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Numerical model for the shear rheology of two-dimensional wet foams with deformable bubbles
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J. Timonen
Department of Physics and Nanoscience Center, University of Jyväskylä, Finland
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Shearing of two-dimensional wet foam is simulated using an introduced numerical model, and results are
compared to those of experiments. This model features realistically deformable bubbles, which distinguishes it
from previously used models for wet foam. The internal bubble dynamics and their contact interactions are also
separated in the model, making it possible to investigate the effects of the related microscale properties of the
model on the macroscale phenomena. Validity of model assumptions was proved here by agreement between
the simulated and measured Herschel-Bulkley rheology, and shear-induced relaxation times. This model also
suggests a relationship between the shear stress and normal stress as well as between the average degree of bubble
deformation and applied shear stress. It can also be used to analyze suspensions of bubbles and solid particles,
an extension not considered in this work.
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I. INTRODUCTION

Understanding the rheological properties of flowing liq-
uid foams, and those of soft matter in more general, is
relevant in many technological applications that range from
microscale flows (of, e.g., biological and medical applica-
tions) to industrial-scale processes such as manufacturing of
fiber-based products. Many properties of such systems can
be determined experimentally, but we would also like to
understand theoretically the associated phenomena. Because
of the complicated nature of viscoelastic flows, there does not
exist a general mathematical framework for a comprehensive
description of such flows. It is thus natural to resort to
numerical simulations for that purpose.

Several models for foam-like materials already exist,
and a wide range of phenomena have been studied both
experimentally and by simulations, see for example [1–74].
Most of the previous foam models have, however, assumed a
dry foam, i.e., foam with a low-liquid fraction, and by now
the physics of dry foams is quite well understood. In spite
of their technological importance, mainly because they are
more difficult to model, much less is known about wet foams.
Rheology of dry foams is mostly determined by (quasistatic)
minimization of surface energy, though viscous effects cannot
be completely excluded [5,15]. In contrast with this, rheology
of wet foams arises predominantly from an interplay of surface
tension and viscous drag forces. Wet foams typically have a
liquid fraction, φ, of a few percent so that in an unperturbed
state their bubbles are still closely packed and jammed.

We introduce here a numerical model for quasi-two-
dimensional wet foam, which we will call in the following
the Dynamic Soft Matter and Liquid (DySMaL) model. The
bubbles of this model are deformable, which distinguishes
it from the previous disk-foam models [1], and allows us to
analyze bubble deformations that are prominent at high-shear
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rates. This deformability also allows the possibility of mod-
eling, e.g., narrow channels where bubbles are significantly
elongated. In addition, the model clearly separates the internal
dynamics of bubbles from their contact dynamics. For example
in the disk model these are not really separated but rather
described by simplified forces between bubble centers of
mass. In the DySMaL model the emphasis is on describing
the bubble interfaces in greater detail and contacts happen
between these interfaces and not between bubble centers of
mass. This separation of forces also makes it possible to modify
either the internal dynamics of the suspended object or the
contact model independently and thus gain insight on how
these microscopic changes affect the rheological properties
of a macroscopic system. An example of this would be
to replace the (deformable) bubbles with (non-deformable)
solid spheres or other shapes, while keeping the contact
model unchanged. This also opens up the possibility of
modeling mixtures of solids and bubbles, as required by certain
technical applications, which is one of the key motivations for
developing the model. Contacts between bubbles are modeled
essentially as simple viscous friction, an idea somewhat
analogous with the viscous froth model [15], see Sec. II for
details. Still, the viscous froth model is essentially a model
for dry foam and as such not really comparable, although
it might be possible to push the DySMaL model into the
sub-percent liquid fraction regime and model a dryish foam.
In addition, the contact dynamics of the DySMaL model could
also be modified to account for a completely dry friction
or a more detailed model of the fluid which mediates the
viscous forces between suspended objects. However, these are
avenues to be explored in the future and not directly relevant to
this work.

In this paper we compare the DySMaL model to experi-
mental results and our main objective is to test the validity
of the model in a specific setup. We find it essential that
the model is able to reproduce relatively simple experimental
results with reasonable accuracy before making any inferences
on how microscopic changes affect the macroscale behavior
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of the system or using the model to simulate even more
complex systems. As a model system, we study a sheared
monolayer of foam, for which recent experimental data are
readily available [10,14,17,27,28,44,49,52–54], and which
already allows the assessment of several important features
of two-dimensional foam rheology.

