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Rheology of cohesive granular materials across multiple dense-flow regimes
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We investigate the dense-flow rheology of cohesive granular materials through discrete element simulations of
homogeneous, simple shear flows of frictional, cohesive, spherical particles. Dense shear flows of noncohesive
granular materials exhibit three regimes: quasistatic, inertial, and intermediate, which persist for cohesive
materials as well. It is found that cohesion results in bifurcation of the inertial regime into two regimes: (a)
a new rate-independent regime and (b) an inertial regime. Transition from rate-independent cohesive regime
to inertial regime occurs when the kinetic energy supplied by shearing is sufficient to overcome the cohesive
energy. Simulations reveal that inhomogeneous shear band forms in the vicinity of this transition, which is more
pronounced at lower particle volume fractions. We propose a rheological model for cohesive systems that captures
the simulation results across all four regimes.

DOI: 10.1103/PhysRevE.90.032206 PACS number(s): 45.70.−n, 47.57.Gc, 64.60.F−

I. INTRODUCTION

Flows of dense granular materials occur in both natural
and industrial processes and exhibit a variety of distinct
rheological behaviors. For noncohesive particles, three flow
regimes have been identified—namely the quasistatic, inertial,
and intermediate regimes [1–4]—each of which manifests
different scalings of the mean stresses with shear rate and
volume fraction. Numerous constitutive stress models have
been constructed with these scalings in mind [2,3,5–10].
However, many granular flows involve cohesive interparticle
forces for which the above models do not account. These
cohesive effects are the primary focus of the present study.

Cohesion can result from a variety of sources—including
van der Waals forces [11,12], electrostatic forces [13], cap-
illary forces [14], and solid bridges [15]—and has a strong
impact on granular rheology. For example, agglomeration
of particles has been observed in simulations of cohesive
granular materials in various flow geometries [16–21]. Annular
shear flow experiments [22] and plane shear simulations
[18,20,23] have shown that cohesion increases the shear-
stress ratio η, defined as the ratio of shear stress τ to
pressure p. Both simulations and experiments have shown
that the discharge flow rate from a hopper decreases with
increasing cohesion [24]. Rotating-drum experiments reveal
that cohesion increases avalanche size and leads to robust
pattern formation on the surface [25–27]. Despite the number
of such phenomenological studies, there is relatively little
literature on constituting the rheological effects of cohesion.
One notable work is that of Rognon et al. [20], which presents
modifications to friction and dilatancy laws for noncohesive
particles to account for the effects of cohesion observed in
two-dimensional (2D) simulations. The present study goes
beyond these earlier studies by exposing how the regime map
for noncohesive materials [1–4] is altered by the introduction
of cohesion and formulating explicit models for the mean
stresses.

In this paper, we investigate the rheology of cohesive
granular materials through discrete element method (DEM)
simulations of homogeneous, simple shear flows of frictional
and cohesive particles. Most of the simulations presented here
are based on a linear (Hookean) spring-dashpot model [28]

for particle-particle interaction and a commonly used model
for van der Waals force between particles [29]. The quasistatic
regime where the stress is proportional to spring stiffness (and
independent of shear rate), the inertial regime where stress is
proportional to square of shear rate (and independent of spring
stiffness), and the intermediate regime where stress depends
on both shear rate and spring stiffness—reported previously
for noncohesive particles [2]—persist even when cohesion
is added. The presence of cohesion is found to introduce a
new rate-independent regime where the stress depends on the
strength of cohesion. These regimes persist when the Hookean
contact model is replaced by a Hertzian contact model as well
as when the van der Waals force model is replaced with an
alternate cohesion model proposed by Rognon et al. [20],
illustrating the robustness of these regimes. Finally, we also
modify the blended stress model proposed by Chialvo et al. [2]
for dense flows of noncohesive particles to obtain an analogous
model for dense flow of cohesive particles.

II. SIMULATION METHODS

The DEM simulations [28] were performed using the
molecular dynamics package LAMMPS [30]. Particles interact
via repulsive spring-dashpot contact forces and attractive
cohesive forces. In the spring-dashpot model, the normal and
tangential contact forces on a spherical particle i resulting from
the contact of two spheres i and j with same diameter d are

Fnij
= f

(
δij d

4

)[
knδij nij − γnmeffvnij

]
, (1)

Ftij = f

(
δij d

4

)[−kt utij − γtmeffvtij

]
, (2)

where δij is the overlap distance, kn and kt are spring
elastic constants, γn and γt are viscous damping constants,
meff = mimj/(mi + mj ) is the effective mass of spheres with
masses mi and mj , vnij

and vtij are the normal and tangential
components of relative particle velocity, and utij is the elastic
shear displacement. For Hookean contact, f (x) = 1, while for
Hertzian contact, f (x) = √

x. The magnitude of tangential
force is limited by a static yield criterion, |Ftij | � μ|Fnij

|,
where μ is the particle friction coefficient. We set values
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of kt/kn = 2/7 [31] and γt = 0. For Hookean contact, for
the default case, γn is chosen such that the restitution coef-
ficient e = exp(−γnπ/

√
4kn/meff − γ 2

n ) = 0.7. For Hertzian
contact, we employ the same value for γn/

√
kn/meff , but now

the restitution coefficient e depends on the collision velocities.
To account for cohesion, an attractive force FC

nij
is included

so the total normal force between the particles becomes FT
nij

=
Fnij

+ FC
nij

. For the van der Waals force model, the cohesive
force between a pair of particles whose surfaces separated by
a distance s is written as [29]

FC
nij

= − Ad6

6s2(s + 2d)2(s + d)3
, (3)

where A is the Hamaker constant. It is assumed that the
force saturates at a minimum cutoff distance, smin = θd

[29]. Additionally, since the magnitude of the cohesive force
decreases rapidly with separation distance, a maximum cutoff
distance smax = d/4 [18] is used to accelerate the simulation
process; for s > smax, cohesive force is neglected.

