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Shear flow of angular grains: Acoustic effects and nonmonotonic rate dependence of volume
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Naturally occurring granular materials often consist of angular particles whose shape and frictional
characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a
theoretical account for the peculiar phenomenon of autoacoustic compaction—nonmonotonic variation of shear
band volume with shear rate in angular particles—recently observed in experiments. Our approach is based on
the notion that the volume of a granular material is determined by an effective-disorder temperature known
as the compactivity. Noise sources in a driven granular material couple its various degrees of freedom and
the environment, causing the flow of entropy between them. The grain-scale dynamics is described by the
shear-transformation-zone theory of granular flow, which accounts for irreversible plastic deformation in terms
of localized flow defects whose density is governed by the state of configurational disorder. To model the
effects of grain shape and frictional characteristics, we propose an Ising-like internal variable to account for
nearest-neighbor grain interlocking and geometric frustration and interpret the effect of friction as an acoustic
noise strength. We show quantitative agreement between experimental measurements and theoretical predictions

and propose additional experiments that provide stringent tests on the new theoretical elements.
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I. INTRODUCTION

The purpose of this paper is to explore the peculiar dynam-
ics of a sheared granular material composed of angular grains
which are shape anisotropic and frictional in character. In
doing so, we shall provide an explanation of the phenomenon
of autoacoustic compaction, recently observed in a series of
experiments by van der Elst ez al. [1], in which the sample
volume varies reversibly with the applied shear rate in a non-
monotonic fashion. Specifically, their experiments found shear
band volume reduction by up to 10% at intermediate shear
rates between the slow quasistatic and fast grain-inertial flow
regimes for angular sand particles, but not for smooth glass
beads, both in the presence and absence of tapping—forced,
periodic vibrational excitation. The authors of that paper
posit that shearing provides a source of acoustic energy that
unjams a granular material and allows the granular medium
to explore packing configurations. At intermediate shear rates,
acoustic vibrations result in a denser packing, similarly to
compaction due to externally driven vibrations [2—6]. Other
experiments have also found nonmonotonic flow rheology in
granular media composed of shape-anisotropic grains [7,8].
An understanding of the effect of acoustic phenomena in
sheared granular flow is especially important in the context
of earthquakes, which generate seismic waves that propagate
to gouge-filled faults in the vicinity and may cause dramatic
reduction in shear strength [9,10].

Our analysis is based primarily on the idea that nonequi-
librium states of a granular material are characterized by its

compactivity,
A%
X=|— ,
dSc / a,

or, equivalently, its effective disorder temperature T.4 =
pX [11-15]. (Here V is the extensive volume of the system,
Sc is the configurational entropy, and the A,’s are internal
variables that specify the configurational state of the granular

(1.1)
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subsystem.) The state variable X is a thermodynamically
well-defined quantity; we naturally assume that the observable
volume V is a function of X. In this spirit, we assume that X
is determined by an entropy-flow equation that is consistent
with the second law of thermodynamics. The compactivity
X 1is increased by external work done on the system and
decreases when entropy flows from the granular system into
its environment. This heat flow is governed by various noise
sources within the system: noise generated by the driving
forces, noise generated by friction between particles, and so on.
Thus, the disorder temperature and the volume are determined
by the interplay between these dissipative effects. Specifically,
under generic assumptions regarding its functional form, the
frictional noise can describe the competition between shear-
induced dilation and acoustic compaction, thereby explaining
the nonmonotonic variation of sample volume with shear rate.

In the present investigation, the microscopic model for
effective-temperature dynamics, grain interactions, and the
driving forces in the system is the shear-transformation-
zone (STZ) theory of granular flow, originally developed
to study shear flow in amorphous molecular solids [16,17].
In the context of granular media, the STZ theory has been
invoked to account for constitutive friction laws in earthquake
physics [18], glassy phenomena in sheared hard-sphere sys-
tems [19], and formation of a finely comminuted gouge layer
in fault materials [20]. Under the STZ theoretical framework,
plastic deformation can be explained in terms of localized
flow defects, or STZ’s, whose density is characterized by the
compactivity X.

Prior applications of the STZ theory made no assump-
tions regarding the shape and characteristics of constituent
grains. The van der Elst er al. experiments, however, clearly
demonstrate the significance of grain shape and frictional
characteristics in granular flow rheology. The goal of this
paper is to provide a quantitative description of these effects.
Our proposition is that the large variation of volume is
the result of geometric frustration, or lack thereof, between

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.90.032204

LIEOU, ELBANNA, LANGER, AND CARLSON

neighboring grains, modeled in terms of an Ising-like internal
variable. When coupled with the interpretation of frictional
dissipation between particles as a kind of noise, it is possible
to quantitatively account for the observed nonmonotonic
variation of sample volume with shear rate in a granular
medium with angular particles.

The rest of our paper is structured as follows. In Sec. II,
we repeat the statistical-thermodynamic analysis largely along
the lines of Refs. [19,20] but incorporate the effect of
tapping and interparticle frictional dissipation. Specifically, we
introduce a “frictional noise” which couples the fast, kinetic
and slow, configurational degrees freedom and accounts for
how frictional dissipation may cause the steady-state sample
volume to vary nonmonotonically with shear rate. In Sec. III
we introduce our microscopic model that describes how
the volume varies with the compactivity. The model is a
combination of STZ’s and misalignment defects, the latter
of which are described by an extra Ising-like internal variable
that characterizes the shape effect in terms of grain orientation,
interlocking, and geometric frustration. Then, in Sec. 1V,
we present our theoretical predictions which quantitatively
match the experimental measurements of van der Elst et al.
We conclude the paper in Sec. V with a list of proposed
experiments and future directions.