The outline of the paper is as follows. In Sec. II we introduce
the DySMaL model. Simulations of a sheared monolayer of
foam are presented in Sec. III together with comparison with
experimental results. Finally, a summary of the results obtained
is given and future developments of the model are discussed in
Sec. IV. In addition, there are two appendices in which results
of the model are compared against known analytical results.

II. THE MODEL

A. Overview

The (DySMaL) model describes objects that are aggregates
of linked particles (see Fig. 1 for an illustration) and are sus-
pended in a carrier fluid. It is thus a particle-based (Lagrangian)
model in which particles propagate in time based on Newtonian
dynamics. The carrier fluid, described by its density, viscosity,
and pressure, is not simulated explicitly, but is accounted
for in an implicit fashion through viscous interactions of
the suspended objects. This description of the carrier fluid is
reasonable for wet foams in which fluid conforms to the motion
of the bubbles. A similar approach has also been adopted in
other models described, e.g., in [1,15,16,41,47].

We consider here a two-dimensional (2D) foam con-
strained between walls. This foam is composed of individual
deformable bubbles whose surfaces are discretized into N

segments. Although the dynamics of the system is constrained
into 2D, there is a fixed depth in the system also in the third
dimension. Since a closed loop of surface segments forms a

FIG. 1. (Color online) A deformable bubble model for wet
foams. (a) Bubbles are modeled as segments and nodes with dynamics
resulting from pressure differences, surface tension, and interactions
with other bubbles. The pressure and surface tension forces are
applied for each segment as illustrated in (b). Viscous (Fvcon) and
elastic (Fecon) contact forces between two bubbles surfaces moving
past each other with relative velocity vrel are illustrated for one
segment in (c). The viscous and elastic contact ranges, dint and de,
respectively, and the shortest distance lint between the segments and
the segment overlap lcon are marked.

bubble, it is actually modeled as a cylinder of fixed depth. It
has a volume and surface area calculable from the positions
and lengths of the surface segments, and an internal pressure,
(pin). We assume that bubbles are at constant temperature and
that matter is not exchanged between the insides of bubbles
and the carrier fluid. The internal pressure of bubbles thus
obeys the ideal gas law,

pinV = w, (1)

where w is a bubble-specific constant.
Naturally bubble surfaces also move and deform under

surface tension and viscous drag forces. In the model, these
forces are determined segment-wise, and then distributed to
the ends of the segments, which are treated as point particles
by the time integrator.

B. Forces and dynamics

For a single bubble there are two forces, surface tension
and pressure, which are mainly responsible for its dynamics.
The surface-tension force acting on an endpoint of a segment
is given by

Fsurf = σ
lseg

lave
dz l̂ seg, (2)

where σ is the surface tension, lseg is the length of the segment,
lave is the average length of segments at the same surface, dz

is the depth of the third dimension, and l̂seg is a unit vector
pointing towards the other end of the segment. We note that the
factor lseg/lave ensures approximately even segment lengths,
and is included solely so as to have a numerically stable surface
discretization.

The pressure force on a segment of a bubble surface is
determined from the expression

Fpres = (pin − pout)lsegdzn̂seg, (3)

in which pin is the internal pressure of the bubble, pout is the
pressure of the carrier fluid at the center of a segment, lseg is its
length, and n̂seg is its outward unit normal vector. Value for the
external pressure, pout, is obtained from a predefined pressure
field, while the internal pressure pin is obtained using Eq. (1).

Balance between the surface tension and pressure should
lead to Laplace’s law, and the net pressure on a bubble must
produce the correct buoyancy equation. These requirements
are shown to be fulfilled by the model in Appendices A and B.

On the foam scale also interactions between bubbles have
to be modeled. To this end, we employ viscous and elastic
contact forces. The viscous contact force is determined by the
expression

Fvcon = −μ
vrel

lint
lcondz, (4)

where μ is the viscosity of the carrier fluid, lcon is the length of
the segment overlap, and lint is the shortest distance between
the segments, see Fig. 1 for illustration. The basic idea is
that the two interacting segments are treated as plates with an
overlapping area of lcondz separated by a layer of carrier fluid
which mediates a viscous force that is directly proportional
to the shear rate vrel/lint. Computation of the viscous force is
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cut off at a distance (dint) larger than the typical liquid-film
thickness between the bubbles.

