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We consider the subdiffusion-reaction process with reactions of a type A + B −→ B (in which particles A are
assumed to be mobile, whereas B are assumed to be static) in comparison to the subdiffusion-reaction process
with A −→ B reactions which was studied by Sokolov, Schmidt, and Sagués [Phys. Rev. E 73, 031102 (2006)].
In both processes a rule that reactions can only occur between particles which continue to exist is taken into
account. Although in both processes a probability of the vanishing of particle A due to a reaction is independent
of both time and space variables (assuming that in the system with the A + B −→ B reactions, particles B are
distributed homogeneously), we show that subdiffusion-reaction equations describing these processes as well as
their Green’s functions are qualitatively different. The reason for this difference is as follows. In the case of the
former reaction, particles A and B have to meet with some probability before the reaction occurs in contradiction
with the case of the latter reaction. For the subdiffusion process with the A + B −→ B reactions we consider three
models which differ in some details concerning a description of the reactions. We base the method considered
in this paper on a random walk model in a system with both discrete time and discrete space variables. Then
the system with discrete variables is transformed into a system with both continuous time and continuous space
variables. Such a method seems to be convenient in analyzing subdiffusion-reaction processes with partially
absorbing or partially reflecting walls. The reason is that within this method we can determine Green’s functions
without a necessity of solving a fractional differential subdiffusion-reaction equation with boundary conditions at
the walls. As an example, we use the model to find the Green’s functions for a subdiffusive reaction system (with
the reactions mentioned above), which is bounded by a partially absorbing wall. This example shows how the
model can be used to analyze the subdiffusion-reaction process in a system with partially absorbing or reflecting
thin membranes. Employing a simple phenomenological model, we also derive equations related to the reaction
parameters used in the considered models.
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I. INTRODUCTION

The process of subdiffusion can occur in media in which
particles’ movement is strongly hindered due to the internal
structure of a medium. Subdiffusion is usually defined as a
random walk process in which 〈(�x)2〉 = 2Dαtα/�(1 + α),
where 〈(�x)2〉 is a mean square displacement of a random
walker, α is a subdiffusion parameter (0 < α < 1), Dα is a
subdiffusion coefficient, and � denotes the Gamma function;
for normal diffusion there is α = 1. Subdiffusion is mostly
described by means of subdiffusion equations with a fractional
time derivative derived from the continuous time random walk
formalism [1]. When the subdiffusion process is extended to
a subdiffusion-reaction process then the form and the position
of the reaction term within the subdiffusion-reaction equation
is not clear. Namely, in paper [2] the reaction term is located
outside the Riemann-Liouville fractional derivative operator,
whereas in [3] this term is located under this fractional
operator. We should mention here that there are various forms
of subdiffusion-reaction equations which are not equivalent
(see, for example, [4–7]). The ambiguities concerning the form
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of the reaction term are related to assumptions concerning the
influence of a subdiffusive medium on a reaction kinetic.

Hereafter, we consider a subdiffusion process in which
a particle can vanish with some probability which does not
depend on both time and space variables. Such a process can
formally be treated as a subdiffusion-reaction process. Normal
diffusion or subdiffusion processes with particles’ vanishing
occur in biology, for example, in drug absorption via passive
diffusion [8] or in a system in which the absorption of particles
is weakened by mucus which is treated as a diffusional barrier
[9]. In order to model such processes, (sub)diffusion-reaction
equations with appropriate boundary conditions set at walls
bounding the system are needed. However, the choice of
boundary conditions is obvious neither for normal diffusion-
reaction processes [10] nor for subdiffusive systems in which
reactions are absent [11]. Thus, it is not difficult to realize that
the boundary conditions at the walls for a subdiffusion-reaction
equation can be set ambiguously. In order to avoid the
difficulties with the choice of boundary conditions we pro-
pose the following method of modeling subdiffusion-reaction
processes. In order to find a subdiffusion-reaction equation
and Green’s function describing the subdiffusion of a particle
A that can also vanish with some probability, we primarily
use a random walk model with both discrete time and discrete
space variables. Then the obtained results will be transformed

1539-3755/2014/90(3)/032136(15) 032136-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.73.031102
http://dx.doi.org/10.1103/PhysRevE.73.031102
http://dx.doi.org/10.1103/PhysRevE.73.031102
http://dx.doi.org/10.1103/PhysRevE.73.031102
http://dx.doi.org/10.1103/PhysRevE.90.032136


TADEUSZ KOSZTOŁOWICZ AND KATARZYNA D. LEWANDOWSKA PHYSICAL REVIEW E 90, 032136 (2014)

to both continuous time and continuous space variables by
means of the formulas presented in this paper. The reason for
the choice of such a methodology is as follows. Difference
equations describing the random walk with both discrete time
and space variables can be explicitly solved by means of the
generating function method, which means this method can
be applied also to study subdiffusion-reaction processes in
more complex systems containing various “obstacles” such
as partially absorbing or partially reflecting thin membranes.
We should mention here that a random walk on a lattice with
absorption has been mostly studied by means of the continuous
time random walk formalism [4,5,12–19].

In this paper, we consider two particle’s vanishing pro-
cesses. In the first process a particle A can vanish according to
the formula A −→ B. In the second process a particle A has
to meet an absorbing center before the particle’s A vanishing
takes place. In this case the vanishing process is represented by
the reaction A + B −→ B; the absorbing center is represented
by a static particle B. Both of the processes can be observed
in nature, among other things, in engineering, in biological
systems or in ecological systems. The reaction A −→ B can
be observed in filtration processes when particles in any
“active state” are moved through a filter. The filter can be a
subdiffusive medium in order to give a time to deactivation
of particles during its movement inside this medium (see,
for example, [20] and references cited therein). Unimolecular
reactions are also an example of such processes. Examples of
unimolecular reactions include a radioactive decay, cis-trans
isomerization [21], thermal decomposition [22], ring opening
[23], unimolecular nucleophilic substitution reactions [24],
and racemization [25]. We can also mention here an infected
living organism randomly moving in a complex medium; the
organism is to die due to the infection. The subdiffusion with
A + B −→ B reaction can also be observed in a filtration
process in which particles react with other particles in a thick
filter [26]. The example of the absorbing subdiffusive medium
is halloysite, in which absorbing centers are present [27]. As
was mentioned in [17], a catalytic quenching of excitations
observed in luminescence is also an example of this reaction.
The case of an antibiotic treatment is another example of the
second reaction. The movement of some bacteria, especially
nonmotile bacteria, can be characterized as a random walk
[28,29]. Antibiotics can destroy bacteria in two ways: by
killing bacteria or by inhibiting the growth of bacteria [30]. In
both cases antibiotics connect in a specific chemical compound
occurring in bacteria [30].

In the paper [31] Sokolov, Schmidt, and Sagués have
considered the subdiffusion-reaction process in which a
subdiffusive particle A can vanish according to the formula
A −→ B with a constant probability independent of time.
Assuming that a probability density ψ of a particle’s vanishing
reads

ψ(t) = γ e−γ t , (1)

where γ is a reaction rate, the authors have shown that the
concentration of particles A, CA, is as

CA(x,t) = e−γ tCA0(x,t), (2)

where CA0(x,t) is the concentration of particles A in a system
in which reactions are switched off, e−γ t is the probability

that a particle continues to exist at time t . An important
statement presented in the paper cited above is that the
concentration is not a solution to the previously mentioned
fractional subdiffusion-reaction equations. Therefore, a new
equation describing this process is required. The main idea
which is the base of the derivation of the new equation [see
Eqs. (42) and (43) later in this paper] presented in [31] is as
follows. A reaction can only occur for particles A which have
not vanished before the reaction takes place. A new equation
of a somewhat unexpected form has been derived under this
assumption. The above considerations lead to the questions:
“Should the subdiffusion-reaction equations previously used in
many papers be revised?” and “Is this equation still valid when
a particle’s vanishing is caused by reaction A + B −→ B?”
In this paper we find the answers to these questions.

