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Effective ergodicity in single-spin-flip dynamics
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A quantitative measure of convergence to effective ergodicity, the Thirumalai-Mountain (TM) metric, is applied
to Metropolis and Glauber single-spin-flip dynamics. In computing this measure, finite lattice ensemble averages
are obtained using the exact solution for a one dimensional Ising model, whereas the time averages are computed
with Monte Carlo simulations. The time evolution of the effective ergodic convergence of Ising magnetization
is monitored. By this approach, diffusion regimes of the effective ergodic convergence of magnetization are
identified for different lattice sizes, nonzero temperature, and nonzero external field values. Results show that
caution should be taken when using the TM metric at system parameters that give rise to strong correlations.
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I. INTRODUCTION

Cooperative phenomena are present in many different fields
[1]. A unifying approach in studying cooperation among
individual units emerges as a mathematical model that most
resembles the nature of the problem. The first and the most
successful of these models which were exactly solvable was the
one-dimensional Ising model, a closed chain of n cooperating
units, mimicking spins in ferromagnetic materials [2–4]. Time
dependent statistics of the Ising model has been studied in
depth before [5,6], where single-flip dynamics on n spins is
introduced by changing a single spin’s value with an associated
transition probability. The natural consequence of generating
such dynamics in a given statistical ensemble is the question of
how and when the system behaves ergodically, i.e., ensemble
averages being equivalent to the time averages. This question is
not only interesting because it fulfills Boltzmann’s equilibrium
statistical mechanics [7–9], but for its crucial importance
in practical applications, such as in simple liquids [10,11],
assessing the quality of the Monte Carlo simulations [12],
earthquake fault networks [13,14], and econophysics [15].
Most of these studies address the problem of identifying
ergodic or nonergodic regimes. In this study, we investigate
the time evolution of the rate of effective ergodic convergence
under different system parameters to identify its so called
diffusion regimes.

The Ising model and its analytic solution for the finite size
total magnetization corresponding to the ensemble average
are introduced in Sec. II. In Sec. III we provide details of
our strategy of computing time averages using Metropolis and
Glauber single-spin dynamics defined on the Ising model. In
Sec. IV we briefly review the basic definitions of ergodicity
from an applied statistical mechanics point of view. The
mathematical literature based on measure theory is largely
ignored. However, a quantitative measure for the identification
of an effective ergodic dynamic is needed. In Sec. V the
fluctuation metric [10,16] is adapted for the Ising model’s total
magnetization. By this approach, the rate of effective ergodic
convergence of magnetization is monitored in single-spin-flip
dynamics. We report the diffusion behavior of the ergodic
convergence and identify different regimes depending on

*mehmet.suzen@physics.org

different lattice sizes, temperature, and external field values
in Sec. VI.

II. THE ISING MODEL

Consider a one dimensional lattice that contains N sites.
Each site’s value can be labeled as {si}Ni=1. In the two state
version of the lattice, which is the Ising model [2–4], sites can
take up two values, such as {1,−1}. These values correspond
to spin up and spin down states, for example as a model of
magnetic material or the state of a neuron [17].

The total energy Hamiltonian of the system can be written
as follows:

H
({si}Ni=1,J,H

) = J

((
N−1∑
i=1

sisi+1

)
+ (s1sN )

)
+ H

N∑
1

si .

(1)

This expression contains two interactions, one due to
nearest neighbors (NNs) and one due to an external field. Note
that an additional term in the NN interactions s1sN term appears
due to periodic or cyclic boundary conditions to provide
translational invariance. Coefficients J and H correspond to
scaling of these interactions respectively. A reduced form is
used in Eq. (1) using the unit thermal background, using the
Boltzmann factor β = 1

kBT
:

K = βJ, h = βH. (2)

The partition function for this system can be written by
using the transfer matrix technique [4],

ZN = T r(V N ), (3)

where V is the transfer matrix defined as follows:

V =
(

eK+h e−K

e−K eK−h

)
. (4)

The resulting free energy for the finite system appears in terms
of eigenvalues of the transfer matrix, λ1 and λ2 [4]:

ZN = λN
1 + λN

2 , (5)

λ1,2 = eK [cosh h ±
√

sin2 h + e−4K ]. (6)
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The canonical free energy for the finite system is defined as
follows [4]:

f (N,T ,h) = −kBT
1

N
ln ZN, (7)

1

N
ln ZN = ln λ1 + 1

N
ln[1 + (λ2/λ1)N ]. (8)

We are interested in finite size total magnetization to
compute the ensemble average of it, ME(N,β,H ), analytically.
Differentiating canonical free energy with respect to H will
yield a long expression for ME ,

ME(N,β,H ) = (
NM1M

N−1
2 + NM3M

N−1
4

)/
M5,

M1 = β cosh(Hβ) sinh(Hβ)√
e−4 β J + sinh2(Hβ)

+ β sinh(Hβ),

M2 =
√

e−4 βJ + sinh2(Hβ) + cosh(hβ),

M3 = −M1 + 2β sinh(Hβ),

M4 = −M2 + 2 cosh(Hβ),

M5 = (
√

e−4 β J + sinh2(Hβ) + cosh(Hβ))N

+ (cosh(Hβ) −
√
e−4 β J + sinh2(Hβ))N. (9)

Note that in Eq. (9), the Boltzmann factor is explicitly
written. Further explorations of the analytical solutions are
beyond the scope of this study.