In order to ensure structural integrity and prevent penetra-
tion of the bubbles, we apply a repulsive elastic contact force
for segments,

Fecon = −kelcondz(1 − lint/de)l̂ int, (5)

when lint is less than the contact range de (de � d and
de < dint). Here ke is the contact modulus and l̂ int is a unit
vector towards the closest point in the opposing segment.
To prevent any surface-tension and pressure-related forces
causing penetration, we require that ke � σ/d and ke � pout.
Like all forces in the model, Fecon is first determined for
segments and then distributed to the endpoints of the segments.

We use explicit time integration to solve Newton’s equa-
tions of motion of the points that connect the segments. Each
point has a mass, m = ρdelsegdz, where ρ is the density
of the carrier liquid. To determine a timestep, �t , it is

useful to consider the elastic oscillation time, te ≈ π
√

ρd2
e

ke
,

and the inverse friction time, tv ≈ ρd2
e

μ
, of the bubble-bubble

interactions. Numerical stability requires �t < min(te,tv).

C. Parameter setup

Here we use the model to study a similar foam as studied
in the experiments reported in [44,49,52–54], hence the
properties of the carrier fluid were taken directly from them,
and are shown in Table I. We consider a bidisperse foam with
two bubble diameters, 〈d1〉 = 2 mm and 〈d2〉 = 4 mm, and a
monodisperse foam with an average bubble diameter of 〈d〉= 3
mm. Thus, both foams have the same average bubble diameter,
all bubbles included. Two randomly generated samples of both
foams were used, and a 10% uniform variation in the bubble
diameter was included. The total number of bubbles in the
systems considered was between 1520 and 1700, and the liquid
fraction was ≈0.07.

Foam was constrained between two walls 8 cm apart, and
in the direction parallel to the walls the system was 16 cm long
with periodic boundary conditions, see Fig. 2 for snapshots
of foam configurations. The depth of the third dimension was
set to dz = 2 mm. In the experiments [44,49], a monolayer
foam had been confined between the bulk liquid and a top
plate that exerted additional drag to the bubbles. It would be
straightforward to include such a drag in the model, but we
ignore it here since our focus is in the dynamics that arises from
bubble-bubble interactions. In this respect, simulated system
corresponds to a shallow cross section of a deep layer of foam,
whose velocity varies only in the two planar dimensions. All
forces in the model are directly proportional to dz, i.e., the

TABLE I. Fluid properties.

Parameter Symbol Value Unit

Density ρ 1000 kg/m3

Dynamic viscosity μ 1.8 mPa s
Surface tension σ 28 mN/m
Pressure p 103 kPa

FIG. 2. (Color online) A snapshot of the simulated foam geom-
etry. Top panel: bidisperse foam and bottom panel: monodisperse
foam. For an animated version, see Supplemental Material [75].

results do not depend on it, but we include it for dimensional
consistency.

Over the range of simulated shear rates (up to γ̇ ≈ 1.7 1
s
),

flow can be considered non-inertial, and the relevant dimen-
sionless parameter that varies with the shear rate is the capillary
number Ca = μ〈d〉γ̇

σ
which is ≈4 × 10−4 for the highest shear

rates. Another dimensionless quantity to point out is the
hydrostatic pressure over surface tension, pout〈d〉

σ
≈ 104. Such a

high value implies that bubbles are essentially incompressible
under the surface tension.

For numerical implementation the bubbles are discretized
to 20 segments (small bubbles) or 40 segments (large bubbles).
The parameters dint, de, and ke in the computation of force and
the simulation timestep �t are closely related to the numerical
implementation and as such have limited physical relevance,
however there are a few physical considerations in addition to
the numerical requirements mentioned above.

Since in this particular case the assumption is that the
film of carrier fluid between the bubble surfaces is (virtually)
incompressible, the contact modulus ke needs to be large
enough to effectively ensure this. Ideally one would set ke

to infinity but numerically this is unfeasible because of the
numerical stability requirements. Since the bubbles are already
nearly incompressible, it is sufficient that the compressibility
of the film is of the same magnitude. The value ke = 105 Pa
meets these requirements.

The film thickness de can be estimated theoretically as a
function of local shear rate [19]. Since we use a single value
everywhere in the system we have used the average global
shear rate as a guide and found that de = 10 μm is of the correct
order of magnitude. In addition, we have been made aware that
recent optical coherence tomography measurements for foam
flows exhibit slip layers thicknesses of similar magnitude [76].