We also investigated the alternate model of Rognon
et al. [20],

FC
nij

= −√
4knNAδij , (4)

where NA is specified as an input. Note that, in the static
limit, where the relative particle velocity is zero, for Hookean
contact, the total normal force between two particles is
knδij − √

4knNAδij . Accordingly, −NA is the maximum
attractive force between the two particles, experienced when
δij = NA/kn [20].

Differences between these two cohesion models are signifi-
cant. The cohesive force in the van der Waals model [Eq. (3)] is
present before the particles collide and does not increase with
overlap between particles. In Eq. (4), the cohesive force is only
present when particles are in contact and increases with extent
of overlap. Nevertheless, it will be seen that both models lead
to qualitatively similar results, differing in quantitative details
only modestly.

In the DEM simulations, assemblies of about 2000
monodisperse particles of diameter d and density ρs are
placed in a periodic box with fixed volume V . Through the
Lees-Edwards boundary condition [32], particles are subjected
to homogeneous steady simple shear at a shear rate γ̇ . The
macroscopic stress tensor is calculated as

σ = 1

V

∑
i

⎡
⎣∑

j �=i

1

2
rij Fij + mi(v′

i)(v
′
i)

⎤
⎦ , (5)

where rij is the normal vector pointing from the center of
particle j to that of particle i, and v′

i is the fluctuating velocity
of particle i relative to its mean streaming velocity. This
stress tensor is further ensemble-averaged over many time
steps. Ensemble-averaged pressure and shear stress can thus
be obtained as p = (σxx + σyy + σzz)/3 and τ = σxz. The
stresses and shear rate are made dimensionless through scaling
with d, ρs , and elasticity k = kn. Note that the dimensions
of the spring constants and damping coefficients differ for
Hookean and Hertzian contacts. Thus, for example, stress
will be scaled using k/d and k in Hookean and Hertzian
contacts, respectively. As gravity is not included in the

simulations, a modified Bond number Bo∗ is introduced, which
compares the maximum net cohesive force experienced by a
particle to a characteristic contact force. For Hookean contact
with the van der Waals force model, Bo∗ = F max

coh /(kd) ≈
A/(24kθ2d2), where F max

coh denotes the maximum cohesive
force. For Hertzian contact with the van der Waals force model,
Bo∗ = F max

coh /(kd2) ≈ A/(24kθ2d3). Simulation results indi-
cate that the results are insensitive to the particular value for
θ (1.0×10−5 � θ � 4.0×10−5) for specified value of Bo∗.
For the results presented in this paper, θ = 4×10−5 is chosen
[18]. Finally, for Hookean contact with the alternate cohesion
model, Bo∗ = NA/(kd).

III. FLOW REGIMES

We first consider Hookean contact and van der Waals
cohesion. Simulations are performed for various shear rates,
volume fractions, friction coefficients, and modified Bond
numbers. Figure 1(a) plots the scaled pressure pd/k against the
scaled shear rate ˆ̇γ = γ̇ d/

√
k/(ρsd) for noncohesive particles

with μ = 0.1. Three regimes are present [1–4]: quasistatic
at low shear rates and high volume fractions, inertial at low
shear rates and low volume fractions, and intermediate at
high shear rates and all volume fractions. The quasistatic and
inertial regimes are separated by a critical volume fraction φc,
which is a function of μ as summarized in Table I. When
cohesive forces are included, however, it is found that this
regime map is modified, as shown in Figs. 1(b) and 1(c),
where Bo∗ is 5×10−6 and 5×10−5, respectively. Some aspects
remain unchanged: all three noncohesive regimes persist with
no change in φc(μ), and the quasistatic and intermediate
pressure values show no appreciable changes. However, the
inertial regime is now bifurcated into two regimes occurring
at different scaled shear rates: at higher ˆ̇γ the flow remains
inertial (i.e., exhibiting Bagnold scaling), while at lower ˆ̇γ the
flow becomes rate independent. We term this latter, new regime
the cohesive regime. As Bo∗ increases, this cohesive regime
expands to encompass a larger domain of ˆ̇γ , as illustrated in
Figs. 1(b) and 1(c). Simulations were also performed for a
highly inelastic system by lowering e from 0.7 (default case)
to 0.02. It was found that all four regimes persist even for such
a highly dissipative system, with no discernible change in the
magnitude of the jamming volume fraction (see Fig. 2).

TABLE I. Values of model constants.

μ-dependent parameters
μ 0.1 0.3 0.5

φc 0.614 ± 0.001 0.596 ± 0.001 0.587 ± 0.001
χ 2.08 ± 0.02 2.09 ± 0.02 2.14 ± 0.08
ε 1.00 ± 0.01 0.92 ± 0.01 0.67 ± 0.02
αQS 0.36 0.36 0.20
αint 0.15 0.13 0.10
αcoh,1 0.15 0.32 0.26
ηs 0.268 0.357 0.382
α3 0.23 0.23 0.15

μ-independent parameters
φa αinert αcoh,2 I0 α1 β1 ˆ̇γ0 α2 β2 α4

0.45 ± 0.01 0.015 0.008 0.32 0.37 1.5 0.1 0.2 1.0 0.1

032206-2



RHEOLOGY OF COHESIVE GRANULAR MATERIALS . . . PHYSICAL REVIEW E 90, 032206 (2014)

10
−6

10
−4

10
−2

10
0

10
−12

10
−9

10
−6

10
−3

10
0

ˆ̇γ ≡ γ̇d/ k/(ρsd)

p
d
/
k

(a)

10
−6

10
−4

10
−2

10
0

10
−8

10
−6

10
−4

10
−2

10
0

ˆ̇γ ≡ γ̇d/ k/(ρsd)

p
d
/
k

(b)

10
−6

10
−4

10
−2

10
0

10
−6

10
−4

10
−2

10
0

ˆ̇γ ≡ γ̇d/ k/(ρsd)

p
d
/
k

(c)

10
−10

10
−5

10
0

0
−6

0
−4

0
−2

0
0

≡ γ̇d/ k/(

φ = 0.51

φ = 0.53

φ = 0.55

φ = 0.57

φ = 0.59

φ = 0.6

φ = 0.61

φ = 0.62

φ = 0.63

FIG. 1. Scaled pressure versus scaled shear rate for (a) noncohesive particles, (b) cohesive particles with Bo∗ = 5×10−6, and (c) cohesive
particles with Bo∗ = 5×10−5. In all cases, Hookean contact and van der Waals force model are used, and the interparticle friction coefficient
μ = 0.1. Symbols denote simulation results, while lines denote model predictions from Eqs. (7)–(12).