II. THEORETICAL FORMULATION FOR VOLUME
VARIATION

A. Statistical thermodynamics

As in prior applications of STZ theory [19,20], it is impor-
tant to quantify the interaction among different components
of the granular system; to this end, we turn to the laws of
thermodynamics. The developments in this section largely
mirror those of Refs. [19,20].

Consider a noncrystalline system of hard grains at tem-
perature T, with total energy Ur. For simplicity we use a
single-state variable T to characterize all macroscopic and
microscopic kinetic-vibrational degrees of freedom of the
grains, assumed to be in contact with a thermal reservoir. A
consequence of this simplification is that frictional dissipation,
among other forms of inelastic grain interaction, simply
amounts to the flow of energy from the macroscopic to the
microscopic degrees of freedom [21,22]. It is thus unnecessary
to account for friction explicitly in the overall energy balance.
This simplification is especially convenient in view of our
characterization of interparticle friction as a kind of noise
below. For practical purposes, T can be interpreted as a
measure of material preparation. Because grains interact only
via contact forces, there is no configurational potential energy,
so Uy equals the total energy of the system.

Suppose that this system is driven by a shear stress s in the
presence of a pressure p. The first law of thermodynamics for
this system is

Ur=Vsy? —pV

. : v .
=Vsy" —pXSc—p > (8A ) Ao, 20)
o @/ Sc

where pP! is the plastic shear rate. As in Eq. (1.1), Sc¢ is
the granular configurational entropy, and the A, are internal
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variables that specify the configurational state of the granular
subsystem.

Let S7 denote the entropy of all kinetic-vibrational degrees
of freedom. Then

Ur =TSr (2.2)

and

. oV
XSe = VsyP —
pXSc=Vsy™ —p Xa: (a .
The second law of thermodynamics states that the total entropy
of the system, being the sum of all kinetic-vibrational and
configurational degrees of freedom, must be a nondecreasing
function of time as follows:

S=3S8c+8r>0.

) Ay —TSr. (2.3)
Sc

2.4

Substituting Eq. (2.3) for Sc into the second law above, and
using the fact that each individually variable term in the
resulting inequality must be non-negative [23-26], we arrive
at the second-law constraints,

A% .
W= VsypPl — Ay =0,
"% (55

(pX —T)Sy > 0.

2.5)

(2.6)

In arriving at these two constraints, we have arranged terms in
such a way that terms pertaining to the degrees of freedom
that belong to the same subsystem are grouped together.
The dissipation rate WV, as defined in Refs. [24-26], is the
difference between the rate at which inelastic work is done on
the configurational subsystem and the rate at which energy is
stored in the internal degrees of freedom. The second constraint
implies that pX — T and S7 must carry the same sign if they
are nonzero, so

TS = —-KX,TXT —pX)= Q, 2.7)

where KC(X,T) is a non-negative thermal transport coefficient.
It is already clear from this analysis that p X plays the role of a
temperature; p X approaches 7 in an equilibrating system, and
a heat flux Q flows between the granular subsystem and the
reservoir when the two subsystems are not in thermodynamic
equilibrium with each other.

B. Steady-state compactivity as a function of strain rate

Let us introduce the dimensionless strain rate, or the inertial
number (see, for example, Ref. [27]),

q=Tty”, (2.8)

where 7t is the inertial time scale, to be discussed in greater
detail in Sec. III. (In the steady state, the total, imposed shear
rate ¥ equals the plastic strain rate pP'.) We also define the
dimensionless compactivity,

X = X/vz, 2.9)

where vz is the excess volume associated with STZ’s—
rare, noninteracting loose spots where irreversible parti-
cle rearrangements occur. (In the solidlike—as opposed
to hydrodynamic—regime, nonaffine particle displacements
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occur everywhere. However, 1STZ’s refer to the subset of those
that are irreversible and involve local topological change, so
our picture of dilute defects remains valid.) The dimensionless
compactivity x measures the amount of configurational (i.e.,
structural) disorder in the granular system. Intuitively, x
increases monotonically with the extensive volume V of the
system. It is obvious that external vibrations and interparticle
dissipative mechanisms such as friction play important roles in
controlling the configurational state of the granular medium.
However, in the absence of these mechanisms, as in hard-
sphere systems with zero vibrational noise strength [19],
the steady-state compactivity ought to be a function of the
strain rate alone: x = X(q). As seen in our hard-sphere
analysis and in simulations [19,28,29], ¥ (g) approaches some
constant Xy in the limit of small ¢. On the other hand, %(g)
becomes a rapidly increasing function of g once the shear
rate becomes comparable to the rate of intrinsic structural
relaxation to reflect shear-rate dilation in hard-sphere systems.
It is customary to write the inverse relation g(}) in the
Vogel-Fulcher-Tamann (VFT) form [19,30,31],

11 A R
S = —exp| S taw()| (2.10)
q q0 X
where
aa«2)==<AX1A)exp(—3%L11§). @.11)
X — Xo XA — X0

The quantity x evolves according to the first law of
thermodynamics. To deduce its equation of motion, return
to Eq. (2.3) for the rate of entropy change Sc of the
configurational subsystem, let us invoke the quasistationary
approximation A, = 0 for each internal variable A, and use
Eq. (2.7) to eliminate S7. The result is

pXSc = Vsy? — K(X,T)(pX —T). (2.12)

To convert this into an equation for the dimensionless com-
pactivity x, we use the scaling x = X/vz and 6 = T/pv;.
Then we use the relation