In every case we start our considerations with both discrete
time and space variables and next we transform them into
continuous ones. Although the model of a subdiffusive system
in which mobile particles A can react with static particles B

according to the formula A → B is presented in the above cited
paper, we consider this process again using a discrete model
presented in this paper. This model is based on a random
walk model for a system without reactions. The influence
of reactions is included in functions describing a particle’s
waiting time to take its next step. We pay more attention
to subdiffusion processes with A + B −→ B reactions. To
describe this process we use three models. The first model
is similar to the model which describes the process of subd-
iffusion with A −→ B reactions. The previously mentioned
assumption according to which reactions can occur between
these particles which continue to exist in the system is included
in the model. Within this model we assume that a reaction can
occur at any time [with the reaction probability density (1)] if
particle A meets particle B after its jump. “Particles’ meeting”
here means that particle A will come inside the reaction region
of particle B after particle A’s jump. It is assumed that the
particles’ meeting will occur with some probability p < 1
(for p = 1 we obtain results which are equivalent to the case
of subdiffusion with A −→ B reaction). We show that the
introduction of the parameter p < 1 into the model provides
particle concentration which qualitatively differs from (2).
Thus, the models of subdiffusion processes with both types
of reactions which have been mentioned above are of a
different character. The second model of subdiffusion with
A + B → B reactions utilizes difference equations describing
random walk, with the particles’ vanishing process. This
model, in contradiction to the first model, explicitly includes
an absorption probability. We show that the results obtained
within both models mentioned above are similar for t � 1/γ

but the probability distributions obtained within these models
differ by the factor 1 − p, which is included into the Green’s
function obtained for the first model for t less or equal to 1/γ .
The third model is equivalent to the second model and assumes
that particle A performs an “ordinary” random walk (i.e., just
like in a system without reactions) but the parameters describ-
ing the walk depend on the reaction parameter. Additionally,
we find the relation between the parameters occurring in these
three models. Finally, we compare the results obtained within
all models mentioned above including the subdiffusion model
with the A −→ B reaction. As an example of extending the

032136-2



SUBDIFFUSION-REACTION PROCESSES WITH . . . PHYSICAL REVIEW E 90, 032136 (2014)

considerations beyond the infinite homogeneous system we
derive the probability describing the random walk of a particle
in a system bounded by a partially absorbing wall for both of
the reactions described above.

The organization of the paper is as follows. In Sec. II A
we present the general procedure which is used in subsequent
considerations. Starting with the random walk model with
a discrete time variable we show in what way the proba-
bility density can be obtained for both continuous time and
continuous space variables for the subdiffusion process with
reactions. In Sec. II B we consider subdiffusion in a system
without reactions. This section does not have new results
but within it we present some details of the procedure of
transferring from discrete variables to continuous ones. In
Sec. III we briefly describe the model presented in [31] and
we show that the procedure presented in Sec. II A provides
the results presented in the above cited paper. In Sec. IV we
consider subdiffusion with reactions of type A + B −→ B.
Starting with the model with both discrete time and discrete
space variables, we derive the subdiffusion-reaction equation
for the process under consideration in the system with both
continuous time and continuous space variables. In this
section, three varieties of this model are presented. In Sec. V A
we derive the equations related to the reaction parameters used
in the models considered in Sec. IV by means of the simple
phenomenological model. In Sec. V B we compare the results
obtained in Secs. III and IV. The application of the presented
model in describing the subdiffusion for both types of reactions
for a system bounded by a partially absorbing wall is shown in
Sec. VI. Final remarks and a discussion of the obtained results
are presented in Sec. VII.

Our considerations concern a three-dimensional system
which is homogeneous in the plane perpendicular to the x

axis. Thus, later in this paper we treat this system as effectively
one-dimensional.

II. RANDOM WALK MODEL OF SUBDIFFUSION

Below, we show the method of deriving a subdiffusion
equation with a fractional time derivative and its fundamental
solution (Green’s function). We start our consideration with
a random walk in a system in which both time and space
variables are discrete.

A. General model of subdiffusion with reactions

Supposing Pn(m; m0) denotes a probability of finding a
particle which has just arrived at site m at the nth step; m0 is the
initial position of the particle. The random walk is described
by the difference equation

Pn+1(m; m0) =
∑
m′

pm,m′Pn(m′; m0), (3)

where pm,m′ is a probability that the particle jumps from site
m′ directly to site m. Long jumps can occur with a relatively
small probability for subdiffusion or normal diffusion; thus,
we take an often applied assumption [32–34] that a jump can
only be performed to the neighboring sites; it is not allowed
to stay at the same site at the next moment unless a reflection
from the wall occurs. For a random walk without bias in a

homogeneous medium we take the difference equation

Pn+1(m; m0) = 1
2Pn(m + 1; m0) + 1

2Pn(m − 1; m0), (4)

with the initial condition P0(m; m0) = δm,m0 . This equation is
usually solved by means of the generating function method
[35,36]. The generating function is defined as

S(m,z; m0) =
∞∑

n=0

znPn(m; m0). (5)

The generating function to Eq. (4) reads [36]

S(m,z; m0) = [η(z)]|m−m0|
√

1 − z2
, (6)

where

η(z) = 1 − √
1 − z2

z
. (7)

In the subdiffusion model with a continuous time variable
t , the probability of finding a particle at site m is

P (m,t ; m0) =
∞∑

n=0

Pn(m; m0)	M,n(t), (8)

where 	M,n(t) is the probability that the particle takes n steps
over a time interval (0,t) and continues to exist in the system
(i.e., the particle has not been absorbed or vanished due to
reactions if such processes are present) and the index M refers
to the model presented later in this paper (for the system
without reactions this index is omitted). The function 	M,n(t)
depends on the waiting time probability density ωM (t) which
is needed for the particle to take its next step and continues to
exist to time t . This function reads

	M,n(t) =
∫ t

0
UM (t − t ′)QM,n(t ′)dt ′, (9)

where UM (t − t ′) is a probability that the particle has not
performed any step over a time interval (0,t − t ′) (and
continues to exists at time t − t ′) and QM,n(t ′) is the probability
that the particle performs n steps over this time interval (the
last step is performed exactly at time t ′). The latter function is
defined by the recurrence formula

QM,n(t ′) =
∫ t ′

0
ωM (t ′ − t ′′)QM,n−1(t ′′)dt ′′, (10)

where n > 1 and QM,1(t ′) = ωM (t ′). In terms of the Laplace
transform, L[f (t)] ≡ f̂ (s) = ∫ ∞

0 e−stf (t)dt , the function
	M,n(t) reads

	̂M,n(s) = ÛM (s)ω̂n
M (s). (11)

From Eqs. (5), (8), and (11) we obtain

P̂ (m,s; m0) = ÛM (s)S(m,ω̂M (s); m0). (12)

Equations (6) and (12) provide

P̂ (m,s; m0) = ÛM (s)√
1 − ω̂2

M (s)
[η(ω̂M (s))]|m−m0| . (13)

032136-3



TADEUSZ KOSZTOŁOWICZ AND KATARZYNA D. LEWANDOWSKA PHYSICAL REVIEW E 90, 032136 (2014)

From Eqs. (4), (5), and (13) we obtain the following equation:

[1 − ω̂M (s)]P̂ (m,s; m0) − ÛM (s)P (m,0; m0)

= ω̂M (s)

2
[P̂ (m + 1,s; m0) + P̂ (m − 1,s; m0)

−2P̂ (m,s; m0)]. (14)

Supposing ε denotes the distance between discrete sites and
supposing

x = εm, x0 = εm0, (15)

we transfer variables from discrete to continuous, assuming ε

to be small, and use the following relations:

P (m,t ; m0)

ε
≈ P (x,t ; x0) (16)

and

f (x + ε) + f (x − ε) − 2f (x)

ε2
≈ d2f (x)

dx2
. (17)

From Eqs. (14)–(17) we obtain

1 − ω̂M (s)

ÛM (s)
P̂ (x,s; x0) − P (x,0; x0)

= �̂M (s)
ε2

2

∂2P̂ (x,s; x0)

∂x2
, (18)

where

�̂M (s) = ω̂M (s)

ÛM (s)
. (19)

Equation (18) is the base of the derivation of the subdiffusion-
reaction equations for the cases considered in this paper.

