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Analytical theory of effective interactions in binary colloidal systems of soft particles
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While density functional theory with integral equations techniques are very efficient tools in the numerical
analysis of complex fluids, analytical insight into the phenomenon of effective interactions is still limited.
In this paper, we propose a theory of binary systems that results in a relatively simple analytical expression
combining arbitrary microscopic potentials into effective interaction. The derivation is based on translating a
many-particle Hamiltonian including particle-depletant and depletant-depletant interactions into the occupation
field language, which turns the partition function into multiple Gaussian integrals, regardless of what microscopic
potentials are chosen. As a result, we calculate the effective Hamiltonian and discuss when our formula is
a dominant contribution to the effective interactions. Our theory allows us to analytically reproduce several
important characteristics of systems under scrutiny. In particular, we analyze the following: the effective attraction
as a demixing factor in the binary systems of Gaussian particles, the screening of charged spheres by ions,
which proves equivalent to Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, effective interactions in the
binary mixtures of Yukawa particles, and the system of particles consisting of both a repulsive core and an
attractive/repulsive Yukawa interaction tail. For this last case, we reproduce the “attraction-through-repulsion”
and “repulsion-through-attraction” effects previously observed in simulations.
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I. INTRODUCTION

Effective interactions are of fundamental interest in the field
of soft matter physics [1], especially in colloid studies. Their
significance is enormous because they are essential for spon-
taneous self-organization, and they play a key role in polymer
studies [1] as well as gel- and glass-forming research [2,3].
They are also important for molecular biophysics [4] and
find multiple applications in nanotechnology [5]. Qualitatively
similar phenomena of size separation are also encountered in
vibrated granular matter research [6,7].

A comprehensive introduction to the contemporary theories
of effective interactions can be found in [1,8,9]. The first
successful description of effective interactions dates back
to the research of Asakura and Oosawa [10,11], and later
on to the work of Vrij [12]. Their approach, which was
based on the consideration of excluded volume, is still used
today, especially for nonspherical particles (e.g., [13,14]).
At the advent of optical tweezers technology [15], effective
interactions became accessible for direct measurements [16],
which sparked a new interest in the systems for which the
Asakura-Oosawa model proved insufficient.

One reason for violating the predictions of the Asakura-
Oosawa model is that at high volume fraction packing, the
system approaches a glassy transition, experiencing jammed
dynamics. This is observed both experimentally [3,17,18]
and via simulations [19–21]. On the other hand, systems
with nontrivial or long-range interactions can be constructed.
This includes charged particles [22], polymer-coated parti-
cles interacting via mushroom-like potentials [23], or poly-
mer coils, which behave like soft, Gaussian-profiled parti-
cles [24]. The molecular-dynamics simulations for various
combinations of repulsions and attractions have also shown
that unexpected effects can be encountered, e.g., effective
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repulsion arising from attractive microscopic potentials
or effective attraction induced by repulsive microscopic
potentials [25].

A general theory capable of handling these phenomena
has been proposed by Dijkstra et al. [26]. In their approach,
a partition function for the system with arbitrarily chosen
particle-depletant and depletant-depletant interaction is sys-
tematically expanded in terms of Mayer bond functions [1,8].
While this expansion is exact in principle, it is usually chal-
lenging to include high-order terms due to their mathematical
form and nonperturbative character. Approximated techniques
also exist based on integral equations, closure relations, and
utilizing various density correlation functions [1,8]. Both
tools have become a standard in the field, allowing the ef-
ficient numerical analysis of various systems, e.g., [24,27,28].
However, the analytical form of effective interactions is
known only for several model systems (see [9] for review),
and similar results for complex fluids are rather scarce
(e.g., [29,30]).

While it is notoriously challenging to predict the ef-
fective interactions from arbitrary microscopic potentials,
a simplified, tough analytical theory could find multiple
applications in colloid research, e.g., in high-level solution
design or in the context of Langevin dynamics simulation
(e.g., [31–34]). In this paper, we propose such a theory,
which offers both generality and comprehensible analytical
form.

We consider a binary system of spherically symmetric
particles with arbitrarily chosen microscopic potentials. In
our approach, we introduce the so-called occupation func-
tional (representing a number of particles at every position)
and translate the semi-grand-canonical ensemble into the
path-integral problem related to this functional. Regardless
of microscopic potentials, this method turns the partition
function into multiple Gaussian integrals. There are two major
advantages of this transformation. On the one hand, we are able
to identify and factorize a closed-form formula contributing to
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effective interactions, which is exact. On the other hand, we
can approximate the effective Hamiltonian in order to identify
further contributions and propose the criteria under which the
exact part is dominant.

In our model, similar to [1] and [26], we consider two
distinct species of particles in the D-dimensional volume
� = LD . The system has temperature T , and we will denote
β = (kBT )−1, where kB is the Boltzmann constant. We will
also use h to denote the Planck constant. In the system,
there are N1 particles of the first kind, and we denote the
position and momentum of the ith particle with Ri and
Pi , respectively. The microscopic potential between these
particles reads URR(|Ri − Rj |), and effective interaction will
be derived for this species. The second species, identified as
depletant, consists of N2 particles, which interact via potential
V (|ri − rj |), and their positions and momenta are denoted
by ri and pi . We will use the grand-canonical ensemble for
depletant particles, so we associate a chemical potential μ

with this species. Both types of particles cross-interact via the
potential U (|Ri − rj |). The masses of colloid and depletant
particles are m1 and m2, respectively. The total Hamiltonian
of the system in its initial form has three contributions:

Htot = HRR + HrR + Hrr, (1)

where

HRR =
N1∑
i

P2
i

2m1
+ 1

2

N1∑
i,j

i �=j

URR(|Ri − Rj |), (2)

HrR =
N1∑
i

N2∑
j

U (|Ri − rj |), (3)

Hrr =
N2∑
i

p2
i

2m2
+ 1

2

N2∑
i,j

i �=j

V (|ri − rj |). (4)

Let us introduce a pair of Fourier transforms:

U(k) =
∫

�

dr eik·rU (r),

V(k) =
∫

�

dr eik·rV (r).

We will show that effective interaction between a pair of
colloid particles positioned at Ri and Rj has the following
contribution:

Ueff(Ri − Rj ) = − 1

(2π )D

∫
�̃

dk eik·(Ri−Rj ) |U(k)|2
V(k)

. (5)

This result is exact and sufficient to analytically reproduce
many important characteristics of binary mixtures. This
includes demixing of Gaussian particles, screening of charge
in the system of charged spheres and ions, and “attraction-
through-repulsion”/“repulsion-through-attraction” effects for
particles characterized by a Yukawa interaction tail and a
repulsive core. All of these effects were observed previously
in simulations or described with various theories, but our
approach provides a common framework for all of them,
and our predictions are at least in qualitative agreement with
existing results. By calculating the approximated form of

the effective Hamiltonian, we will also show that there are
other sources of effective interactions, and we will propose a
criterion under which Ueff(Ri − Rj ) is dominant.