. 3Sc . 3Sc .
XSc = x (—) X+ x ( ) Aq
ax Aq ; aAa Sc

(7).
=X\5 X
0x /A,

where in the second equality we again used the quasistationary
approximation to eliminate the time derivatives of other
internal variables. Now comes the crucial step: Since the
transport coefficient /C(x,0) couples the configurational and
kinetic-vibrational subsystems, it should consist of additive
mechanical, vibrational, and frictional contributions. Specifi-
cally,

(2.13)

K(x,0) = gA(F—i-E—i-p). (2.14)
Here I" is the mechanical noise that pertains to externally
applied shear. It will be computed below in Eq. (3.29) in terms
of the rate of entropy generation, and we will show that it is
proportional to the work of plastic deformation, i.e., the tensor
product syP' of the shear stress and the plastic strain rate. On
the other hand, the dimensionless quantity p is a measure
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of the intensity of externally imposed acoustic-vibrational
motion of the grains [1], more generally known as tapping.
Tapping provides a means to unjam a granular system so it
can explore packing configurations. In granular experiments,
acoustic vibrations have been found to increase the packing
fraction [3-6] and trigger stick-slip motion under shear [2].
When p = 0, the system is fully jammed in the sense that
configurational rearrangements can occur only in response
to sufficiently large driving forces. In addition, & is the
system-specific frictional coupling or noise, to be determined
based on phenomenology. In contrast to prior STZ analyses in
which no assumption whatsoever was made in regard to the
dissipative nature of particle interaction [19,26,32], the p term
is replaced by & + p to reflect the importance of frictional
dissipation. .4 is a non-negative quantity to be determined
by appealing to the steady-state solution in special cases. We
also implicitly subsume all time scales relevant to tapping and
friction under the inertial time scale 7 in Eq. (2.14).

In anticipation of Pechenik’s hypothesis in Eq. (3.29)
below, we rewrite the first term in Eq. (2.12) as follows:
sy? = (I'/t)B, where B is a constant. Then, some simple
algebra, along with use of Egs. (2.13) and (2.14), reduce
Eq. (2.12) to

M =TB— AT + &+ p)(x — 0),

with ¢ being a scalar quantity that describes the capacity
of volume dilation. We argued above that in the absence of
vibration or inelastic dissipation, p = & = 0, the steady-state
compactivity is uniquely determined as x*° = x(q). This gives
A = B/(%(gq) — 6), whose non-negativity incidentally implies
the constraint that y(g) > 6, i.e., stirring the system drives the
slow, configurational degrees of freedom out of equilibrium
with the fast, kinetic-vibrational degrees of freedom. Then, in
general, the steady-state compactivity is given by

«_ TR@)+E+p)0
F+E+p)

As we alluded to above, the extensive volume V of the
system—measured in Ref. [1] by the change in shear band
thickness—is an increasing function of the compactivity x.
The explicit functional form of V(x) will be discussed in
Sec. Il in the context of a microscopic model and internal state
variables. Thus Eq. (2.16), in effect, describes the variation of
system volume with shear rate and noise strength.

With % (g) being an increasing function of the dimension-
less strain rate ¢, how can we understand the nonmonotonic
variation of shear band thickness—and therefore the com-
pactivity y—with shear rate, as observed in the experiments
of van der Elst et al. [1], within Eq. (2.16)? Specifically, can we
account for the decrease in x at intermediate strain rates and
shear-rate dilation at large ¢? The answer lies in the frictional
noise term &. Intuitively, & should be a scalar function of the
plastic work of shearing; thus £ = &(I"). It induces correlations
between particle velocities and enhances nonlocal effects [33].
Let us first focus on the case when vibrations are absent. In the
limit of vanishingly small strain rate g, the mechanical noise
I' — 0; Eq. (2.16) then shows that x* — 6 provided that & #
0.Because % (¢) increases monotonically with ¢ and exceeds 9,
x % must also be an increasing function of g, which is contrary
to the nonmonotonicity of volume variation with shear rate. A

(2.15)

(2.16)
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FIG. 1. (Color online) Variation of steady-state volume V or
shear band thickness, normalized by the volume V, = Na? of grains,
as a function of the dimensionless shear rate ¢ = ty?. Results are
shown for both angular sand particles and spherical glass beads.
The data points indicate the average measurement over experimental
runs (16 for angular sand without tapping, 30 for angular sand with
tapping, 17 for glass beads without tapping, and 6 for glass beads
with tapping). The error bars indicate the standard deviation of the
measurements. The curves show results of the calculations using our
theoretical model; parameter values used to compute these curves are
summarized in Table I.

resolution to this dilemma is that £(I") = 0 at zero shear rate, to
reflect the fact that friction does not dissipate energy when no
slipping takes place. In fact, if £(I"') — O faster than I" at small
shear rates—say, if §(I") ~ "2 for small T, as in Newtonian
friction—then x* — % (g = 0) = %o in that limit. (Indeed, if
we interpret £ as some kind of energy, in analogy to I', then be-
cause the energy associated with an inelastic collision between
grains is proportional to the square of their relative velocity, it
is plausible for £(I") ~ I'2.) As ¢ increases so &(I") becomes
large enough, it is possible for the steady-state compactivity
x> to fall below 3 (g): 6 < x> < x(g), because x(q) > 6.

In the opposite limit of large shear rate, the experiments
indicate that shear-induced dilation must once again dominate
and that interparticle friction becomes less important. Thus
we stipulate that £(I") saturates at large I" so x* — x(g) in
Eq. (2.16). We now check that this assumption is consistent
with experimental findings in the presence of tapping. For
small g, Eq. (2.16) with p # 0 indicates that x* — 0 < Xo,
so tapping does increase the packing fraction in the slow
quasistatic limit. On the other hand, the boundedness of both
& and p shows that x% — x(q) in the fast inertial regime,
independent of friction and tapping and coinciding with the
o = 0 behavior as seen by the overlap of the two curves in
Fig. 1 below in that limit.

