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Nonintegrability and the Fourier heat conduction law
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We study in momentum-conserving systems, how nonintegrable dynamics may affect thermal transport
properties. As illustrating examples, two one-dimensional (1D) diatomic chains, representing 1D fluids and
lattices, respectively, are numerically investigated. In both models, the two species of atoms are assigned two
different masses and are arranged alternatively. The systems are nonintegrable unless the mass ratio is one.
We find that when the mass ratio is slightly different from one, the heat conductivity may keep significantly
unchanged over a certain range of the system size and as the mass ratio tends to one, this range may expand
rapidly. These results establish a new connection between the macroscopic thermal transport properties and the
underlying dynamics.
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I. INTRODUCTION

The Fourier heat conduction law is an empirical law that
describes how the heat current is sustained by the temperature
gradient, i.e.,

j = −κ∇T , (1)

where j is the heat current, ∇T is the temperature gradient,
and κ is known as the thermal conductivity, which is a finite
constant independent of the system size.

However, not all systems obey the Fourier law. It is
known that the transport properties are strongly affected by
conservation laws [1–4]. In the extreme case that a system
is integrable, the heat conductivity is a linear function of
the system size. Even in the particular case in which the
total momentum is the only conserved quantity, the heat
conductivity may diverge as well. In particular, in one-
dimensional (1D) and two-dimensional (2D) cases, since 1970
when Alder and Wainwright reported their findings [5], it has
been realized that momentum conservation may lead to slow
decay of time correlations so that transport is not diffusive and
is characterized by diverging transport coefficients. For 1D
momentum-conserving systems, the heat conductivity gener-
ally depends on the system size N in a power-law manner:
κ ∼ Nα . There is no general consensus on the numerical value
of α and different theoretical models predict that α is 1/2 if the
interparticle interaction is symmetric and 1/3 otherwise [6–8].
It is worth noting that these theoretical predictions equally
apply to both fluids and lattices. On the other hand, a recent
numerical study [9] suggested that when the interparticle
interactions are asymmetric, there is a significant difference
between fluids and lattices. To summarize, for 1D systems,
the heat conduction properties are believed to depend on
integrability, momentum-conservation, interaction symmetry,
and the nature of fluids or lattices.

For the particular case of 1D momentum-conserving sys-
tems, which is the subject of the present paper, all analytical
and numerical results so far available do not allow one to
draw definite conclusions yet. This problem was analyzed with
various 1D models in a recent study [10], where it was shown
that the Fermi-Pasta-Ulam (FPU) chain with symmetric or

asymmetric potential exhibits anomalous heat transport, which
is consistent with other recent investigations [11,12]. The
plateau in the system size dependence of the heat conductivity
found in Ref. [13] for the FPU model with a certain set of
parameters turns out to be a finite size effect and, at larger N ,
the heat conductivity starts increasing again. In particular in
Ref. [12] it was surmised that the value 1/3 should be found
asymptotically for very large system size, even though, in fact,
a value of the exponent α = 0.15 was numerically found (up
to N = 65536). The results of [10] also led to an exponent
α < 1/3 for the asymmetric FPU chain. In Ref. [11], the value
1/3 was found for the same FPU model but in a different
parameter range and for high temperatures. In the same paper,
the possibility of a finite temperature phase transition was
not ruled out. Finally, in Ref. [10] normal heat conductivity
was reported for 1D momentum-conserving systems with the
Lennard-Jones, Morse, and Coulomb potential.

The overall picture is therefore far from being clear. Rebus
sic stantibus, in order to gain a better understanding in such
a complex situation, it might be convenient to consider the
1D diatomic hard-point gas. Indeed, this is a clean and simple
system of billiard type and, as such, it should reflect general
properties since billiards have been found fundamental in
understanding both classical and quantum dynamical systems.
Moreover, an important feature of billiard-type systems is that
their dynamical properties do not depend on the temperature,
which makes their analysis even more simplified. By analyzing
the hard-point gas, we show that close to the integrable, equal
masses limit, the system exhibits normal heat conduction over
longer and longer sizes as the integrable limit is approached.
Asymptotically, however, the power-law divergence of the
thermal conductivity sets in with the power 1/3. To be more
precise, we cannot exclude the possibility of a phase transition
as the mass ratio is increased; however, our numerical evidence
suggests that this possibility should be quite unlikely. The anal-
ysis of the diatomic Toda lattice confirms these conclusions.
These results lead us to speculate that as one approaches the
integrable limit, anomalous behavior is perhaps more general
than so far expected [9,10,13] even though it might be hard to
detect in numerical simulations.
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II. 1D DIATOMIC GAS MODEL

After being initially proposed in 1986 [14], the 1D diatomic
gas model has attracted increasing interest for investigating
various aspects of 1D transport. The model consists of N hard-
core point particles in one dimension with alternative mass M

and m (for odd- and even-numbered particles, respectively).
We fix the averaged particle number density to be unity so
that N refers to the length of the system as well. In order to
measure the heat conductivity, two statistical thermal baths
with different temperatures TL and TR are put into contact
with the left and the right end of the system. When the first
(last) particle collides with the left (right) side of the system,
it is injected back with a new speed |v| determined by the
distribution [15],

PL,R(v) = |v|μ1,N

kBTL,R

exp

(
− v2μ1,N

2kBTL,R

)
. (2)

Here μ1 and μN are the masses of the first and the last particle
and kB is the Boltzmann constant which is set to be unity
throughout.

