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Curvature-induced activation of a passive tracer in an active bath
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We use numerical simulations to study the motion of a large asymmetric tracer immersed in a low-density
suspension of self-propelled particles in two dimensions. Specifically, we analyze how the curvature of the tracer
affects its translational and rotational motion in an active environment. We find that even very small amounts of
curvature are sufficient for the active bath to impart directed motion to the tracer, which results in its effective
activation. We propose simple scaling arguments to characterize this induced activity in terms of the curvature of
the tracer and the strength of the self-propelling force. Our results suggest new ways of controlling the transport
properties of passive tracers in an active medium by carefully tailoring their geometry.
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I. INTRODUCTION

In recent years, the behavior and dynamics of microstruc-
tures and colloidal particles immersed in an active fluid (e.g.,
bacteria, self-propelled nanoparticles, artificial microswim-
mers, etc.) have drawn considerable interest. The inherently
nonequilibrium driving forces and stochastic nature of an
active fluid give rise to phenomenological behavior that is quite
remarkable including anomalous diffusion [1–6], tunable ef-
fective interactions between suspended microcomponents [7–
10], and targeted delivery of colloids [11,12]. In addition,
there has recently been an effort to understand the dynamics,
phase behavior, and self-assembly properties of suspensions
of deformable [13,14] and/or irregular shaped active parti-
cles [15,16]. An emerging area in this field is designing
microstructures to perform specific tasks when immersed in
an active suspension, most notably driving microscopic gears
and motors [17,18], the capture and rectification of active parti-
cles [19–23], and using active suspensions to propel wedgelike
carriers [24,25]. The geometry of these microdevices is a
crucial component to being able to effectively convert the
energy from the active environment into mechanical work.

Interestingly, Angelani and Di Leonardo [24] showed that
chevron shaped microshuttles immersed in a bacterial suspen-
sion undergo directed motion along their axis of symmetry.
A similar observation was made experimentally by Kaiser
et al. [25] who showed that chevron shaped particles can
be set into rectified motion along their wedge cusp when
immersed in a high density bacterial suspension. Given these
results, it is well established that asymmetric tracers with
locally concave regions (e.g., wedge, chevron, lock and key
colloids, etc.) are able to undergo rectified motion in an active
fluid, while spherical tracers only undergo enhanced isotropic
diffusion [2,5,6]. Intriguingly and in stark contrast to a tracer
in a passive environment, the transport properties of a tracer
immersed in an active fluid are strongly dependent on its
underlying geometry. In short, a tracer in an active environment
can be made active in its own right by simply altering its shape.

In an effort to characterize this unique phenomenon, we
systematically distort the geometry of a rod shaped tracer

*ac2822@columbia.edu

and study the resulting dynamics in an active medium. Our
goal is to understand the transition from isotropic to directed
motion as a function of tracer geometry. In previous studies, the
rectification of the random motion of the bacteria is caused by
polar ordering and trapping of bacteria inside the cusp regions
of the tracer. We however consider a low-density suspension
of nonaligning active particles. This choice is motivated by the
recent developments in the design and synthesis of artificial
self-propelled particles [11,26–28], as well as to eliminate
the polar ordering and trapping, which is typical of high
density bacterial suspensions, and be able to focus exclusively
on the effect of the particle activity disregarding collective
effects that may ensue due to excluded volume interactions at
larger concentrations. Our results show that directed motion
of the tracer can be obtained under a much more general
set of geometric constraints and explain how it can be easily
controlled by the curvature of the tracer alone. In other words,
independently of the local ordering of the particles, induced
activity can be imparted by local density gradients around the
tracer, and it can be tuned and enhanced by manipulating the
curvature of the tracer.