Having argued that nonmonotonic variation of volume with
shear rate is indeed possible, let us now turn our attention to
formulating a microscopic model that accounts for the flow
rheology of angular grains and quantifies volume variation
with configurational disorder.

III. MICROSCOPIC MODEL

A. Internal variables and system volume

The extensive volume V of the granular packing plays
a central role in this paper. As such, we characterize the
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volume in terms of the configurational state of the system
and derive equations of motion for the corresponding internal
variables. We emphasize that the nonmonotonic variation of
volume with shear rate as a result of interparticle friction is
not unique to the microscopic model to be introduced here. In
fact, any model for which the volume V varies monotonically
with the compactivity X ought to qualitatively describe this
nonmonotonicity. However, the value of our model lies in
its ability to provide a physical account of the relationship
between grain-scale configuration and volume, as well as a
good quantitative fit to the experimental data. Readers who
are not interested in the microscopic details may skip directly
to Sec. III E, where we summarize the formulas that will be
used in the ensuing analysis.

Recall our physical picture that, in dense granular flow,
irreversible particle rearrangements occur at rare, noninteract-
ing soft spots with excess free volume known as STZ’s. The
applied shear stress defines a direction relative to which STZ’s
can be classified according to orientation, with total numbers
N, and N_, respectively. Upon application of shear stress in
the “plus” direction, STZ’s of the minus type easily deform to
become plus-type STZ’s. However, plus-type STZ’s rarely flip
and acquire the minus orientation; rather, they are annihilated
readily by noise. If the total number of grains equals N, we
define the intensive variables

N, —N_

Ny +N_
A=——; m=———
Ny +N_

N 3.1
as the density and orientational bias of STZ’s.

On the other hand, in angular grains, shape anisotropy and
geometric frustration allows for the distinct possibility for
grains interlocking, which reduces local volume, independent
of the presence of localized slip events. Said differently,
because of the absence of infinite-fold symmetry, neighboring
grains that do not align with one another contribute excess
volume. The simplest way to describe this is to assume
that there is an extra Ising-like order parameter, n, that
describes grain orientation (this orientation is independent of
the direction of shear stress). Specifically, let N¢ and N
denote the number of grains in each of the two orientations,
and define

G G
n= u (3.2)
N
Of course, —1 < 1 < 1, as it should. Unlike STZ’s which are
rare, isolated defects, each grain is associated with a particular
direction; that is, N + N = N.

Denote by vz and v, the excess volumes associated with
STZ’s and misalignments. The assumption that the system
volume does not depend on STZ orientation, but depends on
nearest-neighbor interactions in an Ising-like manner similar
to the binary clusters recently invoked in a model of glass
transition [34], allows us to write the extensive volume of the
system as follows:

V = Vy+ NAvz — Nn*v, + Vi(S))
= Vg—}—NAUZ—anva

+VilSc — Sz(A,m) — Sg(m)]. (3.3)
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Here Vo = Na? is the total volume of grains. Sc is the con-
figurational entropy, consisting of the entropy Sz associated
with STZ’s; S is associated with grain orientation; and
S; is used for all other configurational degrees of freedom.
Correspondingly, V) is the volume associated with those
degrees of freedom, to be discussed in greater detail towards
the end of this section. Then, under the assumption the
STZ’s and grain alignments are two-state entities, we can
compute Sz and S¢ easily by counting the number of possible
configurations of distributing N, and N_ STZ’s of each
orientation and N¢ and N¢ orientation states for each grain,
among N sites [26]. The result is

Sz(A,m) = NSo(A) + NAy(m), (3.4)
Sc(m) = Ny (n), (3.5)
where
So(A) = —AlnA + A, (3.6)
Y(m) =1n2— (1 +m)In(1 +m)
—1( = m)In(1 — m). (3.7

B. Equations of motion

In order to study the dynamics of the system, the preceding
analysis needs to be supplemented with equations of motion for
each of the internal variables. We first look at STZ dynamics.
As usual, the STZ equation of motion for Ny and N_ is given
by the following:

TNy = R(£5)N — R(Fs)Ne + F(AN9 = Ni). (3.8)
The corresponding strain rate is
2
- T—T‘J/O['R(S)N_ — R(=5)N4], (3.9)

where we define the volume of the plastic core of an STZ to
be vo, which ought to be proportional to . Because we are
describing simple rather than pure shear, there is a factor of 2
up front.

Some comments on the various quantities that appear
in Egs. (3.8) and (3.9) are now in order. The quantity
T = a+/pg/p, where ps denotes the material density of
the grains, is the inertial time scale that characterizes the
typical duration of a pressure-driven particle rearrangement
event [19,20,28,29]. It is proportional to the average time
between successive grain-grain collisions. This time scale
also applies in a dense granular medium where inter-particle
friction is important, as long as the friction is proportional
to the normal force at the contact interface. Its product with
the shear rate )'/Pl gives the so-called inertial number, the
magnitude of which determines the flow regime of dense
granular flow [27]. R(%s) represent the rates (in units of
t~!) at which the STZ’s are making forward and backward
transitions. The term proportional to I" represents the rates of
STZ creation and annihilation; N®! is the steady-state, total
number of STZ’s. Specifically, I/t is an attempt frequency
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consisting of additive vibrational and mechanical parts,
F=p+T. (3.10)

Because friction should play no role in the creation or
annihilation of STZ’s, £ does not appear in the expression
for I'/t.