In Figs. 1 and 2, we present the results only from simulations
in which the velocity profile in the statistical steady state is
found to be linear indicating homogeneous shear. There is a
conspicuous absence of simulation results in Figs. 1(b), 1(c),
and 2(b) at the lower volume fractions and shear rates in the
region representing transition from cohesive regime to inertial
regime. In this region, the velocity profiles are found to be
inhomogeneous (see Appendix A for further details). These
cases are not included in the analysis of the homogeneously
sheared state presented here.

The cohesive regime corresponds well to previous re-
sults [18] which report the existence of a rate-independent
regime due to cohesion. Also, the cohesive-to-inertial regime
transition is in accord with results from dynamic shear cell
experiments on slightly cohesive powders [22]; the pressure
in these experiments is roughly rate independent at low shear
rates but increases significantly at higher shear rates. Finally,
the impact of cohesion on the scaling of pressure with respect
to shear rate is consistent with previous 2D, constant-pressure
shear simulations of Rognon et al. [20]. They utilize NA/(pd)
to characterize cohesion and find that, when NA/(pd) is large,
the solid fraction no longer varies with inertial number (defined
by them as γ̇

√
m/p for particle mass m) in their dilatancy

law, which corresponds to the rate-independent behavior we
observe for the pressure in the cohesive regime. The present
paper details where this new rate-independent cohesive regime
is located in parameter space with respect to the other three
regimes and provides a comprehensive regime map for dense
flows of cohesive granular materials capable of explaining all
of the above behaviors.

Because previous works (e.g., Refs. [20,33]) demonstrate
the importance of microstructure on dense granular rheology,
we aim to explain the cohesive-to-inertial regime transition
in terms of changes in microstructure. To this end, we study
the average coordination number Z, which is defined as the
average number of contacts per particle in the system. Specif-
ically, Z = 2nc/n, where nc is the total number of contacts
(with particle overlap) and n is the total number of particles
in the system. When φ > φc, cohesion has negligible impact
on Z across all shear rates (i.e., quasistatic and intermediate
regimes), as seen in Fig. 3(a). For φ < φc, cohesion has
a weak impact on Z at high shear rates (i.e., inertial and
intermediate regimes) but substantially increases the value of
Z in lower-shear-rate region (i.e., the cohesive regime), as
seen in Fig. 3(b). Thus, cohesion has an appreciable impact
on Z only in the cohesive regime, which is consistent with the
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FIG. 2. Scaled pressure versus scaled shear rate for (a) non-
cohesive particles and (b) cohesive particles with Bo∗ = 5×10−5.
Hookean contact and van der Waals force model are used, and the
interparticle friction coefficient μ = 0.1 and restitution coefficient
e = 0.02. Symbols denote simulation results at various volume
fractions as per the legend from Fig. 1. Lines denote model predictions
from Eqs. (7)–(12). Model parameters used are the same as those
in Table I.

pressure data shown in Fig. 1. To make this observation more
transparent, we present in Figs. 4(a) and 4(b) the variation
of pressure with shear rate corresponding to conditions in
Figs. 3(a) and 3(b), respectively. It is clear that cohesion has
only a weak impact (if any) on pressure (and, as presented

later, shear stress) in quasistatic, inertial, and intermediate
regimes. The emergence of a rate-independent regime because
of the cohesive force can be reasoned through the average
coordination number characterizing the microstructure. When
a dense assembly of noncohesive particles is subjected to
steady (and slow) shear, jamming occurs at a critical volume
fraction, φc, which depends on the particle-particle coefficient
of friction [33,34] and there is a corresponding average
coordination number Zc. Under dynamic conditions [33], the
stress tracks Z more closely than the particle volume fraction.
Hence it is more accurate to characterize the regimes in terms
of Z and shear rate than in terms of volume fraction and
shear rate. This distinction is more apparent when particles
interact cohesively. For noncohesive assemblies in slow, steady
shear, Z falls below Zc when φ drops below φc. In contrast,
for cohesive assemblies, Z can remain large even when φ

is lowered below φc, and force chains persist, leading to
rate-independent regime. [Compare Figs. 3(b) and 4(b).]

Another behavior connected to the coordination number is
the expansion of the cohesive regime with increasing Bo∗, as
illustrated in Fig. 3(b). The critical shear rate which sets the
boundary between the cohesive and inertial regimes scales with√

Bo∗, as demonstrated in Fig. 3(c), where data are collapsed
by scaling the dimensionless shear rate with

√
Bo∗. The

√
Bo∗

scaling can readily be rationalized: When cohesive energy
(∼Bo∗) is overcome by the kinetic energy supplied by the
shearing (∼ ˆ̇γ 2), the system transitions from a cohesive regime
to an inertial regime. This transition in dependence of Z on
shear rate between the cohesive regime and inertial regime is
consistent with previous findings [18,19].