II. MODEL

We consider a two-dimensional model where a single
asymmetric tracer is immersed in a bath of N spherical active
particles of diameter σ . Each active bath particle has mass m

and undergoes Langevin dynamics at a constant temperature,
T . Self-propulsion is introduced through a directional force of
constant magnitude, |Fa|, and is directed along a predefined
orientation vector, n = (cos θ, sin θ ), which passes through the
origin of each particle and connects its poles. The equations
of motion of an individual particle are given by the coupled
Langevin equations

mr̈ = −γ ṙ + |Fa|n − ∂rV +
√

2γ 2Dξ (t), (1)

θ̇ =
√

2Dr ξr (t), (2)

where γ is the translational friction and V the interparticle
potential acting on the particle. The translational and rotational
diffusion constants are given by D and Dr , respectively.
The typical solvent-induced Gaussian white noise terms for
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FIG. 1. (Color online) (a) Trajectories for tracers of various curvatures immersed in an active bath of volume fraction � = 0.005, T = 1,
and |Fa| = 100. The trajectory for each tracer was taken over a duration of 5000τ and each tracer was initially located at the origin. (b) A
snapshot from the simulation with R = 8, � = 0.005, T = 1, and |Fa| = 100, where both the laboratory and body-centered reference frames
are shown. The orange half of a bath particle denotes the direction of propulsion.

both the translational and rotational motion are characterized
by 〈ξi(t)〉 = 0 and 〈ξi(t)ξj (t ′)〉 = δij δ(t − t ′) and 〈ξr (t)〉 = 0
and 〈ξr (t)ξr (t ′)〉 = δ(t − t ′), respectively. The translational
diffusion constant D is related to the temperature T via the
Stokes-Einstein relation D = kBT /γ . In the low Reynolds
number regime, the rotational and translation diffusion coeffi-
cients for a sphere satisfy the relation Dr = (3D)/σ 2.

Each tracer is modeled as a bent rod characterized by its
arc length 
 = 25σ and radius of curvature R [Figs. 1(b) and
Fig. 2(c)]. For practical purposes, the rods are discretized
into NT = 21 equidistant and overlapping spherical particles
of diameter σT = 2.5σ . A suitably large number of spheres
were chosen to accurately reproduce the shape of the particle
and to make the surface sufficiently smooth. The tracer
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FIG. 2. (Color online) (a) MSD for tracers of various curvatures
immersed in an active bath of volume fraction � = 0.005, T = 1,
and |Fa| = 100. (b) Mean displacement of the tracer along the A

axis in the body-centered frame. (c) Sketch of the model and relative
variables discussed in the paper.

itself undergoes overdamped Langevin dynamics at a constant
temperature T and the equations of motions are the rigid body
analogs to Eqs. (1) and (2), with |Fa| = 0 since the tracer itself
is nonactive.

All interactions between the particles in the systems
are purely repulsive and are given by the Weeks-Chandler-
Andersen (WCA) potential

U (rij ) = 4ε

[(
σij

rij

)12

−
(

σij

rij

)6

+ 1

4

]
, (3)

with a range of action extending up to rij = 21/6σ . Here rij

is the center-to-center distance between any two particles
i and j , σij = (σi + σj )/2, where i and j can correspond
to either an active or tracer particle, and ε = 10kBT is the
interaction energy. Using the numerical package LAMMPS [29],
all simulations were carried out in a periodic box of dimension
L = 200 with T = m = σ = τ = 1 and γ = 10τ−1(here τ

is the dimensionless time). Each simulation was run for a
minimum of 5 × 108τ time steps. The drag coefficient γ

was chosen to be sufficiently large such that the motion
of the particles is effectively overdamped. Several of the
simulations were repeated with larger values of γ (e.g., γ = 50
and 100), which produced no detectable differences in our
results. All quantities in this investigation are given in reduced
Lennard-Jones units.

III. RESULTS

As a way of illustrating our main result we show in
Fig. 1(a) typical trajectories (particle traces) for tracers having
different radii of curvature R at constant arc length 
 immersed
in an active suspension of volume fraction � = 0.005 and
propelling force |Fa| = 100. A sufficiently large propelling
force was chosen to illustrate the curvature-induced activation
of a tracer. In addition, a typical snapshot from a simulation is
given in Fig. 1(b), which details the different reference frames
used in the subsequent analysis. The typical mean square
displacement (MSD) of the center-of-mass Q for various
tracers in the laboratory frame is shown in Fig. 2(a). All
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tracers undergo ballistic behavior at short times and eventually
crossover to a diffusive regime at longer times. As the curvature
of the tracer increases, the superdiffusive regime persists
for longer times prolonging the eventual crossover to the
purely diffusive regime. In the body-centered frame, the mean
displacement of the tracer along its main axis of symmetry A
is given in Fig. 2(b). For a straight tracer (i.e., R = ∞), there is
no net displacement along the main axis of the tracer, which is
obvious from symmetry considerations. However, as soon as
the symmetry of the tracer is broken by introducing any amount
of curvature, the tracer undergoes net directed motion in the
positive A direction leading to a nonzero mean displacement in
the body-centered frame. As the tracer becomes increasingly
curved [Fig. 2(b)], this effective propelling force becomes
larger.

