface potential limit,
the extra normal stress is proportional to the square of applied
voltage. On the other hand, in the high potential limit, it
increases exponentially with the magnitude of the applied
voltage. In terms of surface charge, the normal stress is
proportional to the square of the surface charge density in the
limit of low surface charge. In the high surface charge limit, it
is directly proportional to the magnitude of the surface charge
density. Under the constant surface potential condition, the
extra normal stress is proportional to the bulk concentration
of the electrolyte when the electrolyte is dilute, while it is
proportional to the square root of bulk concentration for the
high concentration case.

Using the normal stress balance at the electrolyte-gas
interface, the deformation of the interface shape is predicted
under the fixed contact angle condition and under the fixed
contact point condition. The deformation of the interface shape
increases with increase of the dimensionless parameter κh,
which is the ratio of the slit thickness to Debye length. This
result has some significance in that we can predict the shape
of the interface when the average extra outward normal stress
is estimated for a nanoporous material.

Based on the current theoretical study, the electrocapillarity
in a nanoslit of other novel materials such as ionic liquid can
be analyzed (see [48] for the macroscale problem). Also, a
theoretical model for the electrocapillarity of unsymmetrical
electrolytes can be developed based on the works done by
Onsager [49,50].
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