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Nonequilibrium quantum fluctuations of work
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The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and
its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the
work done between two moments of time for a thermally isolated quantum system driven by a time-dependent
Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful
for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these
conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work
that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows
the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial
state.
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I. INTRODUCTION

The first and second laws of statistical thermodynamics
are formulated using the concept of work, i.e., the (average)
energy exchanged by a system driven via a time-dependent
Hamiltonian [1,2]. In this sense the work is a basic quantity
for thermodynamics. It is well-defined both in and out of
equilibrium for any (quantum or classical) system interacting
with external macroscopic work sources [2].

However, the work as it appears in the first and second laws
is an averaged quantity. There are at least two reasons why it is
useful to “deaverage” it, i.e., to present it as a random quantity.
First, its features are understood better in this way. Recall in
this context that the conservation of average energy for an
isolated quantum system is just a consequence of conserving
energy eigenvalues and their probabilities. Second, the current
understanding of the second law is that it has a statistical
character and emerges from averaging over fluctuations [3,4].
Hence it is necessary to define fluctuations of work for
understanding, e.g., the Thomson’s formulation of the second
law [4–7]. Both these points are illustrated by fluctuation
theorems; see Refs. [7–11] for reviews.

The existing definitions of quantum fluctuations of work
can be divided into two groups. Time-global definitions look
for the work done between two moments of time, as usual for
any transfer quantity [10–21]. Time-local approaches adapt the
global definitions infinitesimally along an effective quantum
trajectory [22–32].

Here I focus on the time-global approaches (admittedly,
they are more fundamental in the quantum case) for a thermally
isolated dynamics and note that they do not apply whenever
the initial density matrix does not commute with the (initial)
Hamiltonian. This limitation is essential, since work-extraction
from nonequilibrium (e.g., nondiagonal) states is important
both conceptually [5] and practically [33].

The aim of this paper is to present a definition of quantum
fluctuations of work that is free of the previous drawbacks. It
is based on the Terletsky-Margenau-Hill distribution [34–39].
The definition applies for a class of initial density matrices
that do not commute with the (time-dependent) Hamiltonian.
It leads to a generalized fluctuation theorem.

However, this definition is neither unique (otherwise there
would not be the issue with noncommutativity) nor does it

apply for an arbitrary initial state, because there it leads to
negative probabilities whose physical meaning is not clear. In
this context, I formulate two conditions for fluctuating work
that are closely linked to its physical meaning as the amount
of energy exchanged with the source of work. They need to
be satisfied for any definition of the fluctuating work and they
hold for the presented one. It remains to be seen whether this is
indeed the most convenient definition or there are even better
ones to be uncovered in the future.1

This paper is organized as follows. Section II defines the
system to be studied. The next section reviews previous ap-
proaches and explains why specifically they are not applicable
out of equilibrium. Section IV proposes two general conditions
to be satisfied for any definition of quantum fluctuating work.
Section V discusses a new definition of fluctuating work that is
free of previous drawbacks. A generalized fluctuation theorem
is derived and interpreted in Sec. VI. Section VII discusses
certain limitations of the proposed approach. I summarize in
the last section. There are two appendices.

II. SETUP

Consider a quantum system with an initial state described
by a density matrix ρ. The system is thermally isolated: Its
dynamics is described by a time-dependent, Schroedinger

1To explain why I decided to focus on the concept of work, I
shall compare its features to those of entropy production (EP). For
a system coupled to thermal baths, EP amounts to entropy increase
of baths [1,2]. This definition does not apply more generally—for
nonequilibrium baths or thermally isolated case—since the very
definition of entropy is ambiguous there. For those cases, EP is
defined as an effective measure of irreversibility that has to be positive
and share the heuristics of entropy increase [40–42]. There is some
consensus on how to define EP for classical [40,43] and semiclassical
systems [11]. But the quantum situation is ambiguous in this respect
[44,45]; e.g., Ref. [45] shows that there is a family of EPs associated
with different notions of effective phase-space. They lead to different
expressions of the (average) EP even for the initially equilibrium
(Gibbsian) initial state [46]. These features differ from those of the
(average) work, which is well defined for arbitrary (initial) states.
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representation Hamiltonian H (t) that generates a unitary
evolution operator as follows:

Uτ = ←−exp

[
− i

�

∫ τ

0
dt H (t)

]
, (1)

between the initial time 0 and the final time τ . Here ←−exp denotes
a time-ordered exponent. The (average) work W done on the
system reads [1,2]

W = tr[ρ(HF − HI )], (2)

HI ≡ H (0), HF = U †
τ H (τ )Uτ , (3)

where HF (HI ) is the final (initial) Hamiltonian in the
Heisenberg representation. The definition of work applies to
any initial state: It is the average energy given up by the
source of work [1,2]. Due to conservation of energy during
the system–work source interaction, W is the average energy
transferred to the source of work [1,2]. This is seen explicitly
in approaches that deal with system–work source interaction
from the first principles; see, e.g., Refs. [47,48]. The intuitive
meaning of W is that it is a “high-graded,” mechanical energy
that can be wholly transferred from one work source to another
and dissipated into heat.