After making these remarks on the elements of the extensive
STZ equations of motion, we can rewrite them exclusively in
terms of the intensive state variables A and m as follows:

T A =T(A%M — A), (3.11)

. . A
tm=2C()T(s)—m]—Tm— rxm, (3.12)
TP =26y A C(S)[T(s) — m], (3.13)

where g = N vg/ Vy is independent of @ and A®d = N°4/N.In
writing Eq. (3.13) we have implicitly made the approximation
A K land V; <€ VpinEq. (3.3)so V = Vj in Eq. (3.9). We
also define

C(s) = 3[R(s) + R(—9)] (3.14)
and
_ R(s) — R(—s)

In analogy to the master equation for STZ transitions, we
propose that the simplest possible equation of motion that
describes the change in the number of grains is of the form

TNy =RENYS — RENS. (3.16)

Here, R is a yet-to-be specified rate factor for the transition
between orientations, absorbing all other relevant time scales
such as the inverse tapping frequency; we expect that it is
proportional to the sum of mechanical and vibrational noise
strengths T'. A key difference between Eq. (3.16) and its
counterpart, Eq. (3.8), for STZ transitions is the absence of
an extra term which, in Eq. (3.8), describes the creation and
annihilation of STZ’s and the approach of STZ density to an
equilibrium value. The reason behind this is twofold. First,
as we alluded to before, every grain must belong to either
one of the two orientations, but a given grain need not be
part of an STZ at a given instant. Second, the effect of noise
is already accounted for in the rate factor RS which is not
directly related to the direction of the shear stress s. With
this, the STZ equations of motion is supplemented by an
extra equation for the temporal evolution of grain orientational
bias n,

™ =2C%(TC% —n), (3.17)
where
1 R¢ —RC
G — (RO Gy, 79=—"F_"—, 3.18
C 2(R++R,) RO+ RO (3.18)

C. Dissipation rate and thermodynamic constraints

At this point in the development, the second law of
thermodynamics provides useful constraints on various in-
gredients of the equations of motion and on steady-state
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dynamics of the system. To this end, we now substitute this
and Egs. (3.11), (3.12), (3.13), and (3.17) into Eq. (2.5) for
the dissipation rate ¥V which, according to the second law
of thermodynamics, must be non-negative. We also use the
approximation V = V|, where appropriate. The result is

W d i
Y Foxam®™ s
N dm

e ( )]
X vz+X|InA —(m)+m—
dm

+2AC(s)[T(s) —m] (vos + de—I/f>
dm

+2C9(T° — ) <X% +27 va> . (3.19

The second-law constraint, W > 0, must be satisfied by all
possible motions of the system; this is guaranteed if each of
the four terms in Eq. (3.19) is non-negative [23-26]. (Indeed,
only the third term depends explicitly on the shear stress s,
while the second term is proportional to A, and 7 appears only
in the fourth term. The entire expression must be non-negative
irrespective of s, A, and n.) The first term automatically
satisfies this requirement because, from Eq. (3.7), we have

v _ 1 (H—m (3.20)

— =—=1In = —tanh™'(m),

dm 2 1 - m> (m)

so the product —m(dyr/dm) is automatically non-negative.
The non-negativity constraint on the second term in

Eq. (3.19) can be written in the form

3F(Aeq A)=0 (3.21)
A - ‘
where F is a free energy given by
dy
F(A,m)=p|vzA — XSo(A) — XA | y(m) — mo -
m
(3.22)

A® must be the value of A at which 9 F/d A changes sign, so

— mZ—Z) ~ 2 exp (—%) .

(3.23)

A% =exp <_072 + ¥(m)

Thus, the STZ density in this nonequilibrium situation is given
by a Boltzmann-like expression in which the compactivity
plays the role of the temperature.

As for the third term, we have

dy

(T(s) —m) (vos + pX—) > 0.

I (3.24)

The two factors on the left-hand side must be monotonically
increasing functions of s that change sign at the same point for
arbitrary values of m. According to Eq. (3.20), this is possible

only if
T(s) = tanh <ﬂ> . (3.25)
pX
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Finally, the extra constraint associated with the new internal
variable 7 is
d
205(TC — p) <xd—w 4 vaa> > 0. (3.26)
n
In the same spirit as for the third term, this holds if and only

if each of the two quantities in the pair of parenthesis change
sign at the same value of n; thus

76 =ta h(zn'}“).
X

According to Eq. (3.17), the steady-state value of 7 is then
given by the solution to the equation

25y,
Ueq:tanh< 7o >
X

This is reminiscent of the familiar spontaneous symmetry
breaking in the magnetization of an Ising ferromagnet. If X >
X, = 2uv,, then the only solution to Eq. (3.28) is °4 = 0; this
applies to a “dilute” granular packing, for which interlocking
is no longer important. On the other hand, if X < X, there
are two nonzero solution in the steady state, n°4 = £n, the
absolute value of which decreases with increasing X in this
regime.

(3.27)

(3.28)

D. Mechanical noise and steady-state dynamics

In quasistationary or steady-state situations such as the
experiments by van der Elst et al. [1] that we analyze
in this paper, a major simplification comes from setting
A=m=n=0,s0 A =A% and n = n°. To determine the
mechanical noise strength I" and the stationary value of m,
we invoke Pechenik’s hypothesis [26,35], which states that the
mechanical noise strength I' is proportional to the mechanical
work per STZ. The plastic work per unit volume is simply yPs.
To convert this rate into a noise strength with dimensions of
inverse time, we multiply by the volume per STZ, V,/(N A%9),
and divide by an energy conveniently written in the form
€0(Vo/N) so. Here sq is a system-specific parameter with the
dimensions of stress. The resulting expression for I" is

TpPls
GQSQAeq

With this result, the stationary version of Eq. (3.12) reads

I' =

= i—sC(s)[T(s) —m]. (3.29)
0

2C()[T(s) — m] (1 - ?) —mp=0. (3.30)
0

The stationary value of m is then given by

meq(s) = ;—(; |: + — T(S) + T()i|

2
__\/ 1+ T(s)—i——} — 42 7s).