B. Subdiffusion in a system without reactions

Considerations presented in this section are quite well
known and they are presented here as mathematical prelimi-
naries. In order to obtain the subdiffusion equation one usually
considers a mesoscopic model which describes the movement
of a single particle and next derives the fractional subdiffusion
equation [1]. In this case the procedure presented in Sec. II A
is reduced to the conventional continuous time random walk
formalism [1]. Later we present a procedure which is a vague
contradiction to the previously mentioned one. Namely, we
start our considerations from the fractional equation presented
below [see Eq. (20)] and next we find ω̂M (s) and ÛM (s)
for which the procedure presented in Sec. II A provides this
equation (for the case in which reactions are absent we omit
the index M which labels the functions presented in Sec. II A).
Considerations which we present in this section are rather
obvious but we present them here as an illustration of the
procedure which is used in the case of more complicated
systems.

Within the continuous time random walk formalism in
which both the waiting time for a particle to take its
next step and the steps’ length are treated as random
variables, subdiffusion can be described by means of the
following fractional differential equation with the Riemann-
Liouville fractional time derivative. This equation reads

(here 0 < α < 1) [1]

∂P (x,t ; x0)

∂t
= Dα

∂1−α

∂t1−α

∂2P (x,t ; x0)

∂x2
. (20)

Later in the considerations we assume the definition of the
subdiffusion coefficient,

Dα = ε2

2τα

, (21)

where τα is a parameter given in the units of 1/(s)α , which
(together with the dimensionless parameter α) characterizes
the time distribution ω(t). The Riemann-Liouville derivative
is defined as being valid for δ > 0 (here k is a natural number
which fulfills k − 1 � δ < k)

dδ

dtδ
f (t) = 1

�(k − δ)

dk

dtk

∫ t

0
(t − t ′)k−δ−1f (t ′)dt ′. (22)

The Laplace transform of Eq. (22) reads [37,38]

L
[

dδ

dtδ
f (t)

]
= sδf̂ (s) −

k−1∑
i=0

sif (δ−i−1)(0), (23)

where f (δ−i−1)(0) is the initial value of the derivative of the
(δ − i − 1)th order. Since this value is often considered as
unknown, the relation (23) is somewhat useless. However, for
0 < δ < 1 and for the case of a bounded function f , there is
f (δ)(0) = 0; therefore, (23) reads for this case

L
[

dδ

dtδ
f (t)

]
= sδf̂ (s). (24)

Thus, the Laplace transform of Eq. (20) is as follows:

sP̂ (x,s; x0) − P (x,0; x0) = s1−αDα

∂2P̂ (x,s; x0)

∂x2
. (25)

The fundamental solution (Green’s function) to Eq. (20) [i.e.,
the solution for the initial condition P (x,0; x0) = δ(x − x0)]
reads in terms of the Laplace transform [1]

P̂ (x,s; x0) = 1

2
√

Dαs1−α/2
e
− |x−x0 |sα/2

√
Dα . (26)

Applying the following formula [39]

L−1[sνe−asβ

] ≡ fν,β(t ; a)

= 1

tν+1

∞∑
k=0

1

k!�(−kβ − ν)

(
− a

tβ

)k

, (27)

a, β > 0, the inverse Laplace transform of Eq. (26) is

P (x,t ; x0) = 1

2
√

Dα

fα/2−1,α/2

(
t ;

|x − x0|
Dα

)
. (28)

Now we determine the functions ω̂(s) and Û (s) for the
process described by Eq. (20). Comparing Eqs. (18) and (25)
we obtain

Û (s) = 1 − ω̂(s)

s
(29)

and

�̂(s) = sω̂(s)

1 − ω̂(s)
. (30)
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Taking into account Eq. (30), Eq. (18) coincides with
Eq. (25) if

�̂(s) = s1−α

τα

. (31)

From Eqs. (30) and (31) we obtain

ω̂(s) = 1

1 + ταsα
. (32)

Equation (32) provides the Mittag-Leffler time distribution
ω(t) [37]. For other distributions, such as the one-sided stable
distribution for which ω̂(s) = exp(−ταsα), Eqs. (30) and (31)
coincide if the Laplace transform of distribution ω(t) is taken
over a limit of small values of s (i.e., assuming that ταsα � 1),
which is given by the following general formula [1]:

ω̂(s) = 1 − ταsα. (33)

According to the Tauberian theorem and the considerations
presented in the Appendix, the limit of small values of s

corresponds to the case of a long time limit.
The discrete model presented above provides not only

the subdiffusion differential equation but also directly the
probability density (28). From Eqs. (7) and (33) we obtain,
retaining dominant terms,

η(ω̂(s)) ≈ 1 −
√

2ταsα, (34)

and from Eqs. (13), (29), and (34) we get

P̂ (m,s; m0) = √
ταs−1+α/2(1 −

√
2ταsα/2)|m−m0|. (35)

Using Eqs. (15), (16), and (21) from Eq. (35) we obtain
Eq. (26) over a limit of small values of ε.

The above calculations were performed over the limit of
small values of ε and were based on Eq. (33), which is true for
ταsα � 1. Let us note that the subdiffusion coefficient which
together with the subdiffusion parameter α characterizes the
subdiffusion process, can be measured experimentally [40]
and is treated as a constant. Thus, due to Eq. (21), the limit
ε → 0 results in τα → 0. Equation (33) defines function ω(t)
over a long time limit (see Appendix). In the limit ε → 0,
ω(s) → 1 and does not define ω(t) in any way. In order to
avoid this ambiguity we can treat τα and, consequently, ε as
small but having finite parameters. Taking into account the
above circumstances, later in this paper we treat the parameter
ε as finite but small enough in order that Eq. (26) would
be a proper approximation of Eq. (35) taking into account
Eqs. (15), (16), and (21).

III. SUBDIFFUSION WITH A −→ B REACTIONS

Sokolov, Schmidt, and Sagués [31] have considered subdif-
fusion of particles which can vanish according to the formula
A −→ B with a probability independent of concentrations
of both particles A and B. Assuming that the movement of
the particle A is independent of the movement of the other
particles, both A and B, the general form of the concentration
of particles A has been postulated in [31] as Eq. (2). This
equation has been postulated on the basis of the following
idea. It is assumed that the reaction probability density is
given by Eq. (1). The probability that a reaction does not
occur over a time interval (0,t) equals e−γ t . In the following

process particles which have not vanished before time t can
only be involved. The probability P (x,t ; x0) can be obtained
for the considered process as a product of the probability that
the reaction does not take place and Green’s function (28) and
reads

P (x,t ; x0) = e−γ t 1

2
√

Dα

fα/2−1,α/2

(
t ;

|x − x0|
Dα

)
. (36)

Below we show that the subdiffusion equation and its
solution (36) can be obtained by means of the procedure
presented in Sec. II A (here we change the index M to γ ).
The Laplace transform of Eq. (36) reads

P̂ (x,s; x0) = 1

2
√

Dα(s + γ )1−α/2
e
− |x−x0 |(s+γ )α/2

√
Dα . (37)

After calculating the second order derivative of the above
function with respect to x, and next simple transformations,
we get an equation for which function (37) is the fundamental
solution,

sP̂ (x,s; x0) − P (x,0; x0)

= ε2

2
�̂γ (s)

∂2P̂ (x,s; x0)

∂x2
− γ P̂ (x,s; x0), (38)

where

�̂γ (s) = (s + γ )1−α

τα

. (39)

Comparing Eqs. (18) and (19) with (38) and (39) we obtain

ω̂γ (s) = ω̂(s + γ ), Ûγ = τα(s + γ )α−1

1 + τα(s + γ )α
. (40)

Equation (40) provides ωγ (t) = e−γ tω(t) and Uγ (t) =
e−γ tU (t).