III. METROPOLIS AND GLAUBER
SINGLE-SPIN-FLIP DYNAMICS

One of the ways to generate dynamics for a lattice system
similar to the Ising model in a computer simulation is by
changing the value of a randomly chosen site to its opposite
value. This procedure is called single-spin-flip dynamics in
the context of Monte Carlo simulations [6]. However, the
quality of this kind of dynamics depends highly on the quality
of the random number generator (RNG) [18,19] we employ
in selecting the site to be flipped. However, we gather that
Marsenne-Twister as an RNG [20] is sufficiently good for this
purpose.

In generating such a dynamics, there is an associated
transition probability in the single spin flip. This probability
would determine if the flip introduced by the Monte Carlo pro-
cedure is an acceptable physical move. Two forms of transition
probability can be used that correspond to Boltzmann density.
The following expressions generate Glauber and Metropolis
dynamics, respectively:

pGlauber
({si}Ni=1

) = exp(−β�H)/ (1 + exp(−β�H))

= 1/(1 + exp(β�H)), (10)

pMetropolis
({si}Ni=1

) = min(1, exp(−β�H)), (11)

where �H is the total energy difference between single-spin-
flipped and nonflipped configurations. The resulting transition
probability is compared against a randomly generated number
r , where r ∈ [0,1]. The move is accepted if the transition
probability is smaller than r . This procedure, generally known

as the Metropolis-Hastings Monte Carlo algorithm, samples
the canonical ensemble [6].

IV. ERGODICITY

Boltzmann made the hypothesis that the solution of any
dynamical system, and its trajectories, will evolve in time over
phase-space regions where macroscopic properties are close to
the thermodynamic equilibrium [9]. Consequently, ensemble
averages and time averages will yield the same measure in
thermodynamic equilibrium. A form of this hypothesis states
that average values of an observable g over its ensemble of
accessible state points, namely ensemble averaged value, can
be recovered by time averaged values of the observable’s time
evolution, g(t), from t0 to tN ,

〈g〉 = lim
tN →∞

∫ tN

t0

g(t)dt, (12)

where 〈 〉 indicates ensemble averaged value. Note that,
the definition of ergodicity is not uniform in the literature
[10,21,22]. Some works require that the system should visit all
accessible states in the phase space to reach ergodic behavior.
This is seldom true. And considering the fact that coarse
graining of phase space occurs, most of the accessible state
values are clustered. Frequently, effective ergodicity can be
reached if the system uniformly samples the coarse-grained
regions relatively quickly [10].

Conditions of ergodicity in the transition states, a stochas-
tic matrix of transition probabilities, generated by spin-flip
dynamics is studied in the context of Markov chains [22,23].
This type of ergodicity implies that any state can be reached
from any other. The Monte Carlo procedure explained above
may be ergodic by construction in this sense for long enough
times.

V. CONCEPT OF ERGODIC CONVERGENCE

A quantitative measure of effective ergodic convergence
relies on the fact that identical components of the system,
particles or discrete sites, carry identical average character-
istics at thermal equilibrium [10]. Hence, effective ergodic
convergence, �G(t), can be quantified over time for an
observable, a property, g. Essentially it can be computed as
a difference the between ensemble averaged value of g and
the sum of the instantaneous values of g for each of the
components. This is termed the Thirumalai-Mountain (TM)
G-fluctuating metric [10,16], expressed as follows at a given
time tk:

�G(tk) = 1

N

N∑
j=1

[gj (tk) − 〈g(tk)〉]2, (13)

where gj (tk) is the time averaged per component and 〈g(tk)〉
is the instantaneous ensemble average defined as

gj (tk) = 1

k

k∑
i=0

gj (ti), (14)

〈g(tk)〉 = 1

N

N∑
j=1

gj (tk). (15)
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Hence the rate of ergodic convergence is measured with

�′
G = �G(t)

�G(0)
→ 1

tDG

, (16)

where DG is the property’s diffusion coefficient and �G the
effective ergodic convergence. If 1/�′

G is linear in time,
any point in phase space is said to be equally likely. This
approach is used in simple liquids [10,11] and earthquake fault
networks [13,14].