The variable W can be observed in several ways, e.g., via
the energy of the work source or by measuring the Heisenberg
operator HF − HI at the final time. Another (more usual) way
of observing W is to consider an ensemble of identically
prepared systems (described by ρ) and divide it into two
(equal) parts. Measuring HI (HF ) on the first (second) part
one recovers tr(ρHI ) [tr(ρHF )]; see (2). Thus, W is directly
observable and manifests the energy conservation (first law)
for the present problem. Thus, I take the above definition of the
average work W as the basic entity from which the fluctuating
work is to be deduced under certain additional assumptions.

Note that, formally, the above thermally isolated setup
applies also for an open quantum system interacting with
an environment (e.g., thermal baths). Since the work is the
energy transferred to the source, one just needs to include
the whole environment into a single system interacting with
the source. This is, however, a formal procedure, because the
environment is normally large and out of control. Thus further
research is needed to extend this setup to open systems. In
this paper I focus on the thermally isolated setup, also because
this is the first step towards understanding the more general
(open-system) situation.

III. TWO APPROACHES FOR DEFINING
FLUCTUATIONS OF WORK

I now concentrate on two major (and different [18,19])
approaches for defining quantum fluctuations of work. My
aim is to compare these definitions to each other and to (2)
and understand where specifically they flaw in describing the
fluctuating work.

A. Operator of work

The spirit of the Heisenberg representation is that time-
dependent operators are analogs of classical, time-dependent
random variables. Then the Heisenberg operator HF − HI is
postulated to be the “observable of work” in the standard sense

[2,7,12,17,18,20,25,27,49]: Its eigenvalues are realizations of
work and its eigenvectors define the respective probabilities.
I stress that (at least formally) only one measurement (that of
HF − HI ) is needed to obtain the statistics of work according
to this definition.

Now assume that the Schroedinger representation Hamil-
tonian changes cyclically as follows:

HI = H (0) = H (τ ). (4)

One interpretation of (4) is that the system interacts with the
source of work only for 0 � t � τ , i.e., it is strictly isolated
for t < 0 and t > τ : H (t < 0) = H (t > τ ) = HI .

Now since HI and HF have the same eigenvalues, HF − HI

has eigenvalues of both signs. Since the approach should
apply for nonequilibrium initial states, we choose HI and
HF such that HF − HI has an eigenvalue equal to zero. The
corresponding eigenvector |0〉,

(HF − HI )|0〉 = 0, (5)

is taken as the initial state |0〉〈0|. Due to

[HF ,HI ] ≡ HF HI − HIHF �= 0, (6)

|0〉 is neither an eigenstate of HF nor an eigenstate of HI.
Equation (5) implies that HF − HI has on the state |0〉〈0| a
definite value equal to zero: For all single systems from the
ensemble described by |0〉〈0| no work is done and hence no
energy is supposed to be exchanged. But there are examples
[18] showing that (5) and (6) are compatible with

〈0|Hm
F |0〉 = 〈0|U †

τ H
m
I Uτ |0〉 �= 〈0|Hm

I |0〉 for m > 2. (7)

For a system that is strictly isolated for t < 0 and t > τ [recall
(4)], the inequality (7) implies that the probabilities of some
energies (i.e., the eigenvalues of HI ) do change due to the
interaction with the source of work.

Thus, according to this definition it is possible to have
energy exchange with strictly zero fluctuations of work. In
other words, the link between energy exchange and the work
done on a thermally isolated system is generally absent.

Though I tuned HF − HI to have a zero eigenvalue, it is
clear that the problem is more general, e.g., it persists for
HF − HI having an eigenvalue close to zero [50].

I opine that due to this problem HF − HI cannot be
interpreted as the work operator for all initial states. Such
an interpretation can be perhaps kept for initial states ρ that
commute with HF or with HI [18], but it is not clear how to
generalize this class of initial states.