The variation of Z with shear rate is analyzed in more detail
by decomposing the average coordination number plotted in
Figs. 3(a) and 3(b) into two components: one in the extension
quadrants (Zext) and one in the compression quadrants (Zcom),
as shown in Figs. 5(a) and 5(b). As one would expect, the
average coordination number in the compression quadrants is
always higher than the counterpart in the extension quadrants
[35]. At a packing fraction of 0.62 (which is larger than φc),
Zcom and Zext are essentially the same for cohesive and
noncohesive systems, see Fig. 5(a). Furthermore, both of them
remain nearly independent of shear rate at low shear rates and
decrease at higher shear rates; thus, there is no discernible
difference in the behavior in the different quadrants. At

10
−6

10
−4

10
−2

10
0

4

4.5

5

5.5

6

ˆ̇γ ≡ γ̇d/ k/(ρsd)

Z Bo∗ = 0

Bo∗ = 5 × 10−7

Bo∗ = 5 × 10−6

Bo∗ = 5 × 10−5

(a)

10
−6

10
−4

10
−2

10
0

0

1

2

3

4

5

6

ˆ̇γ ≡ γ̇d/ k/(ρsd)

Z

(b)

10
−4

10
−2

10
0

10
2

10
4

−1

0

1

2

3

4

5

6

ˆ̇γ/
√

Bo∗

Z
−

Z
n
o
n
c
o
h

(c)

FIG. 3. The average coordination number versus scaled shear rate at μ = 0.1 and various modified Bond numbers for (a) φ = 0.62 and (b)
φ = 0.59. In (c), the data from (b) are collapsed into one curve by subtracting Z for noncohesive system from that of cohesive systems and
rescaling the shear rate. Hookean contact and van der Waals force model are used here.
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FIG. 4. Scaled pressure versus scaled shear rate at μ = 0.1 and various modified Bond numbers for (a) φ = 0.62 and (b) φ = 0.59. Hookean
contact and van der Waals force model are used here.

packing fractions lower than φc, inertial regime is obtained
for noncohesive systems, where both Zcom and Zext increase
with shear rate [see Fig. 5(b)]. When the particles interact
cohesively and the shear flow is in the cohesive regime, both
Zcom and Zext are large at low shear rates (comparable in
magnitude to those in the quasistatic regime) under low-shear-
rate conditions. Increasing shear rate tends to break down the
force chains in all quadrants, weakly at low shear rates and
rapidly in the vicinity of

√
Bo∗, see Fig. 5(b). Once a cohesive

system enters the inertial regime, its behavior is similar to
that of noncohesive systems, with new contacts forming more
readily, leading to an increase in Zcom and Zext. It is the
interplay between these two trends that give rise to a minimum
in the average coordination number for cohesive systems in
the vicinity of

√
Bo∗ [Figs. 3(b) and 5(b)], and the regime

transition observed in the pressure plot [Fig. 4(b)].

IV. PRESSURE

A blended pressure model has been previously proposed for
noncohesive granular materials, which can capture the pressure
continuously across different dense-flow regimes for different

volume fractions and shear rates [2],

p =
{

pQS + pint for φ � φc(
p−1

inert + p−1
int

)−1
for φ < φc.

(6)

In this model, pQS, pinert, and pint represent pressure in the
quasistatic, inertial, and intermediate regimes. To model the
transitions between them, a blending function B of the form
B(y1,y2) = (yw

1 + yw
2 )1/w is used; w = 1 is chosen to create

an additive blend for the quasistatic-to-intermediate transition
and w = −1 is chosen to yield a harmonic blend for the
inertial-to-intermedaite transition. Pressure in each individual
regime is modeled based on scaling law similar to those in con-
ventional critical phenomena [36–39]. Specifically, one seeks
a power-law relationship between pressure and shear rate in
each flow regime [2]: pj

|φ−φc|ε ∼ [ γ̇

|φ−φc|ω ]
mj , j = QS, int, inert.

In the rate-independent quasistatic regime, mQS = 0. In the
inertial regime, where pressure varies as the square of shear
rate, minert = 2. Thus, assuming pinert ∼ |φ − φc|−χ , we set
ω = (ε + χ )/2. Furthermore, as the pressure is essentially
independent of |φ − φc| in the vicinity of the intermediate
asymptote, we deduce that mint = ε/ω = 2ε/(ε + χ ). Thus,
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FIG. 5. The average coordination number in the extension quadrants (unfilled symbols) and compression quadrants (filled symbols) versus
scaled shear rate at μ = 0.1 for (a) φ = 0.62 and (b) φ = 0.59. Hookean contact and van der Waals force model are used here.
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FIG. 6. Collapse of pressure for (a) inertial regime and (b)
quasistatic regime. For both (a) and (b), the solid line has a slope
of 1 and y intercept of 0. All points with different volume fractions
and particle friction coefficients fall on the lines. Hookean contact
is used.

for noncohesive particles with Hookean contact,

pQSd/k = αQS|φ − φc|ε, (7)

pintd/k = αint ˆ̇γ 2ε/(ε+χ), (8)

pinertd/k = αinert ˆ̇γ 2

|φc − φ|χ . (9)

The Levenberg-Marquardt method [40] is used to estimate
the model constants. Details are included in Appendix B.
As shown in Table I, it is found that αinert is approximately
independent of μ, while φc and αint differ for different μ. The
scaling exponent ε and prefactor αQS in Eq. (7), as well as the
scaling exponent χ in Eq. (9), manifest systematic dependence
on μ, which was not reported by Chialvo et al. [2], who took
χ = 2 and ε = 2/3 for all μ. Although it is not the principal
focus of this study, we report in Table I the best-fit values of
ε, αQS, and χ for three different μ values. As demonstrated in
Figs. 6(a) and 6(b), Eqs. (7) and (9), respectively, capture
the pressure in the quasistatic regime and inertial regime
satisfactorily.

Furthermore, the resultant value of mint = 2ε/(ε + χ ) is
consistent with experimental results [41,42]. The effectiveness
of the power-law relations is illustrated in Fig. 7, where the
pressure versus shear rate data at several different volume
fractions are collapsed onto two curves (one above φc and
one below). Figures 7(a)–7(c) show results for three different
values of μ.