2C(s) 50
(3.3D)
In particular, when p = 0, we have
el — T(s), ff (s/50)T(s) < 1; (332)
so/s, if (s/so)7T(s) > 1
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An important consequence of this is that the yield stress for a
completely jammed system is the solution of the equation

sy T(s,) = s, tanh (Z’;) = 5. (3.33)
If the temperature-like quantity p X is small in comparison
with €ya’so, then sy & s9. Thus s sets, in effect, the minimum
flow stress of the system in the absence of tapping. When p #
0, however, the system is unjammed and flows at arbitrarily
small shear stress s.

Finally, let us return to using dimensionless variables g =
tyPland x = X/vy. The steady-state version of Eq. (3.13) for
the strain rate becomes

g=1y" =dege VX Cs) [tanh <ﬂ> - meq(s)] ,

€zpX
(3.34)

where €; = vz/a3. Now, from Eq. (3.3) above, the system
volume varies monotonically with the compactivity as follows:
v _ 1+ A%y — (1°9)%e, + ﬂ, (3.35)
Vo Vo
where €, = v,/a, A% =2e71/X" and 5% satisfy n® =
tanh(2n®¢, /€2 x**). We now specify the volume V| associated
with all other configurational degrees of freedom. Because
STZ’s are rare density fluctuations whose existence results
in denser spots nearby, their contribution to the system
volume should be small in comparison to the effects of grain
interlocking and the packing fraction itself, the latter being
subsumed in V. The simplest assumption is that this volume
varies linearly with the compactivity x: A®%ez + Vi/Vy =
€1(x — xr), where the effective volume expansion coefficient
€ is assumed to be a constant, and y, is an offset that can be
conveniently chosen to equal . Thus

\%
— = 1=, +e(x — o) (3.36)

Vo

E. Summary: Steady-state relations among volume,
compactivity, and shear rate

Summarizing, the steady-state system volume V varies with
the compactivity x* according to Eq. (3.36) as follows:

\%
— =1- "€, + e (x™ — Ro), (3.37)

Vo
where n°! satisfies n°4 = tanh(2n®le, /e x**). On the other
hand, the steady-state compactivity is controlled by the driving
forces and the frictional noise according to Eq. (2.16):
o TR(@)+E+ )0
- T+E+p)

Here the dimensionless strain rate is related to the compactivity
x™ by

(3.38)

g =4epe 11" Cs) |:tanh (i> - m“I(s)] . (3.39)
€zPX
with m®(s) given by Eq. (3.31). Equations (3.37), (3.38),
and (3.39) are the primary relations that describe the variation
of system volume, or shear band thickness, with the imposed
shear rate q.
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IV. ANALYSIS OF EXPERIMENTS BY
VAN DER ELST ET AL.

Figure 1 shows the rescaled experimental data of van der
Elst er al. [1] along with the corresponding results for the
theoretical model presented in this paper. The data points
represent averages over repeated experimental measurements,
and the error bars represent the corresponding standard
deviation. The curves show the corresponding results for our
theoretical model. The experiments were performed on angular
sand particles, as well as spherical glass beads, sheared in a
cylindrical torsional rtheometer with parallel plate geometry.
They observe pronounced, reversible nonmonotonic variation
of shear band thickness as a function of shear rate in angular
sand but not in glass beads. Specifically, in the absence of
tapping, the angular sand shear band thickness approaches
a constant value at very slow shear rates and then dips
by a maximum of roughly 10% at intermediate shear rates
before increasing again at fast shear rates. The shear band
thickness also varies nonmonotonically with the shear rate
in the presence of tapping; it is smaller than in the absence
of tapping in the slow, quasistatic regime but coincides with
the no-tapping behavior in the fast, inertial regime. This is
in addition to the slow compaction of the nonshearing bulk,
which is not shown in the figure, and may be interpreted as
aging in the presence of gravity.

In computing the theoretical curves in Fig. 1 we used
Eqgs. (3.38) and (3.37) for the steady-state volume but dropped
the n-dependent term in Eq. (3.37) for spherical glass beads for
which the misalignments in angular grains have no counterpart.
We also made a number of simplifications and appealed to the
observations to determine a number of elements in our theory.
First, we neglect the diffusion of configurational disorder
across the shear band boundary and neglect aging effects in
the nonshearing bulk. This assumption is justified as long as
the initial state is one with a small degree of configurational
disorder, for which prior STZ analyzes indeed predict the
emergence of a disorder-limited shear band that relaxes very
slowly, if at all, with a sharp shear band boundary [20,36-38]
and within which the distribution of configurational disorder
is uniform. Thus, we confine the subsequent analysis to within
the shear band and assume that internal state variables carry
no spatial dependence.

Then we use the shear band thickness in the fast and slow
shear rate limits, and in the absence of tapping (o = 0), to
constrain the angular sand frictional noise strength & which
first appeared in Eq. (2.14). We argued in Sec. II above that
x%® — x(g = 0) = %o in the limit of vanishingly slow shear
rate and that x* — j(g) and diverges at large shear rate, but
that 6 < x* < x(q) between the two limits, implying that it
is plausible for £(I") ~ I'? at small I" and to saturate at large
I". One way to interpolate between the slow, quasistatic and
fast, inertial behaviors is to assume that & takes the form

£(T") = & tanh(BT?).