The interaction distance dint is basically a cutoff beyond
which interactions are not modeled and is included to reduce

032307-3
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computational load. In this work the modeled system is quite
dense and the average contact distances will be very close to
the film thickness de thus a value dint = 20 μm, double the
film thickness, is a reasonable choice. This value should be
increased significantly only for considerably sparser systems
with large bubble separations compared to the film thickness.
However, in such a case the current contact model would
probably be an inadequate approximation anyway.

Finally, based on the numerical stability considerations, we
set the timestep �t = 1 μs that is over two orders of magnitude
smaller than the bubble relaxation time μ〈d〉/σ ≈ 200 μs [1].
Simulations in this work represent up to 50 s of real time,
corresponding to 50 million time steps.

III. SIMULATION RESULTS

A. Herschel-Bulkley constitutive equation

We start by comparing results of our shear simulations with
the Herschel-Bulkley constitutive equation

τ = τY + kγ̇ β, (6)

where τ is the shear stress, τY is the yield stress, k is the viscous
component of stress, γ̇ is the shear rate, and β is the power-law
exponent. In order to determine all these coefficients we ran
several simulations with the walls of the system moving in
opposite directions with equal speeds, which in turn created
a velocity gradient in the foam. After the system had reached
a steady state, we extracted the velocity gradient from the
foam and the forces acting on the walls as time averages.
Without a wall drag the velocity gradient was linear, and we
could do a direct fit of the simulated τ (γ̇ ) behavior by the
Herschel-Bulkley equation, or rather its inverse,

γ̇ = max

(
0,

τ − τY

k

)1/β

. (7)

0.0
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Fit to bidisperse data
Monodisperse data
Fit to monodisperse data

FIG. 3. (Color online) Shear rate as a function of shear stress
for a bidisperse and monodisperse foam. The full and dotted
lines fitted to the simulation results (open and filled spheres,
respectively) correspond to inverses of the Herschel-Bulkley equation
γ̇ = max [0,(τ − τY )/k]1/β with coefficients given in Table II.

TABLE II. Best least-squares-fit parameters for the Herschel-
Bulkley constitutive equation, τ = τY + kγ̇ β , for a bidisperse and
monodisperse foam. The errors given correspond to the 1σ confidence
level.

Foam τY (Pa) k (Pa sβ ) β

Bidisperse foam 0.4 ± 0.1 0.9 ± 0.1 0.40 ± 0.03
Monodisperse foam 0.9 ± 0.1 0.7 ± 0.1 0.45 ± 0.04

Results of the simulations together with the fits are plotted in
Fig. 3, and the fitted parameters are shown in Table II.

The extracted power-law exponent for a bidisperse foam
is in good agreement with experiments for a two-dimensional
bidisperse foam in both linear and cylindrical shear geome-
tries [44,49,53,54]. However, other experiments such as those
reported in [14,17] have given significantly smaller values for
the exponent. Also three-dimensional foams with low-surface
modulus exhibit a similar exponent, as shown in [19]. On the
other hand, the yield stress τY is larger than experimental
results from [53,54] by a factor of nearly 2. However, in
this case one would expect the model to produce a larger
value than the experiments since there is one less spatial
degree of freedom present and the actual liquid fraction of
the experimental foam is larger than the projected liquid
fraction. This result thus provides a magnitude estimate for
the difference of yield stress between a true two-dimensional
foam and a monolayer of a three-dimensional foam.

In the case of a monodisperse foam the fit to the data was
very similar. The yield stress was larger for a monodisperse
foam as one would expect as there is more order in the foam.
Also, the power-law exponent was slightly larger, again as
expected for a more ordered foam, but not near 2/3 as argued
in [44] for an ordered monodisperse foam. With the 10%
variation in the bubble diameter, the simulated foam was in
fact not truly monodisperse or ordered.

B. Shear-induced pressure

In addition to the shear stress, we also measured the normal
stress, 
, exerted by the foam on the confining walls. When
sheared, a foam tends to expand, and the resulting increase
of pressure in a system with a fixed volume will be related to
the shear rate. Motivated by [39], we used a functional form
analogous to the Herschel-Bulkley constititive equation (6),


 = 
0 + cγ̇ α, (8)

where 
0 is the static osmotic pressure. By fitting again
the numerical data, we determined the three parameters of
equation Eq. (8). The simulated data together with the fits
are shown in Fig. 4, and the fitted parameters are shown in
Table III.