The directed motion of the tracer can be understood by
looking at the time-averaged local density of active particles in
the system (Fig. 3). The average local density is homogeneous
across the system, except along the surface of the tracer, where
it shows a significant increase. Specifically, the density is larger
on the concave side of the tracer when compared to its convex
side, and this difference becomes even larger for tracers with
higher degrees of curvature. As demonstrated in Ref. [30],
the positive curvature of a surface can act as a restoring force
against random thermal rotations and drives active particles
towards a stable orientation where the propelling axis becomes
parallel to the surface normal. This stabilizing effect greatly
increases the time required for a particle to escape from
the side of the surface with positive curvature. The side of
the tracer with negative curvature behaves in an opposite
manner and destabilizes the axial angle of the particle from
the surface normal upon any amount of thermal rotations,
which results in a significantly shorter escape time. The
combination of these two mechanisms produces the measured
density gradient across the tracer that results in its net directed
motion.

Due to the symmetry of the system, the average tangential
force as well as the average torque will be equal to zero, and
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R = 16 R = 8

FIG. 3. Normalized time-averaged active particle density for
various tracers in an active suspension of � = 0.005, T = 1, and
|Fa| = 100.
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FIG. 4. (Color online) Rotational diffusion constants for tracer
particles having different curvatures in an active suspension of φ =
0.005 and T = 1. The data are plotted as a function of the active bath
self-propelling force |Fa|.

indeed we find that the mean squared angular displacement of
the tracer 〈2〉 is diffusive for almost all observed times (i.e.,
〈2〉 = Dt , where D is the rotational diffusion constant of
the tracer). We find that the rotational diffusion constant D

increases with the strength of the active force as well as with the
curvature of the tracer for large self-propelling forces (Fig. 4).
We however defer a full characterization of the rotational
dynamics to a later publication, as it is a highly nontrivial
problem that truly deserves its own in-depth analysis. The
remainder of this work focuses on developing a scaling theory
for the curvature-induced activation of the tracer.

IV. DISCUSSION

The directed motion of the curved tracer emerges when the
persistent length of an active particle becomes much larger
than the dimension of the tracer. In this regime, a simple
way of estimating the net force exerted on the tracer can be
obtained by considering that a bath particle can either be on
the surface of the tracer pushing with a force proportional to
|Fa| or diffusing across the system and applying no force. As
previously mentioned, the amount of time an active particle
spends on the surface of the tracer is highly dependent on the
side it is located on and characterized by a residence time τn or
τp for the side of the tracer with negative or positive curvature,
respectively. Given these quantities and the average time an
active particle spends in the bath between collision with the
tracer, which we denote by τ0, the net average force exerted by
an ideal gas of N active particles along the A axis of the tracer
can be estimated as 〈FA〉 = N (〈Fp〉 − 〈Fn〉), where 〈Fp〉 and
〈Fn〉 are the average forces exerted on the positive and negative
sides of the tracer. In the low density and small tracer limit (i.e.,
τ0 � τn and τ0 � τp),

〈FA〉 � N〈F 〉
(

τp − τn

τ0

)
, (4)

where 〈F 〉 � |Fa|〈cos(φ)〉 is the average force an active
particle exerts along the A axis of the tracer. For simplicity,
we assume that the particle axis is predominantly parallel to
the surface normal at that point [30].