Equations (38) and (39) do not provide the fractional
differential equation with the Riemann-Liouville fractional
derivative for γ �= 0. In order to find the equation one takes
the following formula into consideration [31]:

ω̂(s + γ ) = 1 − τα(s + γ )α. (41)

It has been shown in the paper [31] that the subdiffusion-
reaction equation is as follows using Eqs. (38) and (39):

∂P (x,t ; x0)

∂t
= DαT̃

∂2P (x,t ; x0)

∂x2
− γP (x,t ; x0), (42)

where the operator T̃ is defined as

T̃ f (t) = d

dt

∫ t

0

e−γ (t−t ′)

(t − t ′)1−α
f (t ′)dt ′

+ γ

∫ t

0

e−γ (t−t ′)

(t − t ′)1−α
f (t ′)dt ′. (43)

Equation (42) can be expressed in the equivalent form which
is presented in [4]; see also Eq. 54 for p = 1 later in this paper.

Relation (41) has a physical meaning if it is treated as an
approximation of the Laplace transform of probability density
ω̂(s) over a limit of small values of τα(s + γ )α [unless ω̂(s)
is not given by Eq. (32)]. Since parameters τα and γ are
independent, it is not obvious that τα(s + γ )α has really small
values for the small values of s. In the case in which ταγ α has
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large values, Eq. (42) along with the operator (43) are not valid.
This problem will be considered elsewhere; however, later in
this paper we assume that ε can be chosen to have appropriate
small (but nonzero) values in order to assume that—due to
Eq. (21)—inequality τα(s + γ )α � 1 would be fulfilled.

IV. SUBDIFFUSION IN A SYSTEM WITH
A + B −→ B REACTIONS

In this section we consider a process in which particle
A can vanish due to the reaction of type A + B −→ B. We
additionally assume that the probability of a reaction occurring
is independent of both time and space variables. The main
difference between the reaction under consideration and the
reaction considered in the previous section is that the particles
A and B have to meet in the reaction region before the reaction
takes place.

Below we consider three models of a random walk with
reactions which differ over assumptions concerning reaction
descriptions. In each model our considerations are based on the
random walk of a particle A in a system with a discrete space
variable. The first model (Model I) is based on the assumptions
presented in the previous section that a particle A continues to
exist at time t , but additionally the probability of the particles’
meeting is included. The basis of this model is motivated
as follows. The discrete system approximates the system
with the continuous space variable. Site m in the discrete
model corresponds to an interval (mε − ε/2,mε + ε/2) in the
continuous model. Even if we assume that particles A and B are
located at the same site in the discrete system, it is not obvious
that the particle A is inside the reaction region of the particle
B. Thus, we introduce into considerations a probability p that
particles A and B meet in the reaction region when they are at
the same discrete site. After this meeting the reaction can occur
with a probability governed by the probability distribution
(1). The second model (Model II) is based on the discrete
random walk process with a discrete time. Random walk is
described by difference equations in which the probability of
a reaction occurring is explicitly involved. The probability that
the reaction between particles A and B located at the same site
at a time between two successive steps of the particle A is given
by a single parameter R. The jumps between neighboring sites
are governed by ω(t) which is the same as for processes without
reactions. The third model (Model III), which is assumed to be
equivalent to Model II, brings together the elements occurring
in both models. That is to say, it uses the probability R but the
considerations are only performed for the case of continuous
time using the procedure presented in Sec. II A.

A. Model I

Let us assume that particles A and B can meet with a
probability p after a jump of the particle A. The reaction
can occur over a time interval (0,t) with a probability (1 −
e−γ t )p. Consequently, the probability that the reaction does
not take place over this time interval reads 1 − (1 − e−γ t )p.
The probability density that the particle A makes its jump after
time t is the product of the probability that the reaction does
not occur and the probability density ω(t), which gives (here

M = pγ )

ωpγ (t) = (1 − p)ω(t) + pe−γ tω(t). (44)

The Laplace transform of Eq. (44) reads

ω̂pγ (s) = (1 − p)ω̂(s) + pω̂(s + γ ). (45)

The probability Upγ (t) that the particle does not make a jump
and continues to exist in the system equals

Upγ (t) = [1 − (1 − e−γ t )p]

[
1 −

∫ t

0
ω(t ′)dt ′

]
. (46)

The Laplace transform of the above equation reads

Ûpγ (s) = (1 − p)
1 − ω̂(s)

s
+ p

1 − ω̂(s + γ )

s + γ
. (47)

From Eqs. (7), (33), (41), (45), and (47) we get

η(ω̂pγ (s)) = 1 −
√

2τα [(1 − p)sα + p(s + γ )α] (48)

and

Ûpγ (s) = τα[(1 − p)sα−1 + p(s + γ )α−1]. (49)

Finally, from Eqs. (13), (21), (48), and (49) we obtain

P̂ (x,s; x0) = 1

2
√

Dα

(1 − p)sα−1 + p(s + γ )α−1

√
(1 − p)sα + p(s + γ )α

× e
− |x−x0 |√

Dα

√
(1−p)sα+p(s+γ )α

. (50)

The above function fulfills the following equation:

(1 − p)[sαP̂ (x,s; x0) − sα−1P (x,0; x0)]

+ p[(s + γ )αP̂ (x,s; x0) − (s + γ )α−1P (x,0; x0)]

= Dα

∂2P̂ (x,s; x0)

∂x2
. (51)

In the following we need the Caputo derivative, which is
defined as being valid for α > 0,

dα
Cf (t)

dtα
= 1

�(n − α)

∫ t

0

f (n)(t ′)dt ′

(t − t ′)α+1−n
,

where n is a natural number for which n − 1 < α < n. Taking
into account the Laplace transform of the Caputo fractional
derivative [37],

L
{

∂α
CP (x,t ; x0)

∂tα

}
= sαP̂ (x,s; x0) − sα−1P (x,0; x0), (52)

where 0 < α < 1, and the relation

L
{
e−γ t ∂α

C

∂tα
eγ tP (x,t)

}
= (s + γ )αP̂ (x,s)

− (s + γ )α−1P (x,0), (53)

we obtain

(1 − p)
∂α
CP (x,t ; x0)

∂tα
+ pe−γ t ∂α

C

∂tα
eγ tP (x,t ; x0)

= Dα

∂2P (x,t ; x0)

∂x2
. (54)

Equations (50) and (54) are not really appropriate to practical
use. However, for s � γ (which correspond to t � 1/γ ) we
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get from Eq. (50) (later in this paper we assume p < 1)

P̂ (x,s; x0) = 1

2
√

D̃αμ
sα−1e

− |x−x0 |μ√
Dα e

− |x−x0 |√
Dα

(1−p)
2μ

sα

, (55)

where

D̃α = Dα/(1 − p), μ =
√

pγ α/(1 − p). (56)

From Eq. (51) we obtain

(1 − p)[sP̂ (x,s; x0) − P (x,0; x0)]

= s1−α

{
Dα

∂2P̂ (x,s; x0)

∂x2

−pγ α[P̂ (x,s; x0) − (γ )−1P (x,0; x0)]

}
. (57)

Equation (57) provides the following equation:

∂P (x,t ; x0)

∂t
= ∂1−α

∂t1−α

[
D̃α

∂2P (x,t ; x0)

∂x2
− μ2P (x,t ; x0)

]
.

(58)

The solution to Eq. (57) can be obtained from Eqs. (27) and
(55) and reads

P (x,t ; x0) = 1

2μ
√

D̃α

e
− |x−x0 |μ√

D̃α fα−1,α

(
t ;

|x − x0|
2μ

√
D̃α

)
.

(59)

B. Model II

Considering the subdiffusion-reaction process on a lattice,
we assume that if particle A arrives at the site m then it can
react with a static particle B located at the same site with
the probability R. Probability R does not change over time.
The generalization of Eq. (4) to the random walk process with
reactions is as follows [14]:

Pn+1(m; m0) = 1

2
Pn(m + 1; m0) + 1

2
Pn(m − 1; m0)

− RPn(m; m0). (60)

Using the standard methods presented in [35,36] we derive a
generating function to Eq. (60)

S(m,z; m0) = [ηR(z)]|m−m0|√
(1 + zR)2 − z2

, (61)

where

ηR(z) = 1 + zR −
√

(1 + zR)2 − z2

z
. (62)

Since the vanishing of a particle caused by a reaction is
included in Eq. (60) in the term containing parameter R, we
assume that jumps are governed by ω(t) (as in the “ordinary”
random walk). From Eqs. (12), (61), and (62) we obtain

P̂ (m,s; m0) = Û (s)√
[1 + Rω̂(s)]2 − ω̂2(s)

[ηR(ω̂(s))]|m−m0| .