The paper is organized as follows: In Secs. II A–II C, we
introduce our framework of occupation functional, in Sec. II D
the formula for Ueff(Ri − Rj ) is derived, in Sec. II E the
approximated partition functions is calculated, and Sec. II F
concludes with the effective Hamiltonian and the accuracy
of our model. The assumptions and caveats regarding the
derivation are summarized in Sec. II G. Section III contains
examples of applications for our theory. These includes the
binary mixtures of Gaussian particles (Sec. III B), charged
spheres in the presence of ions (Sec. III C), mixtures of Yukawa
particles (Sec. III D), and mixtures of Yukawa particles with
impenetrable cores (Sec. III E).

II. MODEL DERIVATION

A. System partition function

To begin the derivation of our model, we have to specify
the partition function of the system. Our aim is to apply a
new way to integrate out the depletant degrees of freedom. As
a result, the effective Hamiltonian will be derived from the
remaining expression. The initial Hamiltonian Htot is defined
by Eqs. (1)–(4). For this Hamiltonian, we introduce the mixed
ensemble �tot, which is the grand-canonical ensemble for the
depletant and the canonical ensemble for colloid particles.
Written in standard space-momentum coordinates {Pi ,Ri}N1

and {pi ,ri}N2 , the mixed ensemble can be regrouped in the
following manner:

�tot =
N1∏
i

∫
dPidRi

exp
(−β(HRR − 1

β
ln �)

)
N1!hDN1

, (6)

where

Heff = HRR − 1

β
ln � (7)

is the effective Hamiltonian for the first species of particles,
and

� =
+∞∑
N2=0

∫
dpidri

exp[−β(HrR + Hrr − μN2)]

N2!hDN2
. (8)

According to [1], the term

U tot
eff = − 1

β
ln � (9)

acts as an additional potential, and this is the source of effective
interactions. Therefore, calculating � is of central interest for
us.

First, it is feasible to rewrite Hrr in the following manner:

Hrr =
N2∑
i

p2
i

2m2
+ 1

2

N2∑
i,j

V (|ri − rj |) − N2

2
V (0), (10)

which explicitly introduces V (0). Another step is to integrate
out depletant momenta pj , which allows us to rearrange � into
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the form

� =
∑
N2

1

LDN2

N2∏
j

∫
drj

exp[−β(H − μ̃N2)]

�(N2 + 1)
, (11)

where �(· · · ) is the Euler Gamma function replacing the
factorial, and

H = 1

2

N2∑
i,j

V (|ri − rj |) +
N1∑
i

N2∑
j

U (|Ri − rj |), (12)

μ̃ = μ + 1

2
V (0) + D

2β
ln

2πL2m2

βh2
. (13)

The partition function � given in the form (11) is ready to be
translated into the occupation field representation.

B. Occupation field representation

Let us consider a scalar field that assigns the number of
depletant particles α(r) at certain position r to this position.
The total number of depletant particles in the system reads

N2 =
∫

�

drα(r). (14)

If α(r) particles occupy a position r and α(r′) particles occupy
position r′, then the energy of interaction between the sites r
and r′ is equal to α(r)α(r′)V (|r − r′|). Therefore, we can use
α(r) to translate interaction terms in the following manner:

N2∑
i,j

V (|ri − rj |) =
∫∫

�

dr dr′α(r)α(r′)V (|r − r′|), (15)

N1∑
i

N2∑
j

U (|Ri − rj |) =
N1∑
i

∫
�

dr α(r)U (|Ri − r|). (16)

In principle, α(r) takes only discrete values 0,1,2, . . . , but we
will allow it to vary continuously.

The formulas (14)–(16) suggest that we can understand H
and N2 as the functionals of α(r). In turn, we could replace
the multiple integrations in (11) with a functional integral with
respect to α(r), namely

� →
∫

D[α]
exp[−β(H − μ̃N2)]

�(N2 + 1)
. (17)

The path integral can be specified as the integral with
respect to the Fourier series coefficients of α(r) [35]:

α(r) = 1

�

∑
n∈ZD

ane
i 2π

L
n·r. (18)

Here n is a D-dimensional vector, whose components vary
discretely from −∞ to +∞. Therefore, we shall denote the
set of index vectors n with ZD . The Fourier series expansion
of α(r) requires us to assume periodic boundary conditions.
Since the field α(r) is real, the symmetry a−n = a∗

n is also
required. The a0 coefficient has a special interpretation:

a0 =
∫

�

dr α(r) = N2. (19)

Additionally, we have to assume that potentials U (r) and V (r)
are also periodic over length L, which should be of little
influence if the range of those potentials is much shorter than
L. If so, then the Fourier series expansion (18) simplifies the
interaction terms:∫∫

�

dr dr′α(r)α(r′)V (|r − r′|) = 1

�

∑
n∈ZD

|an|2Vn, (20)

N1∑
i

∫
�

dr α(r)U (|Ri − r|) = 1

�

∑
n∈ZD

an

∑
i

U (i)
n , (21)

where

Vn =
∫

�

dr ei 2π
L

n·rV (r), (22)

U (i)
n =

∫
�

dr ei 2π
L

n·rU (|Ri − r|). (23)

From these formulas, it follows that

H − μ̃N2 = 1

2�

∑
n∈ZD

|an|2Vn

+ 1

�

∑
n∈ZD

an

(∑
i

U (i)
n − μ̃�δn,0

)
, (24)

which can be further rearranged into

H − μ̃N2 =
∑

n∈ZD

Vn

2�

∣∣∣∣∣an +
∑

i U
(i)
−n − μ̃�δn,0

Vn

∣∣∣∣∣
2

−
∑

n∈ZD

∣∣∑
i U

(i)
n − μ̃�δn,0

∣∣2

2�Vn
, (25)

and finally the path integral is specified as

� =
∏

n∈ZD

∫
dan

exp[−β(H − μ̃N2)]

�(a0 + 1)
. (26)

In the above formula, we intentionally omit writing the limits
of integration since they need to be discussed in greater detail
in the following section.