For a monodisperse ordered two-dimensional foam the
static osmotic pressure can be estimated by the analytical
expression


0 = 2σ

〈d〉

√
1 − φ

1 − φc

[√
φc

φ
− 1

]
, (9)
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FIG. 4. (Color online) Foam pressure as a function of shear rate
for a bidisperse and monodisperse foam. The full and dotted lines are
fits to the simulated points (open and filled spheres, respectively) by
equation 
 = 
0 + cγ̇ α with coefficients given in Table III.

where φc ≈ 0.093 is the critical liquid fraction for a monodis-
perse and ordered foam [5,51]. The critical liquid fraction for a
polydisperse disordered foam is φc ≈ 0.16 [2,5,52]. The liquid
fractions of the modeled foams were between φ = 0.071, as
determined from the nominal bubble volume, and φ = 0.064,
as determined with the elastic boundary as part of the bubble
volume. Equation (9), with φc = 0.093, at φ = 0.064 yields

0 = 3.8, which is less than our model. However, this result
seems to be consistent with simulations presented in [2] in
which the osmotic pressure of a disordered polydisperse foam
is found to be larger than the analytical result would suggest.

As for the exponent α, we notice that for both foams the fit
yields the same values as the corresponding Herschel-Bulkley
exponent β. This implies a linear dependence on the shear
stress of the normal stress. So as to illustrate this relationship
we combine Eqs. (7) and (8), with the assumption α = β,
which produces the relation

k(
 − 
0) = c(τ − τY ) (10)

for a flowing foam. From this equation, Eq. (10), it is evident
that the ratio of pressure to shear stress is constant above the
yield stress. However, experimental results from [62] suggest,
albeit for quite a different foam, that this might not be the case.
This result suggests that, in this respect, the current model is
inconsistent with experiments. To narrow down the cause of
this inconsistency it would be helpful to know if Eq. (9) is
after all a valid description for the normal stress. This issue is,

TABLE III. Best least-squares-fit parameters for the osmotic
pressure, 
 = 
0 + cγ̇ α , for a bidisperse and monodisperse foam.
The errors given correspond to the 1σ confidence level.

Foam 
0 (Pa) c (Pa sα) α

Bidisperse foam 5.2 ± 0.1 1.8 ± 0.2 0.40 ± 0.05
Monodisperse foam 6.9 ± 0.2 1.8 ± 0.3 0.45 ± 0.09
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Fit to bidisperse data
Monodisperse data
Fit to monodisperse data

FIG. 5. (Color online) Bubble relaxation time, tr , as a function of
shear rate, γ̇ , for a bidisperse and monodisperse foam. The full and
dotted lines, respectively, correspond to fitting the data by equation
tr = (qtchar)(1−ν)γ̇ −ν . Fitted coefficients of this equation are shown in
Table IV.

however, beyond the scope of the present paper, so we leave it
for a forthcoming publication.

C. Bubble diffusivity

In [53] a set of measurements were done on bubble
diffusion, and a relation

tr = (qtchar)
1−ν γ̇ −ν (11)

was discovered between the relaxation time tr and the shear
rate γ̇ of the system. In Eq. (11) q and ν are fit parameters,
and tchar ≡ μ〈d〉

σ
is the characteristic relaxation time of a single

bubble. Relaxation time tr is determined by the Lindemann
criterion, s2(t = tr ) = (0.14〈d〉), where s2(t) is the mean
square non-affine displacement of the bubbles.

From our simulations we could also determine these
relaxation times using the same criteria. However, because of
the need here to use long time averages, only a few data points
could be reliably extracted. Nevertheless, the tentative results
based on them are in good agreement with the experimental
values reported in [53]. The simulated data together with the
curved fitted to them are shown in Fig. 5, and the corresponding
fit parameters are shown in Table IV.

Another key result reported in [53] is that the Herschel-
Bulkley exponent, β, and the relaxation time exponent, ν, are
related so that β ≈ 1 − ν. Looking up the related values from
Tables II and IV, it is evident that we were able to reproduce

TABLE IV. Best least-squares-fit parameters for the relaxation
time as a function of shear rate, tr = (qtchar)(1−ν)γ̇ −ν , for a bidisperse
and monodisperse foam. The errors given correspond to the 1σ

confidence level.