(63)

From Eqs. (33) and (62) we obtain over a limit of small values
of s

ηR(ω̂(s)) =
{

1 − √
2ταsα, R = 0,

aR − bRταsα, R �= 0,
(64)

where

aR = 1 + R −
√

2R + R2, (65)

bR = (1 + R)√
2R + R2

− 1. (66)

In the following we assume that R �= 0. In order to find the
probability density for continuous space variables we conduct
the following considerations. Taking into account relations
(33) and (62)–(66) we obtain

P̂ (m,s; m0) = ταa
|m−m0|
R√

2R + R2
sα−1

(
1 − ταsα

√
2R + R2

)|m−m0|
.

(67)

The above equation together with relations (16), (17), and (21)
provides

P̂ (x,s; x0) = εsα−1

2Dα

√
2R + R2

(1 + R −
√

2R + R2)
|x−x0 |

ε

×
(

1 − ε2sα

2Dα

√
2R + R2/2

) |x−x0 |
ε

. (68)

The only way in order to ensure that function (68) has
nonzero (and finite) values over a limit of small values of ε is
to assume that

ε√
2R + R2

≡ 1

κ
≡ const. (69)

From Eq. (69) we obtain

R =
√

1 + ε2κ2 − 1. (70)

From Eq. (70) we get over a limit of small values of ε (ε �
1/κ)

R = ε2κ2

2
, (71)

and from Eqs. (68) and (69) we obtain

P̂ (x,s; x0) = sα−1

2Dακ
e−κ|x−x0|e− |x−x0 |sα

2Dακ . (72)

From Eqs. (27) and (72) we get

P (x,t ; x0) = 1

2Dακ
e−κ|x−x0|fα−1,α

(
t ;

|x − x0|
2Dακ

)
. (73)

Applying the procedure of transforming from both discrete
time and space variables to both continuous ones presented in
Sec. II A to Eq. (60) and using Eq. (71), we obtain

∂P (x,t ; x0)

∂t
= Dα

∂1−α

∂t1−α

[
∂2P (x,t ; x0)

∂x2
− κ2P (x,t ; x0)

]
.

(74)
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C. Model III

The assumption that a particle continues to exist in the
system at time t is so clear and universal that we should prove
that the model presented in Sec. IV B is not in contradiction
with this assumption. With this assumption, the process could
be considered as the random walk process in which the
probability of a particle’s vanishing R is involved in ωR(t)
(here we change M to R). In the model presented in Sec. IV B
the probability of the vanishing of a particle is included in
Eq. (60), but the probability density of the waiting time for
a particle to take its next step is governed by ω(t) alone (in
which the probability of continuing to exist is not explicitly
included). In this section we include the assumption that the
particle A which continues to exist will take part in a reaction.
It means that the probability that the particle continues to
exist is directly included in function ω̂R(s) in such a way that
Eq. (13) provides function (72). Therefore, we are looking for
a function ω̂R(s) depending on the probability R for which the
following function

P̂ (m,s; m0) = ÛR(s)√
1 − ω̂2

R(s)
[η(ω̂R(s))]|m−m0| , (75)

coincides with (63). This coincidence ensures the equation

ηR(ω̂(s)) = η(ω̂R(s)) (76)

and

ÛR(s)√
1 − ω̂2

R(s)
= Û (s)√

[1 + Rω̂(s)]2 − ω̂2(s)
. (77)

The solution to Eq. (76) is

ω̂R(s) = ω̂(s)

1 + Rω̂(s)
, (78)

and the solution to Eq. (77), taking into account (78), reads

ÛR(s) = Û (s)
1

1 + Rω̂(s)
. (79)

Taking into account Eq. (33), from Eqs. (78) and (79) we
obtain for ταsα � 1

ω̂R(s) = 1

1 + R
(1 − τRαsα) (80)

and

ÛR(s) = τRαsα−1, (81)

where

τRα = τα

1 + R
. (82)

For the process of subdiffusion (or normal diffusion)
controlled reactions, the probability that a reaction takes place
is relatively small compared to the probability that a particle
makes a jump. In this case we assume that R � 1, thus
1/(1 + R) ≈ 1 − R; therefore, we obtain

ω̂R(s) = (1 − R)ω̂(s) (83)

and

ÛR(s) = Û (s), (84)

where ω̂(s) and Û (s) are obtained from ω̂(s) and Û (s),
respectively, after replacing τα with τRα .

Functions (83) and (84) show that the model presented in
Sec. IV B is equivalent to the model of the “ordinary” random
walk in which the probability density of a particle taking a next
step has a form in which the probability of continuing to exist
[besides dependence (82)] is included in ωR(t) by the factor
1 − R, whereas probability UR(t) does not include this factor.
In this case, we have to accept that the reaction takes place in
the considered model just before taking the next step.

In this section we have showed in what way model II can
be presented in terms of functions described in Sec. II A.
The equivalence of the models II and III means that Green’s
function and the subdiffusion-reaction equation for model III
are expressed by Eqs. (73) and (74), respectively. Below, we
show that Eqs. (75), (78), and (79) also provide Eq. (72). From
Eqs. (7) and (80)–(82) we get

η(ω̂R(s)) = 1 + R −
√

2R + R2

− ταsα

[
1

(1 + R)
√

2R + R2
−1+

√
2R + R2

1 + R

]
.

(85)

Equation (85) is transformed to the following form using (70)

η(ω̂R(s)) = 1 − ε

[
κ + sα

2Dακ

]
. (86)

From Eqs. (13), (15), (16), (21), and (86) we obtain the function
(72) for small values of ε which the inverse Laplace transform
gives Eq. (73).

V. COMPARISON OF THE MODELS

A. Relation between the reaction parameters

There are various parameters which occur in the models
describing the process considered in Sec. IV. For example, the
parameters γ and κ which characterize reactions are given in
various units (1/s and 1/m, respectively). To find the relation
between them, let us consider a phenomenological model of
subdiffusion with reactions. Later in this paper, we utilize
one of the simplest models of reactions which consists of
the assumption that a reaction can occur when particles A

and B meet in the encounter region; the surface of particles
B is assumed to be impermeable to particles A. Probability
density (1) characterizes the reaction of type A + B −→ B

in the standard reaction model if particles A and B meet in
the encounter region [3]. For the sake of simplicity, we can
assume that particles B are spherical and particles A are like
points. The encounter region volume for single particle B is
(4/3)π [(ρ + b)3 − ρ3], where ρ is the radius of particle B

and b being the “thickness” of the encounter region. Let us
assume for a moment that the model with a continuous space
variable is used to describe the random walk with a discrete
space variable. The system is effectively one-dimensional,
which corresponds to a three-dimensional system which is
homogeneous in a plane perpendicular to the x axis. The
three-dimensional system is then divided into cells, each of
whose volume is equal to �ε, where � is the area of a cell
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surface which is perpendicular to the x axis. We assume that
jumps can be performed between only neighboring cells which
are located at the x axis at interval (x − ε/2,x + ε/2), x = mε,
here m being a cell number. During the period between the
particle’s jumps, it is assumed that the particle does not change
its position within the cell. This situation corresponds to the
situation in which all objects presented in the above mentioned
interval belonging at discrete point m, m = x/ε, in a discrete
system.