C. Non-negative fields from Fourier modes

In principle, the occupation field α(r) should be non-
negative. Unfortunately, a field constructed according to (18)
from the arbitrarily chosen values of an does not necessarily
meet this requirement. However, it is always true that a0 � 0,
since it is the number of depletant particles. Therefore, for any
values of an �=0 we can choose a0 such that α(r) is non-negative.
More precisely, we can write

α̃(r) =
∑

n∈ZD\0

ane
i 2π

L
n·r, (27)

where \0 indicates the exclusion of a0. α̃(r) is a real function
and, necessarily, ∫

�

dr α̃(r) = 0. (28)
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This property means that α̃(r) has to take both negative and
non-negative values for different r, so integral (28) is 0.
Therefore, there must exist a global minimum of α̃(r), and
α̃(r) is negative in this minimum. Finally, for

a0 � M = −minr[α̃(r)], (29)

the occupation field α(r) is non-negative. Here, we denote the
global minimum of α̃(r) with respect to r by minr [α̃(r)]. The
limit M can be also rewritten in the following form:

M = −
∑

n∈ZD\0

ane
i 2π

L
n·r(an), (30)

where r(an) is the position of the global minimum as a function
of an. Formally, r(an) can be determined from the equation

∇r

∑
n∈ZD\0

ane
i 2π

L
n·r = 0. (31)

Concluding this section, we can choose the limits of
integration for an �=0 as ±∞ and the limits for a0 as [M, + ∞).
However, M is now a function of an �=0, which fixes the order
of integrals in (26). Let us combine (25) and (26) to write �

in the following form:

� = e−β	
∏

n∈ZD\0

InI0(M), (32)

in which

	 = −
∑

n∈ZD

∣∣∑
i U

(i)
n − μ̃�δn,0

∣∣2

2�Vn
(33)

and

In �=0 =
∫ +∞

−∞
dan exp

(
−βVn

2�

∣∣∣∣an +
∑

i U
(i)
−n

Vn

∣∣∣∣
2)

, (34)

I0(M) =
∫ +∞

M

da0

exp
(− βV0

2�

∣∣a0 +
∑

i U
(i)
0 −μ̃�

V0

∣∣2)
�(a0 + 1)

. (35)

For the sake of more compact notation, we will denote

cn =
∑

i U
(i)
−n − μ̃�δ0n

Vn
, γn = βVn

2�
. (36)

D. The effective interaction

In this section, we will identify the exact part of effective
interactions. We substitute now (32) into the formula for U tot

eff ,
namely

U tot
eff = − 1

β
ln � = 	 − 1

β
ln

⎛
⎝ ∏

n∈ZD\0

InI0(M)

⎞
⎠ . (37)

We will show that 	 gives rise to the effective interaction
Ueff(|Ri − Rj |). Expanding (33) and taking advantage of the
Kronecker δ, we arrive at

	 = −
∑
i �=j

∑
n∈ZD

U (i)
n U (j )

−n

2�Vn
−

∑
i

∑
n∈ZD

∣∣U (i)
n

∣∣2

2�Vn

+ 2μ̃
∑

i U
(i)
0 − μ̃2�

2V0
. (38)

To process the three terms in 	, one can notice that

U (i)
n =

∫
�

dr ei 2π
L

n·rU (|Ri − r|)

= ei 2π
L

n·Ri

∫
�i

dr ei 2π
L

n·rU (r)

= ei 2π
L

n·RiU
(

2π

L
n
)

. (39)

Here �i is a volume shifted by Ri . In the continuous limit of
huge volume L → +∞, we can substitute k = 2π

L
n, so

U (i)
n → eik·RiU(k). (40)

Further,
∑

n → �
(2π)D

∫
�̃

and �i → �, so U(k) becomes
a Fourier transform of U (r). Similar considerations allow
us to transform Vn into V(k). Finally, in the continuous
limit,

−
∑

n∈ZD

U (i)
n U (j )

−n

�Vn
→ − 1

(2π )D

∫
�̃

dk eik·(Ri−Rj ) |U(k)|2
V(k)

= Ueff(Ri − Ri). (41)

Formula (41) constitutes the main result of this paper,
which is the expression for the effective interaction between
two particles. Having established this result, it follows
that

−
∑

i

∑
n∈ZD

∣∣U (i)
n

∣∣2

�Vn
→

∑
i

Ueff(0) = N1Ueff(0) (42)

and

2μ̃
∑

i U
(i)
0 − μ̃2�

2V0
→ 2μ̃N1U(0) − �μ̃2

2V(0)
. (43)

In summary, we conclude that the general form of 	 reads

	=1

2

N1∑
i �=j

Ueff(Ri − Rj ) + N1

2
Ueff(0) + 2μ̃N1U(0) − �μ̃2

2V(0)
.

(44)

Immediately one can recognize that we have obtained the
effective interaction between every pair of particles, which
is expected for the multiparticle system. This result is exact
up to the approximations required to introduce the occupation
number functional.

E. Approximated calculation of ln
∏

In I0(M)

Having found 	, we would also like to calculate the∏
InI0(M) to obtain the effective Hamiltonian. However, this

can be completed only via certain approximations.
First of all, let us recall that, according to (35), I0(M)

reads

I0(M) =
∫ +∞

M

da0
e−γ0(a0+c0)2

�(a0 + 1)
.

In principle M is non-negative, and for such an argument
I0(M) is a decreasing function, reaching asymptotically 0
in the limit of M → +∞. I0(M) can have a well-defined
kink at M = −c0, provided that c0 < 0 and γ0 	 1. We will

032303-4



ANALYTICAL THEORY OF EFFECTIVE INTERACTIONS . . . PHYSICAL REVIEW E 90, 032303 (2014)

approximate now I0(M) up to first order in the logarithmic
derivative, namely

I0(M) = exp

(
ln I0(0) + I ′

0(0)

I0(0)
M + · · ·

)

 I0(0)e

I ′
0(0)

I0(0) M.

(45)

This is accurate provided that there is no kink for M ∈ [0, +
∞), which requires that c0 > 0. For more compact notation,
we denote

I0 = I ′
0(0)

I0(0)
. (46)

Under approximation (45) and using expansion (30) for M ,
we can write∏

n∈ZD\0

InI0(M) ≈
∏

n∈ZD\0

∫ +∞

−∞
danI0(0)

× exp
(−γn|an + cn|2 − I0ane

i 2π
L

n·r(an)
)
. (47)

This expression is still dependent on r(an), which is an implicit
function of an. To proceed, we will approximate r(an) by a
constant value. One can notice that the quadratic term in (47)
has the extreme value for an = −cn, and we expect that the
integral (47) is dominated by the contribution from an ≈ −cn.
Let us transform the integration variables,

�an = an + cn, (48)

and approximate M in the vicinity of cn up to first order in
�an:

−
∑

n∈ZD\0

ane
i 2π

L
n·r(an) 


∑
n∈ZD\0

(cn − �an)ei 2π
L

n·r(cn). (49)

Now, (47) turns into∏
n∈ZD\0

InI0(M) ≈
∏

n∈ZD\0

exp
(
I0cne

i 2π
L

n·r(cn))I0(0)

×
∫ +∞

−∞
d�an exp

(−γn|�an|2 − I0�ane
i 2π

L
n·r(cn)

)
.