Foam q ν

Bidisperse foam 3 ± 3 0.61 ± 0.05
Monodisperse foam 2 ± 3 0.60 ± 0.08
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T. KÄHÄRÄ, T. TALLINEN, AND J. TIMONEN PHYSICAL REVIEW E 90, 032307 (2014)

this relationship, within the given errors, for a both bidisperse
and monodisperse foam.

D. Deformations

Finally we take a look at bubble deformations during shear.
We characterize bubble deformations with the ratio a/b, where
a and b are the semimajor and semiminor axes of an elliptical
fit to the bubble. Since the model includes explicitly deformed
bubble surfaces, more detailed information about deformations
could in principle be retrieved. However, experimentally one
is usually constrained to fitting bubbles by ellipses, and for
small deformations it is anyway a good approximation.

First we look at the distribution of a/b − 1 in three cases
corresponding to no shear and two different values of shear
stress. The related histograms are shown in Fig. 6 for a
bidisperse and monodisperse foam. An immediate observation
from these histograms is that an average deformation increases
and the related distribution broadens as the shear stress is
increased.

Comparison to experimental results of [53] shows that
deformation distributions of our model are broader than those
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FIG. 6. (Color online) Histograms of bubble deformation in a
bidisperse (a) and monodisperse (b) foam characterized by the
quantity a/b − 1, where a and b are the semimajor and semiminor
axes of an elliptical fit to the bubble. The three sets correspond to
three different values of the shear stress.
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FIG. 7. (Color online) The average deformation of the bubbles
as characterized by a/b − 1, where a and b are the semimajor and
semiminor axes, respectively, of an elliptical fit to the bubble, plotted
against the shear stress, τ , (a) and the dimensionless shear stress, τ̃ =
τ 〈d〉/σ (b). The four data sets correspond to a monodisperse foam,
the whole bidisperse foam, and the small-bubble and large-bubble
components of the bidisperse foam.

in the experiments. The most obvious explanation to this
behavior is that deformations of our model were limited to
two dimensions, while in the experiments they were not.
When estimating any deformation from its two-dimensional
projection, its component in the third dimension will not
be observed. In addition, in the experiments bubbles were
spheres—but in our model the cylindrical form of the bubbles
leads to a different volumetric response when their projected
circumference is altered by interactions with neighboring
bubbles. However, a more interesting fact is that, as is evident
from Fig. 7, we find a clear relationship between the mean
bubble deformation and the shear stress (and subsequently the
shear rate), while [53] claims that no such trend is observed. We
suspect that also this discrepancy is, at least in part, attributed
to a difference in the dimensionality of the experiment and the
model. In any case, in view of the fact that model reproduces
the experimental relationship between the shear rate and shear
stress, it is somewhat puzzling that an observable that directly
characterizes local geometric aspects of the system does not
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behave similarly in the model and experiment, when there is
a reason to believe [38] in particular that the relation of the
shear rate and shear stress arises largely from local geometric
features of the foam.

IV. SUMMARY AND OUTLOOK

In this work we introduced the DySMaL model for simulat-
ing soft-matter dynamics. We simulated a monolayer of foam
exposed to a linear shear, and compared the results with those
of recent experiments [44,49,53,54]. It was known that slightly
simpler wet foam models, such as the Durian disk model [1],
have been able to shed light into some of the shear-related
phenomena [4,9,12,39,74]. In this particular case the DySMaL
model quantitatively reproduced experimental observations
such as the Herschel-Bulkley power law [Eq. (6)] and the
power-law governing the foam relaxation time [Eq. (11)]. This
leads us to conclude that the model assumptions are reasonable
and the model could be successfully used, in conjunction with
other models, to study the microscopic origins of these material
properties. Since the possibilities of controlling the microscale
are more refined in the DySMaL model than for example in
the disk model, we believe that this model is a useful addition
to existing foam models. Furthermore, our model suggests
relations between bubble deformation, shear stress, and normal
stress, which deserve further investigation.

We also found cases of possible discrepancies between the
model and experiment, and analyzing these cases may allow
further improvements of the model. Of particular interest will,
for example, be the functional forms of local forces in the
model and how they affect global behavior. We know that the
local forces in our model do not strictly adhere to theoretical
models like [19,38,43], nevertheless the model works well in
a global foam scale. This feature of the model brings forth the
question of how sensitive the global behavior is to the actual
forms of the local forces, and what are the roles of the global
properties such as polydispersity and disorder. We feel that the
DySMaL model provides a very agile platform for studying
these effects.