It has been noted previously in the literature [33] that the
pressure in the quasistatic regime is not set by particle volume
fraction [as in Eq. (7)] and that it tracks more closely the
average contact coordination number Z under both steady
and dynamic flow conditions. In steady shear flows, Z is
set by the particle volume fraction and so Eq. (7) can be
thought of the outcome of integrating a relation that applies
under steady as well as dynamic conditions and one that is
restricted to steady shear flows. Since stress is principally
transmitted in the quasistatic regime through force chains,
researchers have focused on Z2, where particles with 0 or
1 contact are excluded as they are not involved in the force
chains (e.g., see Refs. [33,43]). We find that the pressure in
the quasistatic regime can be expressed as αZ[Z − Zc(μ)]2 or
αZ2 (μ)[Z2 − Z2c(μ)]2; see Figs. 8(a) and 8(b). It is interesting
to note that when the pressure is expressed in terms of Z or
Z2, the exponent is independent of μ; furthermore, when it is
expressed in terms of Z (instead of Z2), the proportionality
constant is also independent of μ and the role of friction is
manifested only through Zc(μ). As seen in the caption for
Fig. 8(a) and 8(b), Zc and Z2c decrease as μ increases, which
is consistent with previous results [33,34]. As seen in Figs. 3(a)
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FIG. 7. Collapse of pressure versus shear rate curves for (a) μ = 0.1, (b) μ = 0.3, and (c) μ = 0.5. In all cases, the pressure is scaled as
p∗ = p/|φ − φc|ε and shear rate as γ̇ ∗ = γ̇ /|φ − φc|(ε+χ )/2. (Values for ε and χ are included in Table I.) Symbols denote simulation results at
various volume fractions as per the legend from Fig. 1. The blending function, described in Eqs. (6)–(9) and represented by solid lines, captures
regime asymptotes as well as transitions. Hookean contact with no cohesion is used.
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FIG. 8. Simulation data of scaled pressure in the quasistatic
regime versus the predictions from the models based on (a) Z

and (b) Z2 for various volume fractions. In (a), αZ = 0.007 and
Zc = 5.10, 4.38, and 4.00 for μ = 0.1, 0.3, and 0.5, respectively.
In (b), Z2c = 5.20, αZ2 = 0.0077 for μ = 0.1; Z2c = 4.56, αZ2 =
0.0083 for μ = 0.3; and Z2c = 4.26, αZ2 = 0.0091 for μ = 0.5.
The system is noncohesive and Hookean contact is used. The line
represents y = x.

and 4(a), the pressure in the intermediate regime (and φ > φc)
increases with shear rate, while Z decreases with increasing
shear rate. This clearly shows that the relationship of the type
shown in Figs. 8(a) and 8(b) fail in the intermediate regime,
even though the stress continues to be largely transmitted
through force chains.

The pressure model for noncohesive systems is readily
modified to account for the effect of cohesion, as described
below. The data reveal two trends which provide clues for
constructing simple models. First, as illustrated in Fig. 9,
pd/k ∼ Bo∗ in the cohesive regime for all volume fractions
(except for those near φc). This behavior is consistent with
(a) pd/k ∼ ˆ̇γ 2 in the inertial regime and (b) the critical
ˆ̇γ value separating the inertial and cohesive regimes scales
as

√
Bo∗. Figure 9 shows results down only to φ ≈ 0.50.

At lower values of φ, the flow transitions to shear flows of
agglomerates, and the size of the simulation domain used in
this study is inadequate to get meaningful results. Second,
while the intermediate asymptote (at φ = φc) given by Eq. (8)
persists for cohesive particles at high ˆ̇γ values, it becomes rate
independent when ˆ̇γ becomes small compared to a critical
shear rate. This critical shear rate scales as

√
Bo∗, as shown

0.5 0.52 0.54 0.56 0.58 0.6 0.62
10

−2

10
−1

10
0

10
1

φ

(p
d
/
k
)/

B
o∗

Bo∗ = 5 × 10−6

Bo∗ = 5 × 10−5

Bo∗ = 5 × 10−4

FIG. 9. Dimensionless pressure scaled by Bo∗ versus volume
fraction in the cohesive regime at ˆ̇γ = 3.2×10−6 for μ = 0.1 and
various Bo∗ values. The line represents 0.15 |φ−φa |

|φc−φ| , where φc(μ =
0.1) = 0.614 and φa(μ = 0.1) = 0.45. Hookean contact and van der
Waals force model are used here.

in Fig. 10; this is exactly the same dependence as observed
eariler for the cohesive-to-inertial transition. Together these
observations suggest that, in the vicinity of φc, pd/k in
cohesive regime scales as (Bo∗)ε/(ε+χ).

Based on these observations, Eq. (6) is adapted using the
blending function previously described with w = 1 to provide
an additive blend that can model both the cohesive-to-inertial
and cohesive-to-intermediate transitions. Thus, the model
becomes

p =
{

pQS + (pint + pcoh,2) for φ � φc

[(pinert + pcoh,1)−1 + (pint + pcoh,2)−1]
−1

for φ <φc,

(10)

where pQS, pint, and pinert are given by Eqs. (7)–(9), and

pcoh,1d/k = αcoh,1Bo∗ |φ − φa|
|φc − φ| , (11)

pcoh,2d/k = αcoh,2(Bo∗)ε/(ε+χ)
. (12)
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FIG. 10. Scaled pressure versus scaled shear rate at φ = 0.614
for different cohesion levels (as shown in the legend). Interparticle
friction coefficient μ = 0.1 is used. Hookean contact and van der
Waals force model are used here.
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FIG. 11. Shear-stress ratio versus scaled shear rate for (a) noncohesive particles, (b) cohesive particles with Bo∗ = 5×10−6, and (c) cohesive
particles with Bo∗ = 5×10−5. In all cases, Hookean contact and van der Waals force model are used, and the interparticle friction coefficient
μ = 0.1. Symbols denote simulation results at various volume fractions as per the legend from Fig. 1. Lines denote model predictions from
Eqs. (13)–(15) and (19).