(50)

We can rearrange the quadratic expression in the exponent
of (50),∑

n∈ZD\0

γn|�an|2 + I0

∑
n∈ZD\0

�ane
i 2π

L
n·r(cn)

=
∑

n∈ZD\0

γn

∣∣∣∣�an + I0
e−i 2π

L
n·r(cn)

2γn

∣∣∣∣
2

−
∑

n∈ZD\0

I2
0

4γn
. (51)

Finally, since the integration variable �an is complex, we
introduce its polar parametrization:

ρne
±ıφn = �a±n + I0

e∓i 2π
L

n·r(cn)

2γ±n
. (52)

Once (51) and (52) are applied to (50), the integrations
can be performed, provided that all Re(γn) > 0. The result

reads

ln
∏

n∈ZD\0

InI0(M) ≈ ln I0(0) +
∑

n∈ZD\0

ln
π

γn

+ I0

∑
n∈ZD\0

cne
i 2π

L
n·r(cn) +

∑
n∈ZD\0

I2
0

4γn
. (53)

F. Effective Hamiltonian and model accuracy

Let us summarize the two preceding sections. Getting back
to the formula (7), the effective Hamiltonian of the entire
system reads

Heff = HRR + 	 − 1

β
ln

∏
n∈ZD\0

InI0(M).

Turning (53) into its continuous form, we obtain the final
expression for the effective Hamiltonian:

Heff ≈ HRR + 	 − 1

β

(
�

(2π )D

∫
�̃

dk ln
π

γ (k)

+ I0�

(2π )D

N1∑
i

∫
�̃

dk eik·(rmin−Ri )
U(k)

V(k)
− N1I0U(0)

V(0)

+ I2
0�

4(2π )D

∫
�̃

dk
1

γ (k)
− I2

0

4γ (0)
+ ln

γ (0)I0(0)

π

)
, (54)

where rmin is the global minimum, found from the equation

∇r

N1∑
i

∫
�̃

dkeik·(r−Ri )
U(k)

V(k)
= 0. (55)

Furthermore, according to (44), the exact part of Heff reads

	 = 1

2

N1∑
i �=j

Ueff(Ri − Rj ) + N1

2
Ueff(0) + 2μ̃N1U(0) − �μ̃2

2V(0)
,

where the effective interaction Ueff(Ri − Rj ) is defined
by (41).

Let us scrutinize the following term from Heff:

�Ueff = 1

β

I0�

(2π )D

N1∑
i

∫
�̃

dk eik·(rmin−Ri )
U(k)

V(k)
. (56)

First of all, this term is an explicit function of Ri , which
is in stark contrast to the Mayer bond expansion, in which
such terms are excluded. This exclusion is motivated by the
conservation of energy when the entire system is translated [1].
However, in our case, the global translation Ri → Ri + δ

yields rmin → rmin + δ, thus (56) is, in fact, translationally
invariant.

Secondly, one can notice that since rmin is a function of
Ri itself, there is possibly an additional effective interaction
embedded in �Ueff. Therefore, Ueff(Ri − Rj ) is the dominant
source of effective interactions provided that

Ueff(Ri − Rj ) 	 �Ueff. (57)

Whether this relation is satisfied depends on both thermody-
namic parameters and the choice of microscopic potentials,
which makes it difficult to analyze in a general case. However,
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if this relation is seriously violated, one might attempt to
estimate the influence of �Ueff on effective interactions from
the following reasoning:

|�Ueff| <
1

β

I0�

(2π )D

∫
�̃

dk

√√√√∣∣∣∣∣
N1∑
i

eik·(rmin−Ri )
U(k)

V(k)

∣∣∣∣∣
2

= N
1/2
1

β

I0�

(2π )D

∫
�̃

dk

∣∣∣∣U(k)

V(k)

∣∣∣∣
√√√√1 +

N1∑
i �=j

eik·(Rj −Ri )

N1


 1

β

I0�

(2π )D

(
N

1/2
1

∫
�̃

dk

∣∣∣∣U(k)

V(k)

∣∣∣∣
+ 1

2N
1/2
1

N1∑
i �=j

∫
�̃

dk eik·(Rj −Ri )

∣∣∣∣U(k)

V(k)

∣∣∣∣
⎞
⎠ . (58)

This formula also predicts the effective interactions, though
we expect it to be overestimated in this case.

G. Caveats

Throughout the derivation section, we introduced numerous
concepts, assumptions, and approximations. We would like to
list these now and discuss their validity.

One general concern is related to path integrals. We allow
α(r) to vary continuously, while the number of particles at
every position should be integer. This means that the discretely
varying trajectories, which are physically meaningful, are
given infinitesimally small statistical weights. This might
result in losing some important characteristics, similarly to
the Bose-Einstein condensation, which is lost if the discrete
partition function is replaced with the continuous one without
proper care [40]. This problem has yet to be investigated.

Further, let us explicitly recall that the total effective
potential has two parts, 	 and − 1

β
ln

∏
n∈ZD\0 InI0(M). While

we show in Sec. III that 	 is enough to reproduce many desired
characteristics of effective interactions, there is no guarantee
that the other part can be neglected in particular conditions.
This is caused by the approximations applied in Sec. II E.
The logarithmic expansion (45) in M is accurate provided that
c0 > 0, or, explicitly,

N1U(0) > μ̃�. (59)

Satisfying this relation requires a high N1 in a small volume �,
but there is a risk of falling into the range of thermodynamic
parameters relevant for a crystal or glassy state. Alternatively,
the concentration of depletant might be low, which should
entail low μ̃, but the exact dependence of μ̃ on average N2 is as
difficult to establish as Heff. If (59) is not satisfied (so c0 < 0),
then (45) works well for M < −c0, but it loses accuracy for
M > −c0. Another issue is the expansion (49), linearizing
M in the vicinity of cn. Since each In �=0 is the integral of a
Gaussian centered at cn, this expansion is justified, but the
control over its accuracy is lost as the width of the Gaussian
grows. Unfortunately, this is exactly the case for high-order
In, since we expect γn → 0 for large n.

Yet another concern is whether the depletant-depletant
potential can have a negative or partially negative Fourier
transform. Since each In �=0 is the Gaussian integral, it would be

divergent for Vn < 0, hence
∏

InI0(M) → +∞. In this case,
Heff given by (54) is meaningless, but we will argue that 	

might still provide some useful information. In general, it is
true that

ln InI0(M) � ln InI0(0) =
∑

n∈ZD\0

ln In + ln I0(0). (60)

Now, let us consider an observable O(Ri ,Pi) and its average,

Ō =
∫

dPidRiO(Ri ,Pi) exp(−βHeff)∫
dPidRi exp(−βHeff)

. (61)

We can use (60) to approximate Heff, namely

Heff ≈ HRR + 	 − 1

β

∑
n∈ZD\0

ln In − 1

β
ln I0(0). (62)

From (34) it follows that In is independent from Ri for the
properly shifted integration variable. Applying (62) to (61),
one can see that

Ō =
∫

dPidRiO(Ri ,Pi) exp[−β(HRR + 	)]∫
dPidRi exp[−β(HRR + 	)]

, (63)

which is independent from divergent In. This reasoning,
although not very rigorous, suggests that 	 and Ueff(Ri − Rj )
might work for potentials with partially negative V(k) and can
be useful in determining the mean values.