B. Two-time measurements of energy

We turn to the second approach [10,11,13–16]. Let the
eigenresolution of the Schroedinger representation Hamilto-
nian H (t) be

H (t) =
∑

k

εk(t) Ek(t), (8)

Ek(t)El(t) = δklEk(t), tr Ek(t) = const, (9)

where εk(t) are the eigenvalues of H (t), δkl is the Kro-
necker symbol, and Ek(t) are the projector to the corre-
sponding eigenspace, whose dimension tr Ek(t) is taken time-
independent for simplicity.
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Measuring H (0) at t = 0 produces εk(0) with probability
tr(ρ Ek(0)) [13–15]. The postmeasurement state has the von
Neumann-Luders form ρk ≡ Ek(0)ρ Ek(0)/tr(ρEk(0)); it is
then evolved via (1). At the final moment τ one measures
H (τ ) and gets εl(τ ) with probability tr(UτρkU

†
τ El(τ )), which

is conditional over the result k of the first measurement.
The fluctuating work is presented as a classical random

variable with, respectively, realizations and probabilities2

εl(τ ) − εk(0), (10)

p̃kl = tr(ρ Ek(0)) tr(UτρkU
†
τ El(τ )) (11)

= tr(Ek(0) ρ Ek(0) U †
τ El(τ )Uτ ). (12)

The problem of this definition is that it does not apply to
initial states that do not commute with H (0): The average
“work” W̃ reads as follows from (10) and (12):

W̃ =
∑
kl

p̃kl( εl(τ ) − εk(0) ) = tr( ρ̃ (HF − HI )), (13)

where

ρ̃ ≡
∑

k

Ek(0) ρ Ek(0). (14)

We obtain from (2), (13), and (14) the following:

W − W̃ = tr((ρ − ρ̃)HF )

=
∑
k �=l

tr(Ek(0) ρ El(0) HF ). (15)

Hence for

[ρ,HI ] �= 0 and [HF ,HI ] �= 0, (16)

(10) and (12) cannot be related to the work done on the
system with initial state ρ by the external source, because
W̃ �= W . The physical reason for this conclusion is that under
[ρ,HI ] = 0 the first energy measurement (at t = 0) can be
said to reveal the pre-existing (but unknown) value of energy.
In particular, the postmeasurement density matrix does not
change: ρ = ρ̃ [see (14)]. In contrast, for [ρ,HI ] �= 0 already
the first measurement is invasive; it leads to an irrversible
change ρ → ρ̃ of the density matrix that alters its subsequent
interaction with the source of work provided that [HF ,HI ] �=
0; see Appendix A for a physical example. Put differently,
the reason for inapplicaility of the two-time measurement
approach is that it essentially alters the (nonequilibrium) initial
state.3

2While this approach is standardly presented via two sharp
measurements of energy, one can naturally wonder whether the same
statistics of work can be approached via more feasible measurements;
see Ref. [52] for a recent review of this issue.

3This point of altering the premeasured state also appears in
Ref. [53], where the authors study the energy changes for a system
that couples to an external measuring apparatus and is thereby subject
to projective measurements of a quantity that does not commute with
energy (no work source is supposed to be present). It is expected that
in this situation the energy changes of the system will consist of both
work and heat; no analysis of this problem is carried out in Ref. [53].

C. Comparing two definitions with each other

We saw that the definition based on the operator of work
does always reproduce the average work (2), but it does not
account properly the notion of “work = exchanged energy” at
least for some initial states. I stress that this definition implies a
one-time approach, since one needs to measure the Heisenber
operator HF − HI at the final time τ . The definition based on
the two-time measurements of energy does not reproduce the
average work (2) if (16) holds.

It is to be stressed that the drawbacks of both approaches
do not show up for [ρ,HI ] = 0. Hence if one is restricted by
such initial states, both approaches perform well, and it is a
matter of taste which one is preferred.4

Even then the operator definition has an advantage of
being time symmetric: In contrast to the two-time energy
measurement approach, it applies not only for [ρ,HI ] = 0
but also for [ρ,HF] = 0 [and (16)]; see (3), (5), and (7).

IV. GENERAL CONDITIONS

The above analysis of the two approaches leads to the fol-
lowing general conditions demanded for the proper definition
of fluctuations of work.

(i) For cyclic changes of the Hamiltonian [cf. the discussion
above (5) and (7)], the zero fluctuations of work should mean
no energy exchange:

tr
(
ρHm

I

) = tr
(
ρHm

F

) ≡ tr
(
Uτρ U †

τ Hm
I

)
for m � 1. (17)

(ii) The definition should apply for a possibly wide class
of initial states (including initial states that do not commute
with the initial Hamiltonian HI) and it should reproduce the
average work (2) for all initial states, where it applies.

As seen above, the first (second) condition does not hold
for the first (second) definition of fluctuations.