For noncohesive particles, where Bo∗ = 0, pcoh,1 and pcoh,2

vanish, and the proposed model returns to its original form
written for noncohesive particles. The Levenberg-Marquardt
method [40] is again used to estimate the model constants.
(Details are included in Appendix B.) They are provided in
Table I. Predictions based on this pressure model are compared
with the simulation results in Fig. 1. The proposed model
captures the data reasonably well not only in each regime but
also in the transition regions.

V. SHEAR-STRESS RATIO

Figure 11 displays the variation of stress ratio η(=τ/p)
with the scaled shear rate ˆ̇γ for both noncohesive and cohesive
particles with μ = 0.1. Cohesion has a significant effect on
the stress ratio only in the cohesive regime, where cohesion
increases the stress ratio appreciably. This increase in stress
ratio due to cohesion is in agreement with prior experiments
[22] and simulations [18,20,23]. It is also consistent with
increasing average coordination number with the inclusion
of cohesion in the cohesive regime.

The stress-ratio model for noncohesive frictional granular
materials proposed by Chialvo et al. [2] is composed of two
contributions, ηhard and ηsoft. The term ηhard is a function of
inertial number I ≡ γ̇ d/

√
p/ρs and describes the shear-stress

ratio for infinitely hard particles [8–10], while ηsoft is a function
of ˆ̇γ and describes the deviation from hard-particle behavior
due to finite stiffness,

η∗ = ηhard(I ) − ηsoft( ˆ̇γ ), (13)

ηhard(I ) = ηs(μ) + α1

(I0/I )β1 + 1
, (14)

ηsoft( ˆ̇γ ) = α2

( ˆ̇γ0/ ˆ̇γ )β2 + 1
. (15)

Here η∗ is the stress ratio for noncohesive granular materials,
and ηs is the yield stress ratio. The validity of this stress-ratio
model for noncohesive granular materials is demonstrated in
Fig. 12. By correcting for particle softness, the stress-ratio
data from all three regimes and particle friction coefficients
are collapsed onto one curve.

As shown below, the well-known Mohr-Coulomb relation
τ = η∗p + C, which can be cast as

η = η∗ + C/p, (16)

captures our steady, simple shear flow simulation results in
the rate-independent regimes, namely quasistatic and cohesive
regimes, provided C is properly modeled. Rognon et al. [20]
found that the model proposed by Rumpf [44] for C, CRumpf =
Zη∗φBo∗k/(πd), overestimates the value of C needed to
match the simulation results. We found the same to be true
as well. It is now known that Rumpf’s formula does not
account for nonaffine particle displacements [45–48], which
arise due to the structural disorder in the system. The relevance
of nonaffine displacement has been investigated in the context
of the shear modulus of covalent amorphous solids. He and
Thorpe [49] performed simulations on randomly depleted
covalent lattices and found that, for the shear modulus G,
G = 0.33(Z − 2.4)1.42. Recent analytical theory by Zaccone
[48] was applied to the same system and led to the expression,
G = 0.36(Z − 2.4). While this theory captured the critical
coordination number well, there is a discrepancy between the
theory and simulation results for the exponent and proportion-
ality constant. In an analogous fashion, we accounted for the
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FIG. 12. The correction for particle softness yields a collapse of
stress-ratio data for noncohesive particles in all three regimes for
various particle friction coefficients (as shown in the legend). The
line denotes the expression α1

(I0/I )β1 +1
. Hookean contact is used.
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volume fractions (0.50 � φ � φc), cohesion levels (as shown in
the legend), and friction coefficients (μ = 0.1,0.3, and 0.5) in the
cohesive regime. In all cases, Hookean contact and van der Waals
force model are used. The line represents y = x.

effect of nonaffine displacement in our system by replacing Z

in the Rumpf model with a(Z − Zn)b so

Ccorr
Rumpf = a(Z − Zn)bη∗φBo∗k/(πd), (17)

and sought if a suitable choice of a, Zn, and b could capture
our simulation results. We found that many combinations of
these values yielded equally good fits, making it difficult to
discriminate among the different choices. For example, in the
spirit of Zaccone [48], one could set Zn = 2.4, b = 1 and
allow a to be a function of μ and capture the data well (not
shown). We found that we could get an equally good fit by
setting a = b = 1 and Zn = 3 (where now all the parameters
are independent of μ); this fit is illustrated in Fig. 13. (As
discussed later, a = b = 1 and Zn = 3 captured the Hertzian
contact results as well.) The simplicity of the fit with Zn = 3
(as opposed to 2.4) could be due to the fact that microscopic
models differ. For example, the cohesive force is active not
only on the contacts that emerge due to cohesion but also on
those that form even in the absence of cohesion in our system,
which differs from the system studied by He and Thorpe [49]
and Zaccone [48]. In any case, our data do not permit more
definitive analysis.

In the quasistatic and cohesive regimes, η∗ is essentially
ηs , and Z does not vary significantly with the shear rate
[e.g., see Figs. 3(a) and 3(b)] and volume fraction (see results
for the case of Hookean contact and van der Waals force model
shown in Fig. 14). In views of these, and since the coordination
number is not directly accessible, a lumped model constant
α3 = (Z − Zn)ηs/π is sufficient to capture our data,

η = η∗ + α3φBo∗k/d

p
. (18)

To extend this model to cover rate-dependent regimes, namely
inertial and intermediate, we modify the model as follows:

η = η∗ + α3φBo∗k/d

p

1
ˆ̇γ

α4
√

Bo∗ + 1
. (19)
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FIG. 14. The average coordination number versus volume frac-
tion in the cohesive regime for particles with μ = 0.1 and
Bo∗ = 5×10−5.