Finally, we would like reiterate that in addition to modeling
a pure foam, the model is easily modified to include solid
objects suspended within the foam. This framework thus opens
up the possibility to study a vast set of complex systems of
various kind.
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APPENDIX A: LAPLACE’S LAW

The equilibrium condition for the pressure and surface
tension of a bubble at rest should be consistent with Laplace’s
law,

�p = σ

r
. (A1)

α

r

Fsurf

Fpres

FIG. 8. Pressure and surface-tension forces acting on a particle
connecting two segments.

For our discrete description of the bubble surface in terms of
segments, the equilibrium condition corresponds to a zero net
force on a vertex connecting two segments, which is illustrated
in Fig. 8.

According to Eqs. (2) and (3), magnitudes of these forces
can be can be expressed in the forms

|Fsurf| = 2σdz sin
(α

2

)
(A2)

and

|Fpres| = 2�pr sin
(α

2

)
dz cos

(α

2

)
. (A3)

At equilibrium |Fsurf| = |Fpres|, which gives us

�p = σ

r cos
(

α
2

) (A4)

and since α = 2π/N with N the number of segments, we find
that

�p = σ

r cos
(

π
N

) . (A5)

In the limit N → ∞ Eq. (A5) satisfies Laplace’s law. Already
ten segments are sufficient to achieve here a 5% accuracy.

APPENDIX B: BUOYANCY

Let us next consider a spherical bubble in a hydrostatic
pressure gradient such that �p(y) = �p0 + ρgy, where y is
the y coordinate. Suppose that this bubble has a radius r , it is
divided into N segments, and is centered at the origin. Now the
net pressure affecting the whole bubble is the sum of pressure
contributions of all segments. The y component of the net
force on the whole bubble can be determined and it is given by

N∑
i

Fpresy
=

N∑
i

[(
�p0 + ρgr sin

(
2π

N
i

))

× r sin

(
2π

N

)
dz sin

(
2π

N
i

)]

= ρgdzr
2

2
N sin

(
2π

N

)
N→∞−−−→ ρgdzπr2, (B1)

while its x component is trivially zero. It is evident that in
the N → ∞ limit Eq. (B1) agrees with the buoyancy of a
cylindrical object in a hydrostatic pressure gradient. Again,
the accuracy for a ten-segment bubble is roughly 7%.
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[6] G. Debrégeas, H. Tabuteau, and J.-M. di Meglio, Phys. Rev.

Lett. 87, 178305 (2001).
[7] A. J. Webster and M. E. Cates, Langmuir 17, 595 (2001).
[8] M. Rosa, M. Fortes, and M. Vaz, Eur. Phys. J. E 7, 129 (2002).
[9] I. K. Ono, C. S. O’Hern, D. J. Durian, S. A. Langer, A. J. Liu,

and S. R. Nagel, Phys. Rev. Lett. 89, 095703 (2002).
[10] J. Lauridsen, M. Twardos, and M. Dennin, Phys. Rev. Lett. 89,

098303 (2002).
[11] I. Cantat and R. Delannay, Phys. Rev. E 67, 031501 (2003).
[12] I. K. Ono, S. Tewari, S. A. Langer, and A. J. Liu, Phys. Rev. E

67, 061503 (2003).
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[58] M. Durand, J. Käfer, C. Quilliet, S. Cox, S. A. Talebi, and

F. Graner, Phys. Rev. Lett. 107, 168304 (2011).
[59] S. Jones, B. Dollet, N. Slosse, Y. Jiang, S. Cox, and F. Graner,

Colloids and Surfaces A: Physicochemical and Engineering
Aspects 382, 18 (2011).

[60] B. P. Tighe, Phys. Rev. Lett. 107, 158303 (2011).
[61] S. Hutzler and D. Weaire, Colloids and Surfaces A: Physico-

chemical and Engineering Aspects 382, 3 (2011), a collection of
papers from the 8th {EUFOAM} Conference and the Meetings
of {COST} Actions {D43} and {P21} .

[62] R. Lespiat, S. Cohen-Addad, and R. Höhler, Phys. Rev. Lett.
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