Finally, there are several concerns related to 	 itself.
One thing is that we resort to the continuous representation
of discrete expressions, though we expect � to be finite.
This is physically reasonable provided that the range of
microscopic potentials is much smaller than the system size
L. Another issue is that we require microscopic potentials
V (r) and U (r) to possess their Fourier transforms. This rules
out such useful potentials as Lennard-Jones or polynomial
potentials. Moreover, since (41) has the form of an inverse
Fourier transform, the integrand must be “well-behaving,” i.e.,
convergent for k → +∞ and without any essential singular-
ities. Although in particular situations certain mathematical
tricks and approximations can be applied to circumvent such
problems, these are the reasons why (41) is not a directly
applicable “silver bullet” formula.

III. APPLICATIONS

A. Systems under scrutiny

In this section, we apply Ueff(Ri − Rj ) given by (41)
to analyze effective interactions in various systems. First,
we analyze the mixtures of Gaussian particles, predicting
effective interactions and analyzing effective attraction as a
driving force behind demixing (Sec. III B). Another example
are screening effects in the system of charged hard spheres
and ions which agree with the Derjaguin-Landau-Verwey-
Overbeek (DLVO) potential (Sec. III C). Yet another example
is the effective interaction in a binary mixture of Yukawa
particles (Sec. III D). Finally, we scrutinize the mixture of
particles that have both a Yukawa interaction tail and a
repulsive core, in which case we qualitatively reproduce the
effects of “attraction-through-repulsion”/“repulsion-through-
attraction” and compare our results to simulations (Sec. III E).
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B. Gaussian particles and demixing of binary mixtures

Particles interacting via the Gaussian potential are a typical
example of soft particles, and they can be analyzed within our
framework. We will take advantage of the fact that the Fourier
transform of the Gaussian potential is also a Gaussian function:

G(r) = εe
− 1

2
r2

σ2 , G(k) = ε(2π )D/2σDe− 1
2 k2σ 2

. (64)

The Gaussian potential has been identified as the accu-
rate approximation of the interaction between two isolated
polymers in a good solvent, both for identical [24] and
nonidentical [36] chains. Therefore, the Gaussian-core model
is a well established coarse-grained description of polymer
solutions [1] both in the homogeneous and the nonhomoge-
neous case [37]. In particular, it has been found that the binary
mixtures of Gaussian particles can undergo size separation
transition [37,38], similarly to polymer blends.

In our model, we assume the binary mixture of different-
sized Gaussian particles and assign index 1 to big-small
interaction and 2 to small-small interaction. Then, the effective
interaction, according to (41), reads

Ueff(�R) = − 1

(2π )D

∫
�̃

dk eik·�R |G1(k)|2
G2(k)

= −ε2
1

ε2

σ 2D
1

(2π )D/2σD
2

e−�R2/(4σ 2
1 −2σ 2

2 )(
2σ 2

1 − σ 2
2

)D/2 . (65)

Ueff(�R) proves to be a renormalized Gaussian, but, since
εi > 0, it is always negative. Examples of this interaction are
presented in Fig. 1.

Result (65) suggests that the total interaction between
bigger particles [i.e., URR(�R) + Ueff(�R)] can include an
attractive tail, provided that for a certain choice of parameters
there exist such �R that the effective interaction prevails
over URR(�R). It is possible that such a tail could drive the
separation process. Let the interaction between bigger particles
read

URR(�R) = G0(�R) = ε0e
− 1

2
�R2

σ2
0 . (66)

FIG. 1. (Color online) Effective interaction between Gaussian
particles, according to formula (65). σ1 is the unit length, and the
scaling reads βε2

1/ε2 = 1. Ueff is a negative Gaussian function for
every σ2.

The attractive tail will be present if the following inequality
has a solution in �R:

G0(�R) + Ueff(�R) < 0, (67)

which can be reduced to

�R2

(
1

4σ 2
1 − 2σ 2

2

− 1

2σ 2
0

)

< ln

(
ε2

1

ε0ε2

σ 2D
1

(2π )D/2σD
2

1(
2σ 2

1 − σ 2
2

)D/2

)
. (68)

This relation can be simplified further by assuming that
σ 2

1 = (σ 2
0 + σ 2

2 )/2 and σ2 = cσ0, where c is the proportionality
constant. Under such a choice of parameters, the right-
hand side of (68) becomes identically 0, so the inequality
reads

0 < ln

(
ε̃2 (1 + c2)D

(2π )D/2cD

)
, (69)

where ε̃ = ε1/
√

ε0ε2 is a common energy scale. In Fig. 2,
we have presented a region on the ε̃-c plane where (69) is
satisfied for D = 3. For comparison, in Fig. 2 we also plot
the classical mean-field condition for spinodal separation of
Gaussian particles, which reads [37,38]

ε̃ >

(
2c

1 + c2

)3/2

. (70)

Figure 2 illustrates a general qualitative agreement be-
tween the mean-field condition (70) and our condition (69),
especially in terms of shape and the asymptotic behavior
(c → 0 and c 	 1) of the mixing region. However, our

FIG. 2. Effective attraction in binary mixtures of Gaussian
particles as a driving force behind phase separation. This plot
visualizes inequality (69) for D = 3, where ε̃ = ε1/

√
ε0ε2 and

c = σ2/σ0. Shaded region—total interaction is purely repulsive,
no driving force for de-mixing. Plain region—total interaction has
an attractive tail stimulating demixing. The dashed line illustrates
mean-field condition (70) for spinodal decomposition in the Gaussian
mixture.
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theory systematically overshoots the mean-field behavior,
with the highest discrepancy at c ≈ 1. This means that the
condition of attractive tail in total interaction leads to a
broader region of mixing than the mean-field approach, which
requires a higher sized ratio c or energy scale ε̃ to obtain the
separation.

C. Coulomb potential and charged sphere screening effects

In this example, we will examine the effective interaction
between two charged hard spheres in the presence of ions. The
dimensionality of the system is D = 3. Assigning index i = 1
for sphere-ion interaction and i = 2 for ion-ion interaction, we
assume that every microscopic potential in this system consists
of the hard-sphere (HS) potential and the Coulomb long-range
interaction:

Ui(r) = UHS,i(r) + VC,i(r), (71)

where

UHS,i(r) = ci�(r − 2σi), VC,i(r) = εi

r
. (72)

�(r − 2σi) is the Heaviside step function, the radius of the
sphere reads σ0, the ionic radius is denoted by σ2 and σ1 =
(σ0 + σ2)/2, and ci and εi are scaling constants.