In the ensuing analysis, we use & = 1.2 and 8 =20 for
angular sand. On the other hand, we set & = 0 for spherical
glass beads. In fact, the data points in Fig. 1 for spherical glass
beads sheared in the absence of tapping indicate a small degree
of compaction at ¢ ~ 1072, suggestive of a small, nonzero &.

4.1
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TABLE 1. List of parameter values in our theoretical model that describes the van der Elst et al. experiments. Most of these parameters are
of microscopic origin and have no implication on the qualitative aspect of compactivity, or effective temperature, dynamics.

Parameter Description Value Reference or remark

p Confining pressure 7 kPa Constrained by experiment [1]
So Minimum flow stress 2.8 kPa Determined empirically [39,40]
T Inertial time scale 1.67 x 107™* s Constrained by experiment [1]
Co Characteristic STZ transition rate 1 Microscopic [19]

& Maximum frictional noise strength 1.2 Adjustable parameter

B Parameter in frictional noise strength, Eq. (4.1) 20 Adjustable parameter

P Tapping intensity 0,5x107* Adjustable parameter

0 Kinetic temperature 0.2,0.18 Adjustable parameter

Xo Steady-state dimensionless compactivity in ¢ — 0 limit 0.3 Adjustable parameter

hel Parameter in VFT expression, Eq. (2.10) 0.02 [19]

Xa Parameter in VFT expression, Eq. (2.10) 0.33 [19]

A Parameter in VFT expression, Eq. (2.10) 2 [19]

90 Critical strain rate 2 [19]

€0 Plastic core volume per STZ in units of grain volume 1.5 Microscopic [19]

€7 Excess volume per STZ in units of grain volume 0.5 Microscopic [19]

€ Effective volume expansion coefficient 0.3 Microscopic

€4 Misalignment defect volume in units of grain volume 0.1 Microscopic

Thus, setting & = 0 for glass beads results in a small misfit
between theory and data, which is not surprising because there
is nonzero interparticle friction even between spherical glass
beads. However, we do not attempt to model that behavior.

Van der Elst et al. measured the shear rate in terms
of the rotation angular velocity @ of the shear cell. (The
geometry is equivalent to that of a rectangular shear cell with
periodic boundary conditions in the shearing direction, at least
locally.) To convert this to our shear rate, we use the estimate
yP' = rw/ h, where r is the shear cell radius and / is the shear
band height. In their experiments, »r = 9.5 mmand 4 ~ 1 mm.
Next, the angular sand particles have a typical diameter of
a =350 pm, with mass density pg = 1600 kg m~3, and
the experiments were performed at a confining pressure of
p =~ 7 kPa. This gives the inertial time scale T = a+/pg/p =
1.67 x 10~* s, so the conversion formula between the rotation
velocity w and our dimensionless shear rate g is

g = (159 x 107%s)w. (4.2)

We note in passing that the tapping frequency in the
experiments is 40.2 kHz, the inverse of which is only an order
of magnitude smaller than the inertial time scale. Recall our
argument in Eq. (3.17) that misalignments are created and
annihilated by noise; thus the fact that the inertial and tapping
time scales are comparable justifies our assumption that both
the STZ density A and the misalignment bias n are functions
of the same compactivity x. This need not be the case if the
two time scales are several orders of magnitude apart; we will
comment on its implication in Sec. V.

The stress measurements were too noisy for us to be able to
constrain parameters associated with STZ dynamics. However,
based on other shearing experiments on angular grains [39,40],
the yield stress should be about 0.4 times the confining
pressure, so we have chosen sy = 0.4p. We have also chosen
C(s) >~ Cy = 1 to be a constant, because the STZ transition rate
should not be very sensitive to the shear stress to pressure ratio
provided thats/p < 1. The parameter fitting procedure reveals

that the steady-state volume variation is insensitive to these
STZ dynamics parameters in comparison with those involved
in the choice of {(g). We choose 8 = 0.2, p =0 and 6 =
0.18, p =5 x 10~ in the absence and presence of tapping,
respectively. With 6 subsuming all kinetic degrees of freedom,
its different values in the two cases reflect the expectation that
tapping can increase the packing fraction of a generic granular
assembly [3-6]. (Following Ref. [41], it might be possible
to determine 6 using the fluctuation-dissipation theorem and
the Langevin equation, but that gives us another adjustable
parameter interpreted as a drag coefficient, so we regard 6
as an adjustable parameter itself.) The other parameters in
our calculation are summarized in Table I. While our model
produces qualitative agreement with the experiment over a
wide range of parameter values, the parameter values used in
the present analysis have been chosen to provide quantitative
fit with the experimental measurements and, based on past
experience, are physically reasonable. It may be possible to

. 0.60 : ‘ =
R — Angular sand, no tapping /, 1
2 0.55 Angular sand, with tapping P
= 0.50 Glass beads, no tapping /I E
'§ -2Vl ---Glass beads, with tapping /

2 045

g

S 040

12}

$ 035

= U

=}

'z 0.30F

1]

£ 025
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Dimensionless shear rate log,,(q)

FIG. 2. (Color online) Theoretical results for the variation of
steady-state compactivity x*° with the dimensionless shear rate
q = ty® for both angular sand particles and spherical glass beads.
Parameter values for each of these curves are summarized in Table I.
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FIG. 3. (Color online) Theoretical results for the variation of
shear stress to pressure ratio s/p with the dimensionless shear rate
g = Ty, for both angular sand particles and spherical glass beads.
Parameter values for each of these curves are summarized in Table I.

further constrain the parameters of microscopic origin with
additional simple experiments; for example, stress parameters
may be constrained using slide-hold-slide experiments.