The probability that the reaction takes place when the
particle A stays within a cell equals R = pPR , where p

is the probability that the temporary particle’s location is
inside the encounter region of one of the particles B and
PR is the probability that the reaction takes place inside
this region before the particle A makes its next jump. The
volume available to the particle A within the cell equals
ε� − nB(4/3)πρ3, where nB is the number of particles B

inside the cell and the volume of all encounter regions inside
the cell equals nB(4/3)π [(ρ + b)3 − ρ3]. The probability
that the particle A is located in the encounter region after
its jump is the ratio of the volumes and reads p = CBλ,
where CB = nB/(ε�) denotes the volume concentration of B

particles and λ = (4/3)π [(ρ + b)3 − ρ3]/[1 − CB(4/3)πρ3].
The relationship between one-dimensional CB and volume
concentrations is as follows: CB = �CB . If the volume
occupied by all particles B located in the cell is significantly
smaller compared to the cell’s volume (as in the system with
a dilute solution of particles B), then λ can be treated as
independent of CB . For the simplification of the consideration
we can assume � = 1 and later in this paper we use the
quantities defined in the one-dimensional system. If particle A

is located within the encounter region, the probability density
that a reaction will take place is assumed to be regulated by
distribution (1). The probability that the particle jumps from
the reaction region to another cell before the reaction occurring
equals

∫ ∞
0 exp(−γ t)ω(t)dt = ω̂(γ ); thus, the probability that

the reaction takes place reads PR = 1 − ω̂(γ ). We define
function F as

F (γ ) = 1 − ω̂(γ )

τα

, (87)

which is assumed to be analytical [this assumption is motivated
by the form of the functions (32) and (33)]. From Eqs. (21),
(71), and (87) we obtain

κ2 = CB

λF (γ )

Dα

. (88)

From Eqs. (21), (71), (87), and (88) we get

R = p [1 − ω̂(γ )] . (89)

Assuming that ταγ α � 1, from Eqs. (33), (56), (87), and (88)
we also obtain

κ2 = 1 − p

Dα

μ2. (90)

B. Differences and similarities of Green’s functions
obtained for various models

In Sec. IV we obtained Green’s functions (59) and (73)
for the models of subdiffusion with A + B −→ B reactions.

The function (59) has been derived under the assumption that
a reaction can occur at any time according to the probability
distribution (1) and under the condition that particles A and B

meet after a particle A jump. Function (73) has been obtained
within the model based on difference equations. This model
is equivalent to the random walk model in which a reaction
can take place with probability R just before a particle’s jump.
Putting (90) into (59) we obtain a function similar to (73)
but with the subdiffusion coefficient controlled by probability
1 − p. Thus, the models provide a function which has similar
form to Eq. (73). The difference between functions (59) and
(73) can be easily observed over a long time limit in which
function (59) reads, using Eq. (90),

P (x,t ; x0) = 1 − p

2Dακ�(1 − α)
e−κ|x−x0| 1

tα
, (91)

whereas for the second model, from Eqs. (27) and (73) we
have

P (x,t ; x0) = 1

2Dακ�(1 − α)
e−κ|x−x0| 1

tα
. (92)

Function (91) is smaller than function (92) by the factor
1 − p. This factor can be explained taking into account the
interpretation of the models. Namely, it has been assumed in
the model considered in Sec. IV A that the reaction can occur at
any time (if a particle A jumps to the reaction region), whereas
in the model considered in Sec. IV B it has been assumed that
the reaction can occur just before the particle’s next jump.

The model describing subdiffusion with an A −→ B

reaction provides Eq. (42) and Green’s function (36), which
qualitatively differ from the ones obtained within the models
which describe the process with an A + B −→ B reaction.
Below we compare Green’s functions (36) and (73). The
example plot of functions (36) and (73) is presented in Fig. 1.
From this figure we can notice that functions obtained for the
model of subdiffusion with an A + B −→ B reaction decrease

-3 -2 -1 0 1 2 3
x

0

0,1

0,2

0,3

0,4

P
(x

,t;
x 0)

FIG. 1. The plots of functions (36) (solid lines) for γ = 0.043
and (73) (dashed lines) for κ = 0.8 for the values of time t ∈
{1,2,4,6,8,10}; lines which are nearest to the x axis correspond to
longer times. In both cases, α = 0.3, Dα = 1.25, and x0 = 0 (all
quantities are given in arbitrary chosen units).
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over time “faster” than the functions obtained for the model
with an A −→ B reaction. This feature is distinctly manifested
in the form of Green’s functions calculated over a long time
limit. From Eqs. (27) and (36) we obtain

P (x,t ; x0) = 1

2
√

Dα�(1 − α/2)
e−γ t 1

tα/2
. (93)

We can also observe that functions (92) and (93) have heavy
tails with respect to time. The tail of function (92) aspires to
0 faster than the tail of function (93). Moreover, the values
of the above probabilities are suppressed by the exponential
terms present in Eqs. (92) and (93). For the former model,
this is e−κ|x−x0|, which is independent of time, whereas for the
latter model we have e−γ t , which does not depend on a space
variable.

VI. SUBDIFFUSION WITH REACTIONS IN A SYSTEM
WITH A PARTIALLY ABSORBING WALL

Let us consider the subdiffusion of a particle A in a half
space bounded by a partially absorbing wall located between
sites N and N + 1. If the particle tries to jump from site N

to N + 1 it can be stopped by the wall with the probability
q or absorbed by the wall with the probability 1 − q. If the
particle passes the wall there is no chance of its returning to
the system. This situation is illustrated in Fig. 2.

This problem can be potentially interesting for various
applications mentioned in Sec. I, for example, if an infected
object before its death can leave some area which is surrounded
by an imperfect barrier and then an infection gets a chance
to spread. Random walk in this system is described by the
difference equations (here m0 � N )

Pn+1(m; m0) = 1
2Pn(m − 1; m0) + 1

2Pn(m − 1; m0) (94)

for m � N − 1 and

Pn+1(N ; m0) = 1
2Pn(N − 1; m0) + q

2 Pn(N ; m0), (95)

with the initial condition P0(m; m0) = δm,m0 . The generating
function to Eqs. (94) and (95) reads

S(m,z; m0) = [η(z)]|m−m0|
√

1 − z2
+

[
q − η(z)

1 − qη(z)

]
[η(z)]2N−m−m0+1

√
1 − z2

.

(96)

In the following, we derive Green’s function for the
system without reactions. Then we find Green’s functions
for a subdiffusive system with A −→ B and A + B −→ B

reactions by means of the method presented in the previous
sections.

FIG. 2. Scheme of the system with partially absorbing wall. The
numbers above the arrows denote the jumps’ probabilities.

A. Subdiffusion without reactions

From Eqs. (12) and (96) we get (as previously, the index
M is omitted because this is the case of subdiffusion without
reactions)

P̂ (m,s; m0) = Û (s)[η(ω̂(s))]|m−m0|√
1 − ω̂2(s)

+
[

q − η(ω̂(s))
1 − qη(ω̂(s))

]
Û (s)[η(ω̂(s))]2N−m−m0+1√

1 − ω̂2(s)
.

(97)

We assume 0 < q < 1. From Eqs. (15), (16), (21), (29),
and (33) and using the approximation [q − η(ω̂(s))]/[1 −
qη(ω̂(s))] ≈ −1 + √

2ταsα(1 + q)/(1 − q) we obtain for
small values of s

P̂ (x,s; x0) = s−1+α/2

2
√

Dα

[
e
− |x−x0 |sα/2

√
Dα − e

− (2xN −x−x0)sα/2
√

Dα

]

+
(

ε
1 + q

1 − q

)
sα−1

2Dα

e
− (2xN −x−x0)sα/2

√
Dα , (98)

where xN = εN . The last term on the right-hand side of
Eq. (97) vanishes in the limit of small values of ε. Then this
function appears to be Green’s function for the system with
a fully absorbing wall. This fact can be explained as follows.
The mean number of steps 〈n(t)〉 over the time interval [0,t]
is expressed by the formula 〈n(t)〉 = ω̂(s)/{s[1 − ω̂(s)]} [17].
Combining this formula with Eqs. (21) and (33) we can notice
that the jump frequency between neighboring sites goes to
infinity when a distance between the sites goes to zero. In
this limit the probability that a particle which tries to pass
the partially absorbing or partially reflecting wall “infinite
times” in every finite time interval, passes the wall in the
time interval with probability equals one. Then the partially
absorbing wall behaves as a fully absorbing wall similarly, a
partially reflecting wall loses its “reflecting” properties (only a
fully reflecting wall or fully absorbing wall do not change their
properties when ε −→ 0). In order to keep the permeability
properties of the wall over the limit of small values of ε, one
assumes that the reflecting coefficient q is a function of ε.
This problem was discussed in [41], where it was shown that
the function q(ε) has an exponential character. Taking into
account this result we assume that in a subdiffusive system
with a partially absorbing wall there is

q = e− ε
σDα , (99)

where σ is a “macroscopic” absorbing coefficient of the
partially absorbing wall, which can be extracted from experi-
mental data (as well as Dα and α). Using Eqs. (27) and (99),
the inverse Laplace transform of Eq. (98) reads over the limit
of small values of ε

P (x,t ; x0) = 1

2
√

Dα

fα/2−1,α/2

(
t ;

|x − x0|
Dα

)

− 1

2
√

Dα

fα/2−1,α/2

(
t ;

2xN − x − x0

Dα

)

+ σfα−1,α/2

(
t ;

2xN − x − x0

Dα

)
. (100)
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B. Subdiffusion with A −→ B reaction

Green’s function (here denoted as PA−→B) for subdiffusion
with A −→ B reaction can be easily obtained by multiplying
the Green’s function obtained for the system in which a
reaction is absent and the probability that a particle continues
to exist at time t . For the probability density (1) we get

PA−→B(x,t ; x0) = e−γ tP (x,t ; x0), (101)

where P (x,t ; x0) is given by Eq. (100).