Given the geometry of the system and assuming that an
active particle can diffuse anywhere on the surface of the
tracer with equal probability, where the angular range spans
[−φm

2 ,
φm

2 ] [Fig. 2(c)], it follows than an approximation for 〈F 〉

032309-3



S. A. MALLORY, C. VALERIANI, AND A. CACCIUTO PHYSICAL REVIEW E 90, 032309 (2014)

is given by

〈F 〉 = 2|Fa|
φm

sin

(
φm

2

)
. (5)

In order to estimate τp and τn, we use an approach similar to
that proposed by Fily et al. [30]. In the limit of large activity,
it is fair to assume that the active particles can only leave
the surface of the tracer (once they are in contact with it) by
sliding out. This sliding motion is driven by the angle between
the self-propelling axis and the boundary which results in
tangential forces along the tracer and can be described with
the following coupled overdamped Langevin equations:

φ̇ = va

R
sin(θ − φ), (6)

θ̇ =
√

2Drξr (t), (7)

where θ is the angle of the active axis and φ is the angular
position of the active particle with respect to the osculating
circle of the tracer [see Fig. 2(c)]. Here va = |Fa|/γ is the
particle active velocity, and for simplicity, we neglected the
thermal noise in φ as for large forces it gives only a small
contribution to the sliding motion of the particle. We define
α ≡ θ − φ to be the angle between the self-propelling axis
and the boundary normal. By taking the difference between
the two equations, we have

α̇ = −va

R
sin(α) +

√
2Drξr (t) � −va

R
α +

√
2Drξr (t) (8)

for a particle facing the concave side of the tracer. In the large
activity regime, Fily et al. [30] have demonstrated that the
small angle approximation in Eq. (8) is valid for sufficiently
curved surfaces. The equation for a particle on the convex side
is obtained by replacing R → −R.

This equation can be readily solved to give

〈α2(t)〉 = RDr

va

(
1 − e−2 va

R
t
)
. (9)

Notice that in this derivation we ignored the contribution
due to α(0) (the initial angle of impact of a particle with the
tracer). This is justified because the time spent on the tracer
by an active particle with a large value of α(0) is typically
small and so is its contribution to the net force on the tracer.
Furthermore, we find that the probability that a particle
hits the tracer with a large angle with respect to the surface
normal is exponentially small (data not shown). Nevertheless
the contribution from α(0) becomes critical in the limit of
very short tracers, when the active particles slide off before
any significant rotational diffusion can take place. Since
〈α2〉 = 〈φ2〉 + 〈θ2〉− 2〈φθ〉 = 〈φ2〉− 〈θ2〉+ 2〈αθ〉, where
〈θ2〉 = 2Drt and

〈αθ〉 = 2Dr

∫ t

0
dt1

∫ t

0
dt2〈ξ (t1)ξ (t2)〉e− va

R
(t−t1)

= 2RDr

va

(
1 − e− va

R
t
)
, (10)

we can solve explicitly for 〈φ2〉:

〈φ2〉p = 2Drt + RDr

va

[(
1 − e−2 va

R
t
) − 4

(
1 − e− va

R
t
)]

. (11)

Equation (11) gives the MSD of an active particle along
the concave surface of the tracer (positive curvature). The
analogous equation for the convex side of the tracer (negative
curvature) is again obtained by replacing R → −R and gives

〈φ2〉n = 2Drt + RDr

va

[(
e2 va

R
t − 1

) − 4
(
e

va
R

t − 1
)]

. (12)

In the long time limit (t → ∞), the particles facing the
concave side of the traces will undergo standard diffusive
behavior, 〈φ2〉p = 2Drt , whereas those facing the convex side
will have an exponentially growing angular dependence.

The expression for the MSD on the concave side of the
tracer [Eq. (11)] does indeed confirm that the positive curvature
acts as a restoring force which greatly increases the time
required for a bath particle to escape, while [Eq. (12)] clearly
reveals that the side of the tracer with negative curvature
destabilizes the propelling axis of an active particle away
from the surface normal giving rise to a faster escape time.
Expanding Eqs. (11) and (12) for small times, we obtain

〈φ2〉p/n � 2

3
Dr

(va

R

)2
t3. (13)

For the case of particles on the concave surface, we verified
these results numerically by explicitly measuring the diffusion
of an active particle confined inside a circular cavity.