We would like to investigate the behavior of 1/�′
G for the

Ising model. The adaption of the �G for total magnetization at
time tk as a function of temperature and external field values
reads

�M (tk,N,β,h) = [MT (tk) − ME]2, (17)

MT = 1

k

k∑
i=0

M(ti), (18)

where MT (N,β,h) and ME(N,β,h) correspond to time and
ensemble averaged total magnetization. Note that the value
of ME(N,β,h) is fixed and is computed using the analytical
solutions given in Sec. II, whereas MT (N,β,h) is computed
in the course of Metropolis or Glauber dynamics. Here we
slightly differ in comparison to the TM approach and use a
constant ensemble average, because in our case the value of
the ensemble average is available in exact form as given in
Eq. (9).

VI. DIFFUSION REGIMES

We have identified the time evolution of the effective
ergodic convergence measure, �M (tk,N,β,h), for the total
magnetization of a one dimensional Ising model. Depending
on which transition probability is used for the acceptance
criterion, we generate Metropolis and Glauber single-spin-flip
dynamics for the following model parameters: number of
spin sites N = {32,64,128,256,512}, Boltzmann factor β =
{0.5,1.0}, and nonzero external field values H = {0.50,1.0}
with setting short-range interaction strength to J = 1.0 for
all cases [24]. We generate a dynamics of up to half a
million Monte Carlo steps for all combination of parameters,
hence the maximum k. At the rejected moves, rejected single-
spin-flip configurations, the value of �M (tk,N,β,h) is set
to the previously accepted value. We did not use external
field values and temperatures close to zero, because the total
magnetization’s exact solution fails for zero temperature. In
the case of zero external field, total magnetization is zero and
Monte Carlo relaxation time is long.

We have generated a set of time evolutions of the effective
ergodic convergence measure combined in three different
schemes: varying external fields, increasing number of spin
sites, and different temperature values. For better statistics, 512
spin sites are used for the variation of external fields and tem-
peratures. By employing such a combination scheme, we could
judge the relations among the variation of different parameters
in the behavior of the ergodic convergence measure over time.
The Monte Carlo steps play a role of pseudodynamical time.

To be able to judge the diffusion behavior of the time
evolutions of the effective ergodic convergence measure,
we used the following expression with DM , the diffusion
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FIG. 1. Inverse effective ergodic convergence in Glauber dynam-
ics with different system sizes with fixed temperature β = 1.0 and
external fields H = {0.5,1.0} at (a) and (b), respectively.

coefficient:

1/�′
M = �M (t0,N,β,h)

�M (tk,N,β,h)
→ tDM. (19)

We call this value the so called inverse effective ergodic
convergence rate, or simply the rate. The rate in our plots
shows an increasing value over time. A higher value implies
that the system is closer to the ergodic regime.

Figures 1(a), 1(b), 2(a), and 2(b) show the effect of the
lattice size, different number of spin sites, and two different
external field values at fixed unit thermal background, for
Glauber and Metropolis dynamics, respectively. It is seen in
all cases that smaller size leads to faster ergodic convergence.
This behavior is more pronounced with the Glauber dynamics.
It is well known that Glauber dynamics provides faster
convergence to equilibrium [6]. When the external field is
higher, at 1.0, we observe two different diffusion regimes.
Those regimes can be clearly judged from inflection points
given on the rate curves. Those inflection points, plateau
regions, are significant in the Glauber dynamics. Again, the
plateau regions are shifted for smaller size configurations to the
left of the figure, due to the faster convergence we mentioned.

For varying external field values, there is only a single
diffusion regime for low external field values. However, upon
increasing the field values we again observe an inflection point
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FIG. 2. Inverse effective ergodic convergence in Metropolis
dynamics with different system sizes with fixed temperature β = 1.0
and external fields H = {0.5,1.0} at (a) and (b), respectively.
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FIG. 3. Effective ergodic convergence in Glauber dynamics
with different external field values with fixed size N = 512 and
temperature β = {0.5,1.0} at (a) and (b), respectively.

in the rate curves. This signifies two different diffusion regimes
for the rate. This is demonstrated in Figs. 3(a) and 3(b).

The temperature dependence of the rate curve is shown in
Figs. 4(a) and 4(b). We see that the combination of higher
temperature and external field values induces a change in the
diffusion behavior. We observe that plateau regions become
larger upon increasing the temperature.

VII. SUMMARY

The behavior of the rate of convergence to ergodicity is
characterized for the Ising model using the modified TM
metric for the total magnetization. We aimed at determining the
rate’s behavior over time. We conclude that the combination of
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FIG. 4. Effective ergodic convergence in Glauber dynamics with
different temperatures with fixed size N = 512 and external fields
H = {0.5,1.0} at (a) and (b), respectively.

stronger temperature or external field values generates a regime
change in the ergodic convergence. Hence, caution should be
taken when using the TM metric at system parameters that
give rise to strong correlations.
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