The Fourier transform of the Coulomb potential can be
calculated from its relation to the Yukawa potential:

VC,i(r) = εi

r
= lim

λ→0

εie
−λr

r
. (73)

Since the Fourier transform of the Yukawa potential
is 4π/(k2 + λ2), then the sought-after Fourier transform
reads

VC,i(k) = 4πεi

k2
. (74)

The Fourier transform of UHS,i(r) can be calculated
directly,

UHS,i(k) = 4πci

sin 2σik − 2σik cos 2σik

k3
. (75)

This representation is adequate for sphere-ion interaction, but
for ion-ion interaction we can simplify it significantly. Since
σ2 is the lowest length scale in the system, only k up to the
order of 1/σ2 carries physically important information. In this
range, we can approximate sin 2kσ2 
 2kσ2 and cos 2kσ2 

1 − 2k2σ 2

2 , so

UHS,2(k) 
 16πc2σ
3
2 . (76)

We would obtain a similar result by modeling the ion core with
the Dirac-δ(r) potential, which indicates that (76) is, in fact,
the pointlike approximation of UHS,2(r).

Having established both transforms, (41) can be applied
and, after careful calculations, we obtain

Ueff(�R) = − 1

(2π )3

∫
�̃

dk eik·�R |UHS,1(k) + VC,1(k)|2
UHS,2(k) + VC,2(k)

= −ε2
1

ε2

1

�R
+ C0

e− κeff
2 �R

�R
. (77)

This result consists of Coulomb-like and Yukawa-like terms,
and it is valid for �R > 4σ1. The constants read

κeff =
√

ε2

c2σ
3
2

, (78)

C0 = c2σ
3
2

ε2
2

(ε1κeff − 2c1σ1κeff cosh σ1κeff + 2c1 sinh σ1κeff)
2.

(79)

Let us further specify our system by assuming that the
charge of a single sphere reads Q and the charge of an ion is
q. Then

ε1 = qQ

4πε
, ε2 = q2

4πε
,

ε2
1

ε2
= Q2

4πε
, (80)

where ε is the electrostatic permittivity of the system. Since
all spheres have the same charge, there is also a microscopic
repulsion present, which, for �R 	 2σ0, can be treated as a
Coulomb potential:

URR(�R) = Q2

4πε�R
. (81)

Calculating the total sphere-sphere interaction, we obtain

Utot(�R) = URR(�R) + Ueff(�R) = C0
e− κeff

2 �R

�R
. (82)

One can immediately see that the Coulomb term from (77)
cancels the long-range repulsion URR(�R), thus the to-
tal interaction consists solely of the Yukawa term. This
term has the same functional form as the DLVO poten-
tial [9] in the Debye-Hückel (DH) approximation, which
reads [22,39]

UDLVO(�R) = CDLVO
e−κDH�R

�R
, (83)

where

κ2
DH = β

4π

ε
(n1Q

2 + n2q
2), CDLVO = Q2e2σ0κDH

ε(1 + 2σ0κDH)2
,

with n1, n2 the number densities of spheres and ions,
respectively.

In our model, we expect that ci 	 kBT , so UHS,i(r) acts as
an impenetrable core, but these core constants are not defined
otherwise. However, by comparing (82) and (83),

2κDH = κeff,

C0 = CDLVO,
(84)

we can relate ci to the DLVO parameters:

c2 = ε2

4κ2
DHσ 3

2

,

c1 = κDH(ε1 ± √
ε2|CDLVO|)

2σ1κDH cosh 2σ1κDH − sinh 2σ1κDH
,

(85)

where the sign is chosen so c1 > 0. This choice of c1 and
c2 tunes (82) to become exactly the DLVO interaction (83).
In [22], Crocker and Grier have measured κ−1

DH = 161 nm for
polystyrene sulfate spheres of radius σ0 = 32 nm and charge
Q = 1991e. Assuming σ2 = 0.1 nm and q = −e, one can
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calculate that βc1 
 13 and βc2 
 1013 for T = 298 K. This
is in agreement with our expectation that ci 	 kBT .

In conclusion, our model based on the formula (41) proves
to be equivalent to the DLVO potential, which has been shown
to accurately describe screening effects for the charged spheres
in colloidal solution [22].

D. Yukawa particles

As discussed in the preceding section, the Yukawa potential
is an accurate model for charged particles in solution. Since
this potential is also tractable in terms of its Fourier transform,
analyzing the binary mixture of Yukawa particles is another
interesting example for our theory. For D = 3, the Yukawa
potential Y (r) and its Fourier transform read

Y (r) = εσ
e−κ(r−σ )

r
, Y(k) = 4πεσeκσ

k2 + κ2
. (86)

Let us consider a system composed of Yukawa particles,
where σ1,ε1,κ1 describe particle-depletant interaction Y1(r),
and depletant-depletant interaction Y2(r) depends on σ2,ε2,κ2.
Then, the effective interaction can be calculated analytically
from (41), namely

Ueff(�R) = − 1

(2π )3

∫
�̃

dk eik·�R |Y1(k)|2
Y2(k)

= −ε2
1σ

2
1

ε2σ2
e−κ1(�R−2σ1)−κ2σ2

(
1

�R
− κ2

1 − κ2
2

2κ1

)
.

(87)

A graphical representation of (87) for various parameters is
shown in Fig. 3. In general, for ε2 > 0 the particular profiles of
effective interaction are strongly dependent on parameters and
can vary from purely attractive to strongly repulsive. When
the range of interaction is of the order of particle radius
(κi 
 σ−1

i ), the effective interaction is attractive (curves 1–3
in Fig. 3) and its range increases with the downturn in the
depletant radius. In fact, this range is surprisingly long, namely
for σ2/σ1 = 0.25 the interaction is significant over a range
of 5σ1 (curve 1, Fig. 3). This is in stark contrast with the

FIG. 3. (Color online) Effective potential for a binary mixture of
Yukawa particles, according to formula (87), for which βε2

1/ε2 = 1,
and σ2 and κi are given in units [σ1] and [σ−1

1 ], respectively. Curves
1–3: growing depletion attraction for decreasing size of depletant
particles, κi = σ−1

i , to match the size of the particle. Curves 4–6: for
higher values of κ1, a κ2-dependent energy barrier appears.