Here α4

√
Bo∗ approximates the critical shear rate which sep-

arates the cohesive and inertial regimes. When ˆ̇γ 	 α4

√
Bo∗,

the model returns to Eq. (18). When ˆ̇γ 
 α4

√
Bo∗, the second

term in the model vanishes. The model describes stress ratio
reasonably well for all Bo∗ values considered without any
changes to constitutive parameters and for different μ values
with slight adjustment of α3. The values for α3 and α4 are
listed in Table I.

VI. GENERALITY OF THE RESULTS

The newly identified regime map is preserved when the
Hookean contact model is replaced by a Hertzian contact
model as well as when the van der Waals force model is
replaced with the alternate cohesion model of Rognon et al.
[20]. The general form of the stress model is also preserved,
albeit with small modifications. We illustrate these points by
presenting two different particle-scale models: (a) Hertzian
contact and the van der Waals force model and (b) Hookean
contact and the alternative cohesion model [Eq. (4)].

A. Flow regimes

Figures 15(a) and 15(b) show the variation of scaled
pressure against the scaled shear rate for cohesive particles
from these two particle-scale models. The cohesive regime,
characterized by rate-independent behavior below the critical
volume fraction (φc = 0.614 for μ = 0.1 in the figures) and
lower shear rates, is clearly present in both cases. In addition,
simulation results from different Bo∗ values confirm that the
critical shear rate, separating the cohesive and inertial regimes,
scales with

√
Bo∗ for both cases (not shown).

B. Pressure

The blended model for pressure, given by Eq. (10), remains
unaltered, but scalings for the various contributions there
change when Hookean contact is replaced with Hertzian
contact.

Specifically, pjd/k is changed to pj/k. Therefore,

pQS/k = αQS|φ − φc|ε, (20)
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FIG. 15. Scaled pressure versus scaled shear rate for (a) Hertzian contact and the van der Waals force model and (b) Hookean contact and
the alternative cohesion model [20]. Here μ = 0.1 and Bo∗ = 5×10−5. Symbols denote simulation results at various volume fractions as per
the legend from Fig. 1. Lines denote model predictions from Eqs. (10) and (17)–(21) in (a) and Eqs. (10)–(12) in (b).

pint/k = αint ˆ̇γ 2ε/(ε+χ), (21)

pinert/k = αinert ˆ̇γ 2

|φc − φ|χ . (22)

The Levenberg-Marquardt method [40] is performed to es-
timate the model constants. (Details are presented in Ap-
pendix B.) It is found that χ = 1.43 ± 0.03. It is found that
ε = 1.56, 1.21, and 1.10 with uncertainties of ±0.03 for
μ = 0.1, 0.3, and 0.5, respectively. The value of ε for Hertzian
contact is approximately 3/2 times the one for Hookean
contact, which is consistent with previous results [33,50].
Using the values for χ and ε, the pressure data can now be
collapsed onto two curves for different μ, as illustrated in
Fig. 16 for the case of μ = 0.1. Thus, Hertzian and Hookean
contacts afford similar simulation results such that pressure
can be collapsed in a similar fashion.
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FIG. 16. Collapse of pressure versus shear rate curves for μ =
0.1. The pressure is scaled as p∗ = p/|φ − φc|ε , and shear rate as
γ̇ ∗ = γ̇ /|φ − φc|(ε+χ )/2. ε = 1.56 and χ = 1.43 is used. Symbols
denote simulation results at various volume fractions as per the legend
from Fig. 1. The blending function, described in Eqs. (20)–(22) and
represented by solid lines, captures regime asymptotes as well as
transitions. Hertzian contact with no cohesion is used.

The first cohesive contribution pcoh,1 remains unchanged
from Eq. (11) except for scaling on the left-hand side,

pcoh,1/k = αcoh,1Bo∗ |φ − φa|
|φc − φ| . (23)

Finally, since pcoh,2 modifies the intermediate-regime con-
tribution (pint/k ∼ ˆ̇γ 2ε/(ε+χ)) and their sum becomes rate in-
dependent for ˆ̇γ 	 √

Bo∗, it is modified to scale as Bo∗ε/(ε+χ ).
This term now becomes

pcoh,2/k = αcoh,2(Bo∗)ε/(ε+χ)
. (24)

Model parameters used in the lines shown in Fig. 15(a)
are as follows: χ = 1.43, ε = 1.56, αQS = 0.19, αint = 0.15,
αinert = 0.13, αcoh,2 = 0.006. Values for φc, φa , and αcoh,1 are
the same as those for Hookean contact with van der Waals
force model (see Table I).

For case (b), the functional forms for the pressure model
are unchanged, and Eqs. (7)–(12) are applied. Only values
for φa , αcoh,1, and αcoh,2 now differ: φa = 0.50, αcoh,1 = 1.2,
αcoh,2 = 0.03.

C. Shear-stress ratio

Stress-ratio models are slightly modified for both cases and
compared with the simulation data in Figs. 17(a) and 17(b).
For case (a), as noted earlier, Zn = 3 captures our simulation
results, and since Z does not change significantly with volume
fraction (see results for the case of Hertzian contact and van der
Waals force model shown in Fig. 14), we can continue to lump
(Z − Zn)ηs/π as α3. As a result of change in the dimension
of k for the Hertzian contact, Eq. (19) now reads as follows:

η = η∗ + α3φBo∗k
p

1
ˆ̇γ

α4

√
Bo∗ + 1

, (25)

where η∗ is described in Eqs. (13)–(15). Model parameters
used in the lines shown in Fig. 17(a) are α1 = 0.27, α2 = 0.23,
β1 = 1.0, α4 = 3. Values for all the other parameters are the
same as those for Hookean contact with the van der Waals
force model.