C. Subdiffusion with A + B −→ B reaction

Green’s function for this case can be obtained from Eq. (97)
by changing ω̂(s) −→ ω̂M (s) and Û (s) −→ ÛM (s)

P̂ (m,s; m0)| = ÛM (s)[η(ω̂M (s))]|m−m0|√
1 − ω̂2

M (s)
+

[
q − η(ω̂M (s))
1 − qη(ω̂M (s))

]

× ÛM (s)[η(ω̂M (s))]2N−m−m0+1√
1 − ω̂2

M (s)
. (102)

For sufficiently small values of s all models presented in
Sec. IV give the same form of Green’s functions. Below we
use the model presented in Sec. IV C. Taking into account Eqs.
(69), (80), (81), (82), and (99), the inverse Laplace transform
of Eq. (102) reads over the limit of small values of s and small
values of ε as follows:

P (x,t ; x0) = e−κ|x−x0|

2κDα

fα−1,α

(
t ;

|x − x0|
2κDα

)

− e−κ(2xN −x−x0)

2κDα

fα−1,α

(
t ;

2xN − x − x0

2κDα

)

+ σe−κ(2xN −x−x0)

[
fα−1,α

(
t ;

2xN − x − x0

2κDα

)

+ 1

2κ2Dα

f2α−1,α

(
t ;

2xN − x − x0

2κDα

)]
. (103)

The example plots of functions (100), (101), and (103)
are presented in Figs. 3–6. For all plots there are x0 = −5,
xN = 0; the values of other parameters are given in each figure
separately (all quantities are given in arbitrary chosen units).

In Fig. 3 we present the dependence of functions (100)
and (103) on the parameter σ . In the case of function (100)
we can observe an accumulation of a substance near the
membrane for higher values of σ , whereas in the case of
function (103) some amount of substance vanished as a result
of reactions and an accumulation is not observed. In Fig. 4 we
present the dependence of functions (101) and (103) on the
parameter α. The process occurs faster for higher values of
the parameter α. Moreover, we can notice that the evolution
of the process described by the function (101) is faster than
the process described by the function (103). In Figs. 5 and 6
we present the dependence of functions (101) and (103) on
time. An accumulation of the substance near the membrane
can be observed for both functions for a lower value of the
parameter σ , i.e., 0.3, whereas no accumulation occurs in the
case of σ = 7.3. Summarizing, “the competition” between the
accumulation of particles caused by the selective permeability
of the wall and particles’ vanishing is observed near the wall.

-12,5 -10 -7,5 -5 -2,5 0
x

0

0,05

0,1

0,15

0,2

P
(x

,t;
x 0)

1.4

8.3

15.4

FIG. 3. The plots of functions (100) (lines with squares) and (103)
(lines with triangles) for different values of σ given in the legend and
for t = 100. The values of the rest of the parameters are as follows:
α = 0.65, Dα = 0.75, and κ = 0.19.

The curves’ shapes mainly depend on the relation between
parameters σ and κ .

VII. FINAL REMARKS

In this paper we have used a random walk model in which
both time and space variables are discrete in order to describe
subdiffusion processes in which a particle can vanish with
some probability. In the first process a particle’s vanishing
takes place according to the rule A −→ B. The second
process concerns subdiffusion with the A + B −→ B reaction
in a system in which static particles B are homogeneously
distributed. In both cases a subdiffusive particle A can vanish
with a probability which is independent of both time and space

-20 -15 -10 -5 0
x

0

0,02

0,04

0,06

0,08

P
(x

,t;
x 0)

0.24
0.38
0.57

FIG. 4. The plots of functions (101) (lines with circles) and (103)
(lines with triangles) for different values of α given in the legend and
for t = 100. The values of the rest of the parameters are as follows:
Dα = 2.25, σ = 0.3, γ = 0.008, and κ = 0.83.
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FIG. 5. The plots of functions (101) (lines with circles) and (103)
(lines with triangles) for different values of t given in the legend.
The values of the rest of the parameters are as follows: α = 0.47
Dα = 1.25, σ = 7.3, γ = 0.008, and κ = 0.35.

variables. It has been shown that the process of subdiffusion
with A + B −→ B reactions, which can occur when particle
A meets a particle B inside the reaction region, is of a different
character in comparison to the process of a particle’s vanishing
according to the A −→ B reaction. As an example we have
considered the subdiffusion with both the above mentioned
reactions in a homogeneous system bounded by a partially
absorbing wall. The example has shown that the discrete
model of the subdiffusion-reaction process appears to be a
useful tool in modeling subdiffusion-reaction processes in
systems with various “obstacles” such as partially permeable
or partially absorbing thin membranes. We have also discussed
the properties of the models and we have presented the
relationships between parameters occurring in the various
models considered in this paper.

The procedure used in this paper which provides the Green’s
function for a subdiffusion-reaction process in a system with

-15 -12,5 -10 -7,5 -5 -2,5 0
x
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0,06
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P
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,t;
x 0)

100

200

300

FIG. 6. The same as in Fig. 4 but for σ = 0.3.

membranes, can be briefly described with the following
points.

(1) We assume difference equations describing the random
walk process for the system with fully or partially absorbing or
reflecting walls in which reactions are absent [such as Eq. (3)
in Sec. II A] and we find the generating function S(m,z; m0).
We add here that the standard methods of finding this function
are presented in [32,33,35,36].

(2) We chose the probability distribution function ωM (t)
and calculate UM (t). Next, we substitute the Laplace trans-
forms of these functions and the generating function to
Eq. (12). Since one expects that the obtained function
P̂ (x,s; x0) can be too complex to calculate the inverse Laplace
transform analytically, it is recommended to consider this
function in the limit of small values of s. Small values of
s correspond to large values of t according to the equations
presented in the Appendix.

(3) In order to pass from discrete to continuous space
variables, we use the formulas (15), (16), and (17) taking
into consideration a definition of subdiffusion coefficient Dα

which relates ε to parameters of ω(t) [we note that Eq. (21)
is an example of such a definition]. If a partially absorbing or
partially reflecting wall which is characterized by the reflection
parameter q is present in the system then we additionally use
Eq. (99). We add here that an asymmetric wall is characterized
by the reflection coefficients q1 and q2 describing a particle’s
crossing from the right side of the wall to the left side and vice
versa, respectively.

Let us note that such a procedure is simpler to use in order
to derive Green’s function instead of solving subdiffusion-
reaction equations (which have a rather complex structure)
presented in the previously cited papers with various boundary
conditions at the membranes. Moreover, such boundary con-
ditions appear not to be founded unequivocally (see discussion
presented in [11]). Within the presented method we can
proceed inversely. First, we can find Green’s function by means
of the method presented in this paper, and then we can derive
boundary conditions at the walls. We should note that similar
methodology was presented by Chandrasekhar in his seminal
paper [34] in which boundary conditions at a fully reflecting
or fully absorbing wall were derived from Green’s functions
for the normal diffusion case.