V. ANOTHER DEFINITION FOR FLUCTUATING WORK

A. Estimation of energies via one measurement

Below I work out a definition that satisfies the above two
conditions, and, similarly to (10), it presents the work as
a classical random quantity. When discussing the approach
based on two measurements, we noted that its drawback stems
from the invasive character of the first measurement. It is then
natural to illustrate a more general approach by avoiding the
explicit introduction of the first measurement. Hence at the
final time τ we measure [cf. (3) and (8)]

HF =
∑

l

εl(τ )�l, �l�l′ = �lδll′ . (18)

4When discussing this issue with people several times I encountered
the viewpoint that Ref. [16] has shown that the quantum fluctuating
work is not an operator, i.e., this reference ruled out the first definition.
This is not correct: Ref. [16] shows that the work obtained via two-
time measurements of energy cannot be (in general) represented as
an outcome of an operator. But it does not point out any drawback
of the Heisenberg-operator-based definition, far from ruling out all
possible definitions of the fluctuating work as an operator.
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Given the outcomes of this measurement, and provided that
we know ρ and HI , we follow the ideas of Refs. [54,55]
and introduce an approximation f (HF) of HI. The unknown
function f (.) is sought from minimizing the mean-squared
difference (the simplest measure of magnitude) as follows:

tr(ρ (f (HF ) − HI )2). (19)

The minimization is straightforward [cf. (18)] [54,55],

f (HF ) =
∑

l

fl�l, fl ≡ Re tr(�lρHI)

tr(�lρ)
. (20)

Now fl is represented via eigenvalues εk(0) of HI ,

fl =
∑

k

εk(0)pk|l , pk|l ≡ Re tr(�lEkρ)

tr(�lρ)
, (21)

where Ek ≡ Ek(0). Provided that pk|l � 0, it can interpreted
as a conditional probability for the initial energy to be εk(0),
provided that the final one is εl(τ ). This condition does not
hold automatically but rather defines the class of states and
Hamiltonians for which it is legitimate to interpret pk|l as
probabilities; see Sec. VII.

B. Definition of fluctuating work

Hence fluctuating work is defined as a classical random
quantity with, respectively, realizations and probabilities as
follows:

εl(τ ) − εk(0), pkl ≡ Re tr(ρEk�l) � 0. (22)

Now pkl � 0 is interpreted as the joint probability for the
eigenvalues of HI and HF . We could avoid the reasoning of
(19)–(21) and just introduce (22) as a postulate.

Note that pkl has correct marginal probabilities,∑
k

pkl = tr(ρ�l),
∑

l

pkl = tr(ρEk). (23)

For [ρ,HI ] = 0 we revert from (22) to (10) and (12) using
Ekρ = EkρEk .

The Cauchy-Schwartz inequality implies p2
kl � 1 as fol-

lows:

[Re tr(ρEk�l)]
2 � |tr(√ρEk�l

√
ρ)|2 � tr(ρ�l)tr(ρEk) � 1.

But for specific choices of ρ, pkl can turn negative for given
Ek and �l , and then its interpretation as a joint probability is
lost; see Sec. VII. From now on and to (38) we assume that
pkl � 0.

Condition (ii) holds, since the first and second moments
calculated from (22) are equal, respectively, to the first and
second moments of the operator HF − HI ,

tr(ρ(HF − HI )m) =
∑

k,l
pkl(εl(τ ) − εk(0))m,m = 1,2.

(24)

However, already the third moments generally differ, the
difference involving a double commutator [cf. (18) and (22)],

tr(ρ(HF − HI )3) −
∑

k,l
pkl(εl(t) − εk(0))3

= tr

(
ρ

[
HF + HI

2
,[ HF ,HI ]

])
. (25)

Let us check that condition (i) holds. For cyclic, H (t) = H (0),
change of the Hamiltonian, the zero fluctuations of work mean

pkl = Re tr(ρEk�l) = 0 for all k �= l. (26)

Employing 0 = Re tr(ρEk�l) = Re tr(ρ(1 − ∑
k′ �=k Ek′)�l)

and rearranging the terms we get

tr(ρEl) = tr(ρ�l) = Re tr(ρEl�l) (27)

for all l. The first equality here suffices to establish (17). If ρ

does not have zero eigenvalues one can find from (26) stronger
conditions, but we shall not dwell on that.

In Sec. III C we noted that the two-time energy measure-
ment approach does not apply when [ρ,HF ] = 0 but (16)
holds. It is now seen that the present definition does not have
this drawback: for [ρ,HF ] = 0 we obtain

pkl = tr(Ek�lρ�l) � 0. (28)

This expression is intuitive, but (for [ρ,HI ] �= 0) it cannot be
obtained from the two-time approach, where one first measures
energy at t = 0 and then at t = τ > 0.