Asakura-Oosawa model for HS of radii σ1 and σ2, where
the interaction would cease over a range of σ1 + σ2 [16].
Another interesting characteristic of Ueff for Yukawa particles
appears when κ1 is increased, in which case a repulsive barrier
emerges. This barrier grows as the range of depletant-depletant
interaction increases (curves 4–6, Fig. 3). Apparently, possible
energetic advantages of lower Y1(r) cannot dominate the
depletant-depletant repulsion. Finally, if we assume ε2 < 0,
the global sign of Ueff(�R) is inversed, leading to repulsion-
through-attraction effects.

Summarizing, this relatively simple model indicates possi-
ble self-organization of Yukawa particles, although analytical
calculations analogous to Gaussian particles cannot be easily
completed here. Nevertheless, phase separation in binary
Yukawa systems has been encountered in simulations [41]
and also in the context of plasma research, e.g., [42,43].

E. Particles with a repulsive core and a Yukawa interaction tail

The pure Yukawa potential suffers from the lack of a
repulsive core independent from the interaction tail, so a
realistic description of colloid particles requires a more
complicated potential. In [25], Louis et al. simulated a binary
system consisting of HS particles with Yukawa interaction
tails, both as depletant and colloid particles. The potential
applied in [25] reads

+∞ if r < σi,

εiσi

r
e−κi (r−σi ) if r � σi,

(88)

where index i denotes big-small or small-small potential, σi

is the size of the particle core, and εi is the energy scale.
Reference [25] reports that the sign of the big-small interaction
tail is decisive for the effective interaction being attractive or
repulsive. In particular, the repulsive tail results in effective
attraction in the system, while the attractive tail induces
“repulsion-through-attraction.” Within our framework, we are
able to qualitatively reproduce these two effects with an
analytical formula.

We propose to model both the hard core and interaction tail
of a single particle with two Yukawa potentials, namely

Y HS
i (r) = ciσi

r
e−λi (r−σi ) + tiσi

r
e−κi (r−σi ), (89)

where index i = 1 denotes particle-depletant interaction and
i = 2 denotes depletant-depletant interaction. For λi > κi , the
first term becomes a repulsive core, while the second term
can now be either repulsive or attractive, depending on ti . To
allow a direct comparison between our results and [25], we
would like to control the attractive tail of Y HS

i (r) with the
depth of its minimum εi . Thus, for εi < 0 we have determined
ti numerically from the following equations:

d
dr

Y HS
i (r)

∣∣
r=r0

= 0,

Y HS
i (r0) = εi .

(90)

In the case of a repulsive tail, we have assumed ti = εi � 0.
The Fourier transform of Y HS

i (r) is simply a sum of twoY(k)
for relevant parameters. Therefore, the effective interaction
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reads

Ueff(�R) = − 1

(2π )3

∫
�̃

dk eik·�R |YHS
1 (k)|2
YHS

2 (k)

= − 2

π

σ 2
1

σ2

∫ +∞

0
dk

k sin �Rk

�R

(
k2 + κ2

2

)(
k2 + λ2

2

)
(
k2 + λ2

1

)2(
k2 + κ2

1

)2

×
[
c1e

σ1λ1
(
k2 + κ2

1

) + t1e
κ1σ1

(
k2 + λ2

1

)]2[
c2eσ2λ2

(
k2 + κ2

2

) + t2eκ2σ2
(
k2 + λ2

2

)] .

(91)

The integrand in the above expression is an even function,
and the degree of polynomial expression in the denominator
is higher than that in the numerator, so this integral can be
calculated analytically, thanks to the residue theorem. Due to
its length and complexity, we discuss the full formula in the
Appendix.

The core parameters ci and λi cannot be determined from
first principles, and our initial experience with (91) has shown
that the exact shape of interactions obtained from our model
is very sensitive to these parameters. It is also usually possible
to find the parameters that differ by many orders of magnitude
but lead to similar results. Therefore, in order to determine the

physically reasonable range of core parameters, we have fitted
our model to the simulation data from [25]. In [25], the values
of potential parameters read σ1 = 0.6σ0, σ2 = 0.2σ0, κ1 =
6/σ0, and κ2 = 15/σ0, where σ0 is the radius of the bigger par-
ticle. The simulations have been performed for nine combina-
tions of tail parameters, namely for βε1 equal to −0.82, 0, and
0.82, and for βε2 set to 0, 2.99, and −0.996. We read the data
from Fig. 6 in [25] with the resolution of 25 points per curve
and fit them using the quasi-Newton algorithm with a con-
straint ci > 0. The constraint is applied to prevent the tendency
of the algorithm to find the unphysical values of parameters.

To fit the data, we should find four core parameters ci

and λi for each choice of ε1 and ε2. However, the algorithm
usually could not achieve convergence if λ1 and λ2 have been
varied. Therefore, we have chosen λ1 = 3κ1 and λ2 = 2.4κ2

and kept these values constant for all curves, fitting solely c1

and c2. For such a choice of λi , the microscopic potentials
Y HS

i (�R) are relatively soft-core, but this choice improved the
quality of fits for all ε2 �= 0 cases, with the error of c1 up to
15% (except for case 3, which was 44%) and the errors of
c2 lower than 0.0002%. However, extreme errors (higher than
500%) are encountered for all ε2 = 0 cases (plots 1, 4, and 7,
Fig. 4), though the algorithm achieved convergence even in this
situation. These errors might arise from the fact that we fit the

FIG. 4. (Color online) Model (91) (dashed black line) fitted to simulation data (red solid line) from [25]. In all cases, core exponents
read λ1 = 3κ1 and λ2 = 2.4κ2; ci are determined from the fitting procedure. Insets: a comparison between potential wells resulting from the
fitting procedure and the hard-core potentials applied in [25]; gray, small-small interaction; black, big-small interaction; dashed lines, soft-core
potential generated with λi and ci ; solid lines, referential hard-core potential from [25].
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essentially soft-core model to the data that are directly affected
by the hard-core potential. In the absence of mitigating effects
from the tail, our model becomes highly sensitive to λi , though
no such problem is encountered for ε1 = 0. While increasing
λi might improve those three fits, we have decided to keep
common λi for all examples, to allow as much comparison
between them as possible.

The data from simulations and our fits are presented in
Fig. 4. In general, our model is capable of reproducing all types
of effective interactions found in [25] in terms of their sign
and range. In particular, our model reproduces the “attraction-
though-repulsion” effect for ε1 > 0 (plots 4–6, Fig. 4) and
the “repulsion-through-attraction” effect for ε1 < 0 (plots 7–9,
Fig. 4). In the former case, our model exhibits a general
tendency to predict a shallower effective potential than in the
simulations. However, in the latter case of ε1 < 0 our model
evidently lacks the oscillatory behavior which is manifested
in the simulations. This is also a problem for the ε1 = 0,
ε2 = 2.99 case (plot 2, Fig. 4), which is entirely dominated by
the oscillations, and, to a lesser extent, for the pure hard-sphere
case (ε1 = 0, ε2 = 0, plot 1, Fig. 4). In all of these examples,
our model can be applied only qualitatively, whenever the
oscillations can be treated as a higher-order effect. In the insets
of Fig. 4, there are also microscopic potential wells presented,
generated according to fitted parameters, and compared to
the HS potentials applied in the simulations. As expected,
the highest discrepancies occur for ε1 < 0, most likely due
to the lack of oscillations. The other examples show agreement
in the shape of the interaction tail, though for εi = 0 a
compensating softening of the core occurs.