In Fig. 2, we plot the variation of the dimensionless
steady-state compactivity x* with the shear rate ¢g. x*
varies in the same qualitative manner as the volume V, as
it should, for the two quantities are related to each other
in a monotonic fashion according to Eq. (3.37). Finally, in
Fig. 3, we show our model prediction for the variation of
the shear-stress-to-pressure ratio s/p with the shear rate gq.
Obviously, in the absence of vibrations, the granular medium
does not flow until the shear stress exceeds the threshold s¢. On
the other hand, tapping unjams the system and causes it to flow
at arbitrarily small shear stress s. This is a hallmark of glassy
behavior, as seen in other amorphous solids [19,28,29,32]. The
pronounced weakening is also hypothesized as a consequence
of acoustic fluidization in earthquake faults [9,10]. In addition,
the shear stress s increases faster with the shear rate ¢ when
g > 107% in angular sand than in glass beads, conforming with
the intuition that more work is necessary to cause angular,
frictional particles to flow under shear.

V. CONCLUDING REMARKS

In this paper, we are proposing a fundamentally new,
thermodynamic interpretation of an unexpected experimental
observation—the nonmonotonic variation of steady-state shear
band thickness, or sample volume, as a function of shear rate,
in a granular medium composed of angular, frictional particles.
In our theory, this volume is determined by the effective
disorder temperature (or “compactivity”) of the grains. As a
macroscopic state variable, the compactivity is controlled by a
variety of microscopic mechanisms, including STZ transitions,
intergranular friction, and the strength of noisy fluctuations
generated by collisions and external tapping. For example,
energy dissipated by friction effectively “cools” the system and
reduces its volume. The various microscopic mechanisms are
described by physical parameters whose orders of magnitude
can be estimated empirically and from experimental data. We
have argued that if the frictional “noise strength” & varies

PHYSICAL REVIEW E 90, 032204 (2014)

quadratically with the shear rate at the quasistatic shear limit—
in conformity with the energy dissipation associated with
inelastic collisions between particles—and saturates in the
inertial, fast-shear limit, then it is possible for the steady-state
compactivity and therefore the volume to show nonmonotonic
variation with shear rate. In other words, energy dissipated by
friction effectively “cools” the system and reduces its volume.

In addition, we have introduced a microscopic model that
quantifies the volume of the granular assembly V' as a function
of the compactivity x. The most salient feature of this model is
the combination of STZ’s, soft spots with excess free volume
that facilitate grain rearrangement, and misalignment defects,
arising from grain interlocking and geometric frustration
ubiquitous to angular particles. With a judicious choice of
parameters, we have shown excellent quantitative agreement
between our theory and the experimental measurements of
van der Elst et al. [1] on sheared angular sand particles and
spherical glass beads. In our opinion, the fact that this picture
fits together as well as it does is strong evidence in favor of
its validity. This is not pure phenomenology. It is a systematic
attempt to develop a first-principles theory of a complex and
important class of physical phenomena.

We emphasize again that, qualitatively, the nonmonotonic
variation of sample thickness with shear rate is a consequence
of frictional noise alone and not uniquely described by our
microscopic model of STZ’s and misalignments. One example
of an alternative, simple model is the linear model V =
Cx + D without the misalignment term, where the effective
volume expansion coefficient C is a constant. However, we
have not been able to fit quantitatively the experimental
data with this model nearly as closely as with the model of
misalignments, which amplifies the amount of compaction at
intermediate strain rates. Therefore, we have chosen to adopt
the present model of STZ’s and misalignments, the latter of
which is necessary to account for the rather substantial amount
of compaction observed in the transitional regime, between the
slow, quasistatic and fast, inertial limits.

A key feature of the Ising-like model of misalignments is
the existence of a “ferromagnetic” transition [see Eq. (3.28)
above]; it happens above a critical compactivity x. at which
the volume variation as a function of shear rate ought to
display a small cusp, at a shear rate apparently not probed
by the van der Elst et al. experiments. Our binary, Ising-like
model of misalignments might also be useful in formulating a
description of other glassy phenomena in granular materials,
in a manner similar to binary clusters introduced in Ref. [34].

A central assumption in the paper is that both misalign-
ments and STZ’s are governed by the same “configurational
temperature” or compactivity x, the justification of which
is that the inertial time scale T = a+/pg/p and the inverse
tapping frequency differ by less than an order of magnitude.
Had this not been the case, it might be necessary to characterize
the system with as many as three temperature-like quantities:
the kinetic temperature 6, the “noise” compactivity xx
that pertains to the vibrational subsystem and governs the
misalignment bias 7, and the configurational compactivity
Xc that pertains to the shearing, configurational subsystem
and governs the STZ density A, all falling out of equilibrium
with one another. When that happens, the variation of volume
V as a function of shear rate ¢ = ty?' in the presence of
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tapping need not coincide with that in the absence of tapping,
in the fast shear rate limit. There are multiple ways to separate
the vibrational and configurational time scales and verify or
dismiss our speculation. For example, one could conduct the
shear experiment at substantially higher confining pressure
p to shorten the inertial time scale T of the configurational
subsystem or tap the system at a higher frequency so the
inertial and vibrational time scales are at least several orders
of magnitude apart. In the former case, we speculate that
the vibrational subsystem would fall out of equilibrium with
the configurational subsystem, with xx > xc¢; in the latter
case, xc > xk. Either way, the coupling among the different
subsystems would differ from that in the present paper [cf.
Eq. (3.38)], and qualitatively distinct behaviors might emerge.
Such experiments might provide the most stringent tests yet
of nonequilibrium thermodynamics.
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