We define τp and τn to be the times required for the particles
facing, respectively, the concave and the convex sides of the
tracer to cover the same arc length 〈φ2〉p = 〈φ2〉n = ( 


R
)2. We

first discuss the limit of large R or small 
, for which τp � τn.
Carrying out the expansion of Eqs. (11) and (12) to the fourth
order and taking the difference of the two expressions gives

2

3

(va

R

)2 (
τ 3
p − τ 3

n

) = 1

2

(va

R

)3 (
τ 4
p + τ 4

n

)
. (14)

For sufficiently large R, we can write τp − τn = ε, where ε

is a small but positive number. We can then further expand
Eq. (14) in ε by writing τ 3

p − τ 3
n � 3τ 2

n ε and τ 4
p + τ 4

n � 2τ 4
n to

get ε = 1
2 ( va

R
)t2

n . Using Eq. (13), with 〈φ2〉 = ( 

R

)2, we finally

get τ 2
n = ( 3
2

2Drv2
a
)

2
3 , and thus ε = τp − τn = 1

2R
( 3

2Dr
)

2
3 


4
3 v

− 1
3

a .
The average collision rate between a single bath particle
and the tracer can be estimated by 1/τ0 = (1/L2)Cva , where
C is the collision cross section of the tracer. A reasonable
approximation for the collision cross section is either the
length of the tracer l for relatively straight tracers or the radius
of curvature R for highly curved tracers. Using Eq. (4), and
taking 1/τ0 � (1/L2)
va , we finally obtain

〈FA〉 � ρ

4
3 |Fa| 5

3

(Drγ )
2
3

sin

(



2R

)
, (15)

where ρ = N/L2. We find that this functional form properly
accounts for all of our data. This is shown in Fig. 5, where
Eq. (15) has been used to fit the data both in terms of the
radius of curvature R and the strength of activity |Fa| with a
single fitting parameter in the prefactor given by κ = 0.40(0).

We expect deviations from this law to appear for long and
highly curved tracers, where in general a significant amount of
diffusive sliding occurs before the particles leave the tracer.
In this case, the small R limit of Eqs. (11) and (12) is
more appropriate, and τp can be approximately written as
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FIG. 5. (Color online) (a) Effective force, 〈FA〉, induced by the
active particle on the tracer as a function of propulsion |Fa| for various
tracer curvatures. (b) Collapse of 〈FA〉 as a function of R for different
values of |Fa|. The dashed line corresponds to Eq. (15) with a single
fitting parameter, κ = 0.40(0), in the prefactor.

τp � 1
2Dr

( 

R

)2. In this limit τp � τn and 1/τ0 can be written
as 1/τ0 � (1/L2)Rva , resulting in

〈FA〉 � ρ
|Fa|2
γDr

sin

(



2R

)
. (16)

It is important to stress that in both cases we have the same
curvature dependence of the effective active force and that
curvature is the crucial parameter for the activation of the
tracer with a dependence given by 〈FA〉 ∼ 1/R.

V. CONCLUSIONS

Using a combination of numerical simulations and analyt-
ical theory, we have demonstrated how a tracer can be made
effectively active when immersed in a suspension of active
particles. We have analyzed how the speed of this effective
motion can be enhanced with the curvature of the tracer and
proposed simple theoretical arguments to quantify the induced
activity as a function of the strength of the bath activity and the

tracer curvature. Our results are most valid in the low density
limit, where the residence time of the active particles on the
surface of the tracer is much smaller than the typical time
required for the particles in the bulk to find the tracer. Clearly
whenever, the two time scales are of the same order a crossover
from a superlinear to a linear dependence of the effective
force on |Fa| should be expected, at least in the ideal gas
limit. In fact, at higher densities, when significant clustering
on the concave side of the surface occurs, excluded volume
interactions become important and will act to weaken the
overall force exerted on the wall as explained in our previous
work [31]. Indeed, the spherical shape of the active particles
will not produce any cooperative alignment (at least as long
as hydrodynamic interactions are not considered), but will
prevent optimal ordering of the particles propelling axes along
the normal to the surface.

In principle, one could improve our estimates for the
calculation of 〈FA〉 by modifying 〈F 〉 in Eq. (5) to also include
the average over the small deviations of the active particle axis
away from the normal to the surface. This gives

〈F 〉 = 2|Fa| sin(φm/2)

φm

exp

(
−γRDr

|Fa|
)

,

but for large forces and sufficiently curved tracers, this would
only add a subleading term to our estimates.

It should be finally noted that in all our simulations
we considered the friction coefficient of the tracer γt to
be independent of the particle curvature. Clearly this is an
approximation as we expect this value to be dependent on
R. Unfortunately, evaluating an explicit formula for γt (R)
is not trivial, but any curvature dependence could be easily
incorporated.
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