C. Discussion

The joint probability pkl for noncommuting variables
was introduced in Refs. [34–36] (Terletsky-Margenau-Hill
distribution). Though it is one of many possible definitions
of joint probabilities for noncommuting variables, it is very
convenient in the context of quantum statistical mechanics.
This point was made in Refs. [35,36] and we shall confirm
it below when deriving the generalized fluctuation theorem.
As many other joint probabilities (e.g., the Wigner function),
pkl can be measured experimentally [56]. Note that fl in
(20) and (21) corresponds to the generalized weak value [57],
which is alternatively known as the locally averaged value of
energy [58]; this interpretation was employed in (19) and (21).
The relation between fl and pkl was noted in Refs. [59–61].
Also, the form of pkl leads to the most general consistency
condition in the history approach to quantum mechanics
[37–39] [49]. pkl behaves expectedly under coarse-graining:
when two orthogonal subspaces (e.g., described, respectively,
by projectors �1 and �2) are joined into one space (described
by �1 + �2), the probabilities are added as follows:

pk1 + pk2 = Re tr((�1 + �2)Ekρ). (29)

Reference [62] derives pkl axiomatically and underlines
another deep feature of pkl : It is time symmetric, i.e., invariant
with respect to interchanging �l with Ek . We already noted
this feature around (28).

D. Summary

Let us briefly recall why pkl defined in (22) can be regarded
as a joint distribution for initial and final energies:

(1) It emerges from estimating two noncommuting observ-
ables via one measurement; see (18)–(21).

(2) Whenever any two among three operators �l , Ek , ρ

commute, pkl reduces to the expected form tr[ �lEkρ ].
(3) pkl has correct marginals; see (23). This is in contrast

to the two-time measurement approach that generally does not
reproduce the correct marginals.
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(4) It is time symmetric and linear with respect to projec-
tors �l and Ek . Hence pkl is additive, much in the same way
as the ordinary probability tr[ρEk].

VI. GENERALIZED FLUCTUATION THEOREM

A. Derivation and interpretation

Following the logic of the equilibrium fluctuation theorem,
we take a parameter β and work out using (22) as follows:∑

kl

pkle
−β(εl (τ )−εk(0)) = Re

∑
kl

tr(ρ�le
−βεl (τ )Eke

βεk (0)).

We get from this the following fluctuation theorem:

〈e−β(w−�F)〉 = Re tr
(
σ ρ−1

eq (0) ρ
) ≡ ϒ, (30)

where w = εl(τ ) − εk(0) are realizations of the random work,
〈...〉 means averaging over pkl , and where

ρeq(t) ≡ e−βH (t)
/

tr(e−βH (t)) , 0 � t � τ, (31)

β�F ≡ − ln tr[e−βH (t)] + ln tr[e−βH (0)], (32)

σ ≡ U †
τ ρeq(τ )Uτ . (33)

Equation (30) relates to each of the other three processes; see
Fig. 1. The first of them is the thermally isolated process we
focused on: the system starts from the density matrix ρ and
Hamiltonian H (0) and (in the Schroedinger representation)
ends at the density matrix ρ(τ ) = UτρU †

τ and Hamiltonian
H (τ ). The work w and averaging 〈...〉 in (30) refer to this
process.

For the second process we imagine that the system (at some
preinitial time) is attached to a thermal bath at temperature
1/β and relaxes to the Gibbsian equilibrium density matrix
ρeq(0); cf. (31). Then it follows an isothermal quasiequilibrium
process, where the Hamiltonian slowly changes from H (0) to
H (τ ) under a weak but fixed coupling with the bath. Since the
change is slow, the density matrix during the process equals
ρeq(t), 0 � t � τ . The work done in this process is given the
equilibrium free-energy difference �F in (30) and (32) [1,2].

During the third process the system at the end of the
previous isothermal process is decoupled from the bath and
undergoes the reversal of the first thermally isolated process.

ρ

)0(eqρ

)0(H )(τH

)(eq τρ
σ

)(τρ

FIG. 1. (Color online) Three processes that appear in (30). They
are depicted in a schematic coordinate plane with the x axes (y
axes) being Hamiltonian (density matrices) in the Schroedinger
representation. Black (lower, full) arrow: The target thermally isolated
process. Blue (dashed) arrow: Isothermal process. Red (upper, full)
arrow: Another thermally isolated process. Notations refer to (8),
(30), and (31).

The final density matrix σ of this process appears in (30) and
(33).

In the (initially) equilibrium situation ρeq(0) = ρ, we revert
to the usual (equilibrium) fluctuation theorem,

〈e−β(w−�F)〉 = 1. (34)

This theorem relates together characteristics of the first
(thermally isolated) and second (isothermal) process. Note
that the approach based on two-time measurements of certain
observables (not necessarily energy) can also generate fluc-
tuation theorems whose right-hand side is not equal to 1
[an analog of ϒ , cf. (30)] [63–65]. There, however, the
initial (postmeasurement) state always commutes with the first
observable, in contrast to (30), which holds for an arbitrary
initial state.