For case (b), Zn = 0.5 captures our simulation results
adequately. Since Z changes significantly with volume fraction
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FIG. 17. Shear-stress ratio versus scaled shear rate for (a) Hertzian contact and the van der Waals force model and (b) Hookean contact and
the alternative cohesion model [20]. Here μ = 0.1 and Bo∗ = 5×10−5. Symbols denote simulation results at various volume fractions as per
the legend from Fig. 1. Lines denote model predictions from Eqs. (13)–(15) and (25) in (a) and Eqs. (13)–(15) and (26) in (b).

(see the results for the case of Hookean contact and the
alternative cohesion model shown in Fig. 14), we find
that modeling (Z − Zn)ηs/π as α5(φ − φa) with α5 = 10.3
captures the stress-ratio data well. As a result, Eq. (19) is
modified to the following:

η = η∗ + α5(φ − φa)φBo∗k/d

p

1
ˆ̇γ

α4

√
Bo∗ + 1

, (26)

where α4 = 0.5. The solid lines in Fig. 17(b) correspond to
Eq. (26). Good agreement with simulation results is readily
seen.

Note that different expressions for (Z − Zn)ηs/π are
needed to capture stress-ratio results for van der Waals force
model and alternative cohesion model. As noted earlier, the
two cohesion models significantly differ: The van der Waals
force saturates when the particles come to contact, while the
cohesion is only present when the particles are in contact
in the alternative cohesion model. Figure 14 illustrates the
dependence of the coordination number on volume fraction
for the three different cases presented in this article. For
Hookean contact and the van der Waals force model, Z is
roughly independent from φ; for Hertzian contact and the
van der Waals force model, Z shows slight dependence on φ;
and for Hookean contact and the alternative cohesion model,
Z increases appreciably with φ. This difference in response
of coordination number to volume fraction helps explain the
necessity of different expressions for (Z − Zn)ηs/π .

VII. SUMMARY

We have investigated shear flows of dense cohesive granular
materials via DEM simulations. The quasistatic and interme-
diate regimes observed for noncohesive particles persist for
cohesive particles, while the inertial regime of noncohesive
particles bifurcates into two regimes: rate-independent cohe-
sive regime at low shear rates and inertial regime at higher
shear rates. The regime map for the rheology of dense assem-
blies of cohesive particles is found to be robust even when the
particle-scale details of the model are altered. Furthermore,
the pressure and shear-stress-ratio results obtained in our

simulations can be captured via simple algebraic expressions
that can be used in conjunction with continuum models for
flows in practical devices.
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APPENDIX A: INHOMOGENEOUSLY SHEARED STATE

In all the simple shear simulation results presented in the
main text, the locally averaged velocity of the particles is
verified to have a very nearly linear profile, and the particle
volume fraction profile is uniform. For cohesive particles,
shear flow simulations yield inhomogeneous volume fraction
and velocity fields at the lower volume fractions considered in
this study (namely φ ≈ 0.5) and at shear rates in the vicinity of
the transition between cohesive and inertial regimes. Figure 18
shows the scaled velocity profiles for two different scaled
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FIG. 18. Locally averaged velocity versus position in the di-
rection of shear. Domain-averaged volume fraction of particles is
0.51. Hookean contact and van der Waals force model are used with
μ = 0.1 and Bo∗ = 5×10−6. H denotes the thickness of the periodic
box in the shear direction.
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shear rates and domain-averaged volume fraction of 0.51. All
other conditions are as in Fig. 1(b). It is readily seen that
a linear velocity profile was achieved for ˆ̇γ = 9.49×10−4

[results included in Fig. 1(b)] but not for ˆ̇γ = 3.16×10−4

[and hence omitted from Fig. 1(b)]. It appears reasonable to
hypothesize that the occurrence of an inhomogeneous state
is a manifestation of shear-banding instability [51,52], which
has not been a focus of the present study but merits future
investigation.

APPENDIX B: MODEL CONSTANTS DETERMINATION

The Levenberg-Marquardt method [40] is used to estimate
the critical exponents as well as the values for φc and φa in
the pressure models for the inertial, quasistatic, and cohesive
regimes. Here, we use the case of Hookean contact and the
van der Waals force model to detail the process of using this
method to arrive at the values as shown in Table I.

For the pressure model in the inertial regime, the functional
form pinertd/k

ˆ̇γ 2 = αinert
|φc−φ|χ is assumed. The Levenberg-Marquardt

method is used to estimate φc and χ from simulation results
for noncohesive particles at various shear rates with φ

as the independent variable and pinertd/k
ˆ̇γ 2 as the dependent

variable. The values of χ and φc for different particle friction
coefficients are found and included in Table I.

For the pressure in the quasistatic regime, the functional
form pQSd/k = αQS|φ − φc|ε is assumed. The Levenberg-
Marquardt method is performed to estimate φc and ε from
simulation results for noncohesive particles at various shear
rates with φ as the independent variable and pQSd/k

as the dependent variable. The values for φc are found
to be close to the ones previously determined in the inertial
regime. These previously determined φc values are then used
to estimate ε, which are reported in Table I.

For the pressure in the cohesive regime, the functional form
pcoh,1d/k

Bo∗ = αcoh,1
|φ−φa |
|φc−φ| is assumed. The Levenberg-Marquardt

method is again performed to estimate φa and φc from
simulation results for cohesive particles at various shear rates
and modified Bond values with φ as the independent variable
and pcoh,1d/k

Bo∗ as the dependent variable. The values for φc

are found to be close to the ones previously determined in
the inertial regime. These previously determined φc values are
then used to estimate φa . It is found that φa is 0.45 ± 0.01,
0.45 ± 0.01, and 0.44 ± 0.01 for μ = 0.1, 0.3, and 0.5,
respectively. Thus, the values for φa are the same for different
particle friction coefficients within uncertainties. In Table I of
the manuscript, we only report one value for φa for different
particle friction coefficients.
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