In principle, varying solely ε1 and ε2 should be enough
to explain the differences in effective interaction for a
common set of core parameters. Taking the suggestion from
the previously fitted parameters, we have chosen λ1 = 5

3κ1,
λ2 = 32

15κ2, βc1 = 1, and βc2 = 2.2. The results are shown
in Fig. 5. For such a choice of parameters, the core part of
the microscopic potential is even softer than before, but now

our model simultaneously reproduces eight out of nine types
of simulated effective interactions, in terms of their energy
scale, range, and sign. As before, our predictions lack the
oscillations for ε1 < 0, which is one group of results (curves
7–9, Fig. 5). In this case, our predictions might be treated
only as a crude approximation. Another group is the effective
attraction for ε1 > 0 (curves 4–6, Fig. 5). In this group, our
predictions vary more uniformly with changing ε2 than in the
simulations, and our effective potential is usually stronger for
�R/σ0 close to 1, but sooner becomes flat. Yet another group
is formed by ε1 = 0 results. The sole qualitative disagreement
occurs for the ε1 = 0, ε2 = 2.99 case (curve 2, Fig. 5),
which is predicted as attractive, but the simulations show its
mainly oscillatory behavior. In the remaining cases of ε1 = 0,
ε2 = 0 and ε1 = 0, ε2 = −0.996 (curves 1 and 2, Fig. 5),
the predicted range of interaction is slightly longer than in
simulations.

In summary, (91) qualitatively reproduces most of the ex-
pected effective interaction characteristics. The discrepancies
between our model and simulations might originate from both
the application of soft-core potentials and the fact that 	 is
only a part of the total effective interaction. In the Appendix,
we comment briefly on the possibility of generating oscillatory
behavior from (91).

IV. FINAL REMARKS

In this paper, we have proposed an occupation number
functional as a tool to describe binary colloidal systems. This
functional is an alternative to the Asakura-Oosawa approach,
density functional theory, and closure relations. In Sec. III, we
have shown that with the aid of our formalism, we are able
to reproduce analytically the important features of systems
ranging from Gaussian particle mixtures to Yukawa particle
mixtures. Our theory proved to be a versatile qualitative
tool, which supports our proposition that Ueff(Ri − Rj ) can
be the dominant source of effective interactions. While the

FIG. 5. (Color online) Effective interaction in the binary mixture of particles consisting of a repulsive core and a Yukawa interaction
tail. Left: effective interaction generated from formula (91) for soft-core particles. Right: effective interaction measured in the simulations
of hard-core particles, reprinted from [25]. σ0 is the radius of bigger particles, σ1 = 0.6σ0, σ2 = 0.2σ0, κ1 = 6/σ0, and κ2 = 15/σ0. Core
parameters for all curves: λ1 = 5

3 κ1, λ2 = 32
15 κ2, βc1 = 1, and βc2 = 2.2. Curves 1–3: for ε1 = 0, the behavior of Ueff depends on the sign of

ε2. Curves 4–6: for ε1 > 0, Ueff is attractive. Curves 7–9: for ε1 < 0, Ueff is repulsive.
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framework we propose is currently far less developed and
not as accurate as other approaches in the field, it provides
a more direct insight into how effective interactions arise
from microscopic potentials. We have provided a discussion
on the assumptions and approximations that determine the
limits of applicability for our theory. Further development
of the occupation number functional approach might include
reproducing thermodynamics of binary systems or relating this

model to spatiotemporal correlations in noise in a Langevin-
like description.
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APPENDIX: FULL FORMULA FOR THE EFFECTIVE INTERACTION OF PARTICLES WITH A REPULSIVE
CORE AND A YUKAWA INTERACTION TAIL

In this appendix, we present the full analytic formula for effective interaction given by (91):

Ueff(�R) = − 1

(2π )3

∫
�̃

dk eik·�R

∣∣YHS
1 (k)

∣∣2

YHS
2 (k)

= − 2

π

σ 2
1

σ2

∫ +∞

0
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(
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) + t2eκ2σ2
(
k2 + λ2

2

)]
.

(A1)

The integrand is the even function of k, and the nominator has lower order than the denominator, so this integral can be calculated
via residue theorem. The integrand has four poles:

k1 = iλ1, (A2)

k2 = iκ1, (A3)

k3,± = ±i

√
c2κ

2
2 eσ2λ2 + t2λ

2
2e

σ2κ2

c2eλ2σ2 + t2eκ2σ2
. (A4)

k1 and k2 lie in the upper complex half-plane. k3,± can be either purely imaginary, in which case only k3,+ lies in the upper
complex half-plane, or purely real, in which case both k3,+ and k3,− lie on the real axis. For three imaginary poles, the result of
integration reads

Ueff(�R) = 2πi[Res(k1) + Res(k2) + Res(k3,+)], (A5)

where

2πi Res(k1) = σ 2
1

σ2
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, (A6)

2πi Res(k2) = σ 2
1
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2π iRes(k3,+) = 2
σ 2

1
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In the case of real k3,±, the contribution 2πi Res(k3,+) must be replaced with

πi[Res(k3,+) + Res(k3,−)] = 4
σ 2

1

σ2
c2t2
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c2e
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− t2e
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(
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1 − λ2
2

)]2}
. (A9)

In general, the obtained formula for (A5) is a combination of Yukawa-like and exponential functions. Looking at the final
expressions from the perspective of λ1 and λ2, one can see that there are several exponent terms that differ in their characteristic
“length scale,” some of them even divergent for growing λi . This explains the sensitivity of the model to core parameters, and
it is probably the reason for the numerical difficulties encountered in the fitting procedure when λi are varied.

Interestingly, the contribution (A9) might introduce oscillatory behavior, which is apparently missing in Sec. III E. However,

this contribution appears for − κ2
2

λ2
2
c2e

σ2(κ2−λ2) > t2 > −c2e
σ2(κ2−λ2), which means that t2 must be negative. In our model,

t2 < 0 requires ε2 < 0 [by (90)], so only cases 3, 6, and 9 from Fig. 4 could be affected by oscillations from (A9).
This means that in the discussed model, it is not possible to choose the core parameters that provide oscillations in
cases 2, 7, and 8 from Fig. 4. Therefore, this effect is most likely embedded in the neglected part of the effective
interaction.
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