The derivations of subdiffusion-reaction equations pre-
sented in Sec. IV concern a single particle A. Equation (74) can
be utilized in the derivation of an equation for a large number
of particles. Assuming that particles A move independently,
their concentration CA can be calculated according to the
formula CA(x,t) = ∫ ∞

−∞ P (x,t ; x0)CA(x0,0)dx0. Combining
this formula with Eqs. (74) and (88) we obtain

∂CA(x,t)

∂t
= ∂1−α

∂t1−α

[
Dα

∂2CA(x,t)

∂x2
− kCA(x,t)CB

]
, (104)

where k = λF (γ ). Let us note that Eq. (104) can be used in
a “heuristic derivation” of the subdiffusion-reaction equation
for the A + B −→ ∅(inert) reaction (used previously in many
papers; see, for example, [42,43]) assuming that the obtained
equation is also valid when the concentration of B particles
depends on time and space variables, CB = CB(x,t).
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The universality of the presented method is supported by the
fact that various subdiffusion-reaction equations presented in
the other papers can be obtained from the equation presented
in Sec. II A. We can notice that the change of some details
concerning the model meaningfully change subdiffusion-
reaction equations. For example, in [4], various scenarios of
the reactions for a subdiffusion system were considered. The
main feature of the models studied in [4] is the moment of the
occurring of a reaction when the particle stays at one site. If
the particle can instantaneously react with some probability
with an other particle just after its jump, Eq. (43) in [4] can be
obtained with ÛM = (1 − k̃)Û (s) and ω̂M (s) = (1 − k̃)2ω̂(s)
to Eq. (18) presented in this paper, k̃ is a coefficient controlling
the vanishing probability of the particle just after its step.
For the noninstantaneous annihilation process when a particle
reacts at constant per capita rates during the times that it waits
before taking its next step, Eq. (60) in [4] can be obtained
from (18) with ω̂M (s) = ω̂(s + γ ) and ÛM (s) = Û (s + γ ).
This situation corresponds for p = 1 to the model presented
in Sec. IV A in this paper, which is equivalent to the model
presented in [31]. Putting p = 1 in Eq. (51) we get an
equation equivalent to Eq. (42) in which operator T̃ is
as follows:

T̃ f (t) = e−γ t d1−α

dt1−α
eγ tf (t). (105)

This operator can be expressed by an infinite series of
fractional spatial derivatives using Leibniz’s formula for
the Riemann-Liouville fractional derivative [38]. Such an
equation has a very complicated structure and in practice
it is very hard to analytically treat. For a more general
situation in which the particle can be noninstantaneously
removed during the waiting times between steps, Eq. (80) in
[4] can be obtained from (18), taking ω̂M (s) = L[f (t)ω(t)]
and ÛM (s) = L[f (t)U (t)], where f (t) is the probability
of the surviving of a particle in each step over a time
interval (0,t).

The other assumption presented in [4] is that the reaction
occurs at the same moment as a jump. In this case, the
equation derived in [4] coincides with Eq. (74) presented in
this paper. The interpretation which is presented in Sec. IV C
is in accordance with the statement presented above according
to which the reaction occurs just before the jump. The
model I of subdiffusion with A + B −→ B reactions provides
Eq. (54), which according to the remarks presented above, is
not really useful for modeling processes occurring in nature
since it is difficult to solve. We note that Eq. (54) is different
from often using Eq. (74) [or (104)] which can be obtained
within the mean field approximation [7]. However, as we
have shown in this paper, Eq. (54) can be approximated
by Eq. (58) for t � 1/γ , which has the same form as
Eq. (74). There arises a question: Which equation, (54) or (58),
should be taken to describe a subdiffusion-reaction process in
which particles have to meet before a reaction? The answer
is that it depends on the relation between parameters γ and
τα . The considerations presented in this paper suggest that
τα −→ 0 when ε goes to zero due to Eq. (21). However,
the limit ε −→ 0 which can be taken into account passing
from discrete to continuous space variables should only be
treated as a mathematical trick. In this paper we have treated

ε as a small but finite parameter. If we identify ε as a
mean length of a single particle’s jump, then τα is defined
by Eq. (21) and takes nonzero values. Let us note that the
derivation of a subdiffusion equation within the continuous
time random walk formalism [1] is performed in the limit
of small values of parameter s, ταsα � 1, assuming that τα

is finite [1], which is in accordance with the just mentioned
remarks. Thus, it may be the case that 1/γ is comparable
to τ

1/α
α or smaller. Then Eq. (58) can be used instead of

Eq. (54), for times for which the continuous time random walks
formalism works. In this case subdiffusion-reaction equations
derived within the models I, II, and III have the same form in
spite of the fact that the assumptions concerning the moment of
the occurrence of a reaction during a particle’s staying at one
site are different for each of the models. Because the models
I, II, and III, differ on these assumptions, we conclude that
the form of the equation does not depend on the moment of
reaction occurring when 1/γ � τ

1/α
α .

The considerations presented in this paper justify that
subdiffusion-reactions equations are equations of a different
kind for the considered processes and that an unexpected form
of the subdiffusion-reaction equation for A −→ B derived in
[31] does not prohibit the subdiffusion-reaction process in
which particles have to meet with the probability p < 1 in
order to react can be described by means of such an equation
as (104).

It is obvious that the usefulness of a subdiffusion-reaction
equation should be verified by comparison of experimental
and theoretical results. We note that various assumptions
concerning a moment of reaction occurring is beyond exper-
imental verification. There are theoretical functions provided
by Eq. (104) which coincide well with the experimental results.
The example is the time evolution of carious lesion progress
[44]. As far as we know, an equation in the form of (54)
(for p = 1 as well as p < 1) has not been experimentally
verified yet. However, it is possible that this equation (or other
subdiffusion-reaction equations presented in other papers) can
be applied to model subdiffusion processes with reactions,
especially when parameter γ is relatively small. Since exper-
imental investigations concerning subdiffusion are frequently
conducted for membrane systems [40] and references cited
therein, we therefore hope our model, which can be utilized for
the membrane systems, will facilitate a possible experimental
verification of models.

APPENDIX: LAPLACE TRANSFORM FOR
SMALL PARAMETER

We show an approximation of the Laplace transform
for small values of the parameter s which is based on
Eq. (27). Substituting e−asβ = ∑∞

j=0(−a)j sjβ/j ! into Eq. (27)
and taking ν = 0 we get

L−1

[
1 − asβ + a2

2
s2β + · · ·

]

= − a

�(−β)tβ+1
+ a2

2�(−2β)t2β+1
+ · · · . (A1)
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The more formal proof of Eq. (A1) was presented in [45]. In
the following, we assume that 0 < β � 1. The condition

asβ � 1 (A2)

implies that every term on the left-hand side of Eq. (A1)
containing sjβ is significantly smaller than a term containing
s(j+1)β . Thus, one can approximate the series by the two first
terms. Then, the series located on the right-hand side of this
equation can be approximated by the first term alone. This
approximation is acceptable if

∣∣∣∣ a

�(−β)tβ+1

∣∣∣∣ �
∣∣∣∣ a2

2�(−2β)t2β+1

∣∣∣∣ . (A3)

Using the formula �(2z)/�(z) = 22z−1/2�(z + 1/2)/
√

2π ,
from (A3) we get

t � �βa1/β, (A4)

where

�β =
[ √

π22β

|�(−β + 1/2)|
]1/β

. (A5)

Numerical calculations have shown that �β decreases the
function of β for β ∈ (0,1/2) and increases the function for
β ∈ (1/2,1]. There is �β −→ 1 when β −→ 0, �1/2 = 0, and
�1 = 2. The examples of the other values are �0.745 ≈ 1.00,
�0.8 = 1.31, and �0.9 = 1.75. Thus, it seems to be appropriate
to approximate the condition (A4) with

t � a1/β, (A6)

which can be alternatively replaced by t � 2a1/β if β is
close to 1. Under these conditions we get from (A1) L−1[1 −
asβ] ≈ −a/[�(−β)tβ+1] (the expression 1 − asβ is treated
here as an approximation of the Laplace transform of a
function; it is not possible to calculate an inverse Laplace
transform of this expression term by term). Taking into
account Euler’s reflection formula �(1 − z)�(z) = π/sin(πz),
we obtain L−1[1 − asβ] ≈ a sin(πβ)�(1 + β)/(πtβ+1).
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