For the equilibrium fluctuation theorem (34) we note that
the existence of the bath is necessary for defining the second
process (at least when the system is finite, as we assume
here). Without the bath, i.e., when the second process is also
thermally isolated, the work during the slowest, reversible
process is generally not given by the free-energy difference
[66]. There is a simple way to see this fact explicitly: Any
unitary time evolution conserves eigenvalues of the density
matrix,

Spectrum[ Uτρeq(0)U †
τ ] = Spectrum[ ρeq(0) ]. (35)

Hence ρeq(τ ) in (31) cannot be obtained from ρeq(0) via a
unitary process. Put differently, the equilibrium fluctuation
theorem (34) does not generally characterizes the amount of
irreversibility (slow versus fast realization) of the thermally
isolated process. Instead, it compares two different processes.

Finally, let us again look at (30) and compare it with (34):
The equilibrium fluctuation theorem (34) has precisely the
same form as the corresponding classical fluctuation relation.
This is related to the fact that the equilibrium initial state
ρeq(0) has classical features with respect to the (initial) energy
distribution.5 In contrast, (30) retains quantum features, since
its right-hand side contains noncommutative quantities.

B. Work–free energy relation

Using convexity, 〈ex〉 � e〈x〉, we deduce from (22) and (30)
a generalization of the usual work–free energy relation,

β(W − F) � ln ϒ ≡ ln

(∑
kl

μl

νk

pkl

)
, (36)

where μl and νk are the eigenvalues of σ and ρeq(0),
respectively. They directly relate to eigenvalues of H (τ ) and
H (0). Now ln ϒ can be arbitrarily large, e.g., when one of νk

is close to zero. Then the equilibrium relation

β(W − F) � 0, (37)

carries out to nonequilibrium. Note that ln ϒ � 0 [which
guarantees (37)] is not always true; see Appendix B.

5Quantum effects are carefully hidden under (34); see, e.g.,
Ref. [67].
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VII. NEGATIVITY OF pkl

The above theory for fluctuations of work was developed
under the assumption pkl � 0 [cf. (22)] (though we shall
see that, formally, not all results demand this assumption).
However, for given projectors Ek and �l with [Ek,�l] �= 0,
there are ρ’s such that

pkl = tr(ρXkl) < 0, Xkl ≡ 1
2 (Ek�l + �lEk). (38)

This is because for [Ek,�l] �= 0, Xkl has at least one negative
eigenvalue [39], e.g., for one-dimensional projectors Ek and
�l the nonzero eigenvalues of Xkl are

1
2 (tr(Ek�l) ±

√
tr(Ek�l)). (39)

More generally, for [Ek,�l] �= 0 there is a vector |ψ〉 so
Ek|ψ〉 = 0 but Ek�l|ψ〉 �= 0. Let Xkl = ∑

a xa|xa〉〈xa| now be
the eigenresolution of Xkl and x1 be the smallest eigenvalue
of Xkl . We then have

x1 �
∑

a

xa|〈xa|ψ〉|2 = Re〈ψ |Ek�l|ψ〉 = 0. (40)

This proves that at least the smallest eigenvalue of Xkl is
negative, since for [Ek,�l] �= 0 the inequality in (40) is strict.
(It turns into equality for [Ek,�l] = 0, in which case x1 = 0.)
The magnitude of this negativity can be estimated from6

− 1
8 � Xkl � 1, (41)

where 1 is the unit operator, and, e.g., Xkl � 1 means that
the eigenvalues of 1 − Xkl are non-negative. Thus the smallest
eigenvalue of Xkl is not smaller than − 1

8 [this is consistent
with (39)].

Whenever pkl < 0, the usual probability interpretation for
pkl , and hence the presented definition of fluctuations of work,
do not apply. Nevertheless, the expression (24) for the first and
second moments of work, as well as the fluctuation theorem
(30), still apply formally, i.e., their derivations do not require
the validity of pkl � 0. This condition is demanded, e.g., for
(36).

However, the positive eigenvalues of Xkl are larger than the
negative one(s), e.g., due to tr[ Xkl] = tr[ �lEk�l ] � 0. Also,
in certain cases of pkl < 0 we can follow the reasoning of (29)
and still define positive probabilities by coarse-graining pkl .

VIII. SUMMARY

This paper is started by studying the applicability of the
existing definitions of fluctuating work to nonequilibrium
initial states of a quantum system subject to a thermally
isolated process. The approach based on two-time energy
measurements do not apply for initial states that do not
commute with the initial Hamiltonian, because it does not
properly reproduce the average work; see Sec. III B. The
applicability domain of the operator definition of work is
wider, but it is still limited, because this definition does not

6Inequalities in (41) were derived in Ref. [68] for a slightly
more general case of two non-negative operators (not necessarily
projections). The first [second] inequality follows from (Ek + �l −
1
2 )2 � 1 [(Ek − �l)2 � 0] using Ek = E2

k � 1 and �l = �2
l � 1.

support (for nonequilibrium initial states) the relation between
the work and energy change; see Sec. III A.

The route to defining quantum fluctuating work goes via
formulating necessary physical conditions which possible
definition should hold. I proposed in Sec. IV that there are
(at least) two such restrictions: the fluctuating work should
relate to energy change and it should respect the definition (2)
of the average work.

I worked out in Sec. V (what seems to me) the simplest
definition of the fluctuating work that holds the above two fea-
tures. This definition does apply to the class of nonequilibrium
initial states. Its applicability domain is clearly defined by the
non-negativity pkl � 0 of joint probabilities; see (22) and Sec.
(VII).

This definition employes only one measurement [by anal-
ogy to the definition of work based on the Heisenberg operator
(3); see Sec. III A]. For initial states that commute with the
initial Hamiltonian this definition reduces to what is obtained
with the two-time energy measurements.

I believe that this definition of fluctuating work does
advance our understanding of nonequilibrium statistical me-
chanics, e.g., it allows us to derive a generalized fluctuation
theorem which connects together three related processes; see
Sec. VI.
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APPENDIX A: FLUCTUATIONS OF WORK FOR
RABI’S MODEL

1. Rabi’s model

The purpose of this section is to illustrate the definition
of work fluctuations (proposed in the main text) for Rabi’s
model: a two-level system driven by an oscillating external
field [69,70]. I also compare different definitions of fluctuating
work.

There are several reasons why I choose to illustrate the
theory of fluctuating work with this specific model. They are
as follows:

(1) The model is basic for several fields [quantum optics,
NMR or electron spin resonsnce (ESR) physics, etc.].

(2) It is exactly solvable.
(3) The nonequilibrium initial states for this model are

theoretically natural and experimentally realizable.
The time-dependent Hamiltonian of the model reads

[69,70]

H (t) = ω

2
σz + g

2
[σx cos(ωt) + σy sin(ωt)], (A1)

where ω > 0 is the (free) frequency of the two-level system,
while g quantifies the coupling with the external field.

Here σx,y,z are Pauli matrices. We shall write them in the
representation of up |↑〉 and down |↓〉 spin states,

σz = |↑〉〈↑| − |↓〉〈↓|, σx = |↑〉〈↓| + |↓〉〈↑|, (A2)

σy = −i(|↑〉〈↓| − |↓〉〈↑|). (A3)
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Equation (A1) assumes the resonant case, where the
frequencies of the two-level system and external are both equal
ω (we take � = 1) [69,70].

The eigenvalues

ε1 = 1
2

√
g2 + ω2, ε2 = − 1

2

√
g2 + ω2, (A4)

of H (t) do not depend on time. The orthogonal and normalized
eigenvectors of H (t) read (|ε1,2(t)〉 are row vectors)

〈ε1(t)| = ((ω +
√

ω2 + g2) eiωt , g)√
g2 + (ω +

√
ω2 + g2)2

, (A5)

〈ε2(t)| = ((ω −
√

ω2 + g2) eiωt , g)√
g2 + (ω −

√
ω2 + g2)2

. (A6)

The unitary operator generated by (A1) is [69,70]

Ut = exp

[−iωt

2
σz

]
exp

[−igt

2
σx

]
. (A7)

It satisfies the evolution equation i∂tUt = H (t)Ut , as verified
by direct substitution.

2. Fluctuations of work

The advantage of this situation is that the up and down initial
states and their mixtures are natural initial states [69,70]. We
thus take the initial state as

ρ = 1 − δ

2
|↑〉〈↑| + 1 + δ

2
|↓〉〈↓|, (A8)

where |δ| � 1 is a parameter. For applications in NMR or ESR
physics, |δ| is a small dimensionless number, e.g., |δ| ∼ 10−2

[69]; it can be significantly larger in quantum optics [70].
Clearly, the initial state ρ does not commute with the initial

Hamiltonian H (0) (excluding the case δ = 0) [cf. (A1), (A5),
and (A6)], so we are in the situation described in the main text.

According to (16) of the main text, we get from (A4) three
values of the the fluctuating work (A9), (A11), and (A13) with
their respective probabilities (A10), (A12), and (A14) (with an
obvious adaptation of notations),√

g2 + ω2, (A9)

p+ = Re{〈ε2(0)|U †
t |ε1(t)〉 〈ε1(t)|Utρ|ε2(0)〉}; (A10)

−
√

g2 + ω2, (A11)

p− = Re{〈ε1(0)|U †
t |ε2(t)〉 〈ε2(t)|Utρ|ε1(0)〉}; (A12)

0, (A13)

p0 = 1 − p+ − p−. (A14)

Equations (A5), (A6), (A7), (A10), (A12), and (A14) imply

p+ = ω2 sin2[gt/2]

2(g2 + ω2)

(
1 + δ

√
g2

ω2
+ 1

)
, (A15)

p− = ω2 sin2[gt/2]

2(g2 + ω2)

(
1 − δ

√
g2

ω2
+ 1

)
, (A16)

p0 = g2 + ω2 cos2[gt/2]

g2 + ω2
. (A17)

Note that p+ − p− and δ have the same sign, and this agrees
with the logics of the second law (even though the initial state
is not in equilibrium): δ > 0 means the lower (down) initial
state is more populated [cf. (A8)] and hence the probability of
energy increase is larger: p+ > p−.

The average work agrees with (A15) and (A16) as follows:

W = tr(UtρU
†
t H (t) − ρH (0)) =

√
g2 + ω2(p+ − p−)

= δω sin2[gt/2]. (A18)

Eqs. (A15) and (A16) are non-negative, and hence qualify
as probabilities, for

1 � |δ|
√

g2

ω2
+ 1, (A19)

i.e., for a sufficiently mixed initial state (|δ| is not close to 1),
and/or for a sufficiently small g2

ω2 (relatively weak influence
on the two-level system). Condition (A19) does not hold, and
hence either p12 or p21 is negative for |δ| = 1 (initially pure
state).

3. Two-time measurements of energy

Now the two-time measurement approach produces the
same three realizations (±

√
g2 + ω2, 0), but their probabilities

differ as follows: √
g2 + ω2, (A20)

p̃+ = 〈ε2(0)|ρ|ε2(0)〉 〈ε2(0)|U †
t |ε1(t)〉 〈ε1(t)|Ut |ε2(0)〉,

(A21)

−
√

g2 + ω2, (A22)

p̃− = 〈ε1(0)|ρ|ε1(0)〉〈ε1(0)|U †
t |ε2(t)〉〈ε2(t)|Ut |ε1(0)〉, (A23)

0, (A24)

1 − p̃− − p̃+. (A25)

The difference between (A10) and (A12) and then (A21) and
(A23) is best visible without working out (A21) and (A23) but
looking directly to the average produced by (A21) and (A23),√

g2 + ω2 (p̃+ − p̃−) = δω3 sin2[gt/2]

g2 + ω2
. (A26)

It is seen that (A26) does differ from the average work (A18),
and hence the approach based on the two-time measurements
of energy does not apply.

4. Operator of work

Let us now turn to the operator of work approach. This
operator is given as

�H (t) = U
†
t H (t)Ut − H (0). (A27)

As follows from (A1) and (A7), �H (t) has eigenvalues and
(respective) eigenvectors as follows:

�1 = w sin[gt/2], (A28)

〈�1| = (−i(sin[gt/2] − 1), cos[gt/2])√
2(1 − sin[gt/2])

, (A29)
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�2 = −w sin[gt/2], (A30)

〈�2| = (−i(sin[gt/2] + 1), cos[gt/2])√
2(1 + sin[gt/2])

. (A31)

On the initial state ρ each of these eigenvalues is realized with
probabilities

〈�1|ρ|�1〉 = 1 + δ sin[gt/2]

2
, (A32)

〈�2|ρ|�2〉 = 1 − δ sin[gt/2]

2
. (A33)

Now the average work (A18) is expectedly reproduced from
(A27)–(A33):

W =
∑
k=1,2

�k〈�k|ρ|�k〉. (A34)

We compare predictions of the operator of work approach
with (A9)–(A14). According to (A9), (A11), and (A13) there
are three time-independent realizations of work, while in

(A28) and (A30) there are two time-dependent realizations
±ω sin[gt/2]. Note that the eigenvalues of the operator of
work ±ω sin[gt/2] nullify simultaneously with probabilities
(A10) and (A12) for nonzero values. Also, p− in (A12) can be
zero due to 1 = δ

√
1 + g2/ω2, indicating that the fluctuations

of work are strictly non-negative, while ±ω sin[gt/2] can still
assume negative values with nonzero probability.

APPENDIX B: A LOWER BOUND FOR ϒ

The factor ϒ is defined by (26) of the main text.
To derive a lower bound for ϒ we minimize it over νk under

the constraint
∑

k νk = 1 using Lagrange multipliers (recall
that νk and μl are probabilities). This produces the following:

ϒ �
[∑

k
p

1/2
k

(∑
l
pk|lμl

)1/2
]2

. (B1)

This lower bound is achievable and its right-hand side is
smaller than 1, because it is a squared overlap of two
probability vectors: pk and

∑
l pk|lμl . Hence ln ϒ in (26) (of

the main text) can be negative.
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