In our simulations, each particle is given initially a
random position uniformly distributed and a random velocity
according to the Boltzmann distribution with temperature
T (xi) = TL + xi(TR − TL)/N (xi is the position of the ith
particle). Then the system is evolved by using an effective
event-driven algorithm [16]. After the system reaches the
steady state, we compute the steady heat flux j that crosses
the system; i.e., the averaged energy exchanged in the unit
time between a boundary particle and the heat bath, or that
between any two neighboring particles. The heat conductivity
is then measured, by assuming the Fourier law, as κ ≈
jN/(TL − TR). We set TL = 6 and TR = 4 so that the nominal
temperature of the system is T = 5. The heat conductivity at
any other temperature T ′ can be obtained through the scaling
relation κ(T ′) = κ(T )

√
T ′/T . We will focus on how the heat

conductivity κ depends on the system size N and on the mass
ratio M/m (hereafter we set m ≡ 1). We emphasize that in our
simulations, long enough integration times (>108) have been
taken so that the relative errors of all the measured values of κ

are less than 1%.
Now let us turn to the simulations results. First of all, if the

mass ratio is unity then the system is integrable and, with the
heat bath given by Eq. (2), the heat conductivity writes

κint = N

√
2k3

B

mπ

/(
1√
TL

+ 1√
TR

)
. (3)

In Fig. 1(a) this result is compared with our simulations and
the agreement is perfect. This can be considered as a numerical
test. Now, we change the mass ratio to make it slightly larger
than one [see Fig. 1(a)]; it can be seen that for small N (<102),
κ follows its integrable limit case, but as N is increased further,
κ tends to saturate and becomes constant for N > 104. This
could be taken as an empirical demonstration that at least
for these mass ratios and for large enough system size, heat
conduction is governed by the Fourier law, which is in clear
contrast with existing theoretical and numerical predictions.
(See, for example, Refs. [7,8]).

FIG. 1. (Color online) (a) The heat conductivity κ as a function of
the system size N in the 1D diatomic gas model. The two horizontal
lines denote the saturation value of κGK(N ) [Eq. (5)] at large N ,
for mass ratios M = 1.07 and 1.1. (b) Comparison between the
numerically computed temperature profile and the analytic expression
[see Eq. (4)] for M = 1.07 at different system sizes.

The validity of the Fourier law also determines the internal
temperature profile of the steady state. Indeed by assuming the
Fourier law and equating the averaged local heat flux along
the system, one obtains [17]

T (x) =
[
T

3/2
L

(
1 − x

N

)
+ T

3/2
R

x

N

]2/3

. (4)

In Fig. 1(b), this prediction is compared with our simulations
results for M = 1.07. Numerically, the temperature of the ith
particle is measured as the time average of its kinetic energy,
i.e., T (xi) = 〈μiv

2
i /kB〉, with μi ∈ {M,m} and vi being its

mass and velocity, respectively. It is seen that numerical results
are in very good agreement, for N > 104, with this theoretical
prediction.

We now turn to the linear response theory to check if
this approach leads to consistent results thus confirming
the validity of the Fourier law for large N . Based on the
Green-Kubo formula, which relates transport coefficients to
the current time-correlation functions, the heat conductivity of
a 1D finite system can be expressed as [18,19]

κGK(N ) = 1

kBT 2N

∫ τtr

0
dt〈J (0)J (t)〉. (5)

In this formula, J ≡ ∑
i μiv

3
i /2 represents the total heat

current and 〈J (0)J (t)〉 is its correlation function measured
in the equilibrium state with the periodic boundary condition.
The integration is truncated at time τtr which is suggested to
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FIG. 2. (Color online) (a) Correlation functions of the total heat
current for the 1D diatomic gas model. The dotted line indicates
the scaling ∼t−1: A faster decay of the correlation function implies
convergence of the heat conductivity in the thermodynamic limit.
(b) The comparison of the heat conductivity obtained by using the
Green-Kubo formula [Eq. (5)] and by using the nonequilibrium
setting. In both panels M = 1.07.

assume the value of τtr = N/(2vs) (vs is the sound speed of the
system) [20]. To numerically compute κGK(N ), we consider
isolated systems with periodic boundary conditions. The initial
condition is randomly assigned with the constraints that the
total momentum is zero and the total energy corresponds to
T = 5. The system is then evolved and after the equilibrium
state is reached, we compute 〈J (0)J (t)〉 and the integral in
Eq. (5).

The results for M = 1.07 are presented in Fig. 2. It can
be seen from Fig. 2(a) that for a large system (N > 104),
the correlation function changes slowly at short times (t <

102), which reflects the fact that the system still mimics its
integrable limit; however, from t ∼ 102 to 103, the correlation
function undergoes a rapid decay and eventually, when t >

103, it begins to oscillate around zero. (The negative values of
〈J (0)J (t)〉 are not shown in this log-log scale.) In Fig. 2(b), the
dependence of κGK on the system size is shown. It can be seen
that κGK agrees with κ despite some deviations at small N .

Next we consider the dependence on the mass ratio. By
using the same nonequilibrium setting we have extensively
investigated the system size dependence of κ for the mass ratio
ranging from 1.07 to 64. The results for 1.07 � M � 3 are
shown in Fig. 3(a). A three-stage process can be recognized:
For small system sizes κ ∼ N , similar to the integrable case.
For large system sizes, κ shows a tendency to ∼N1/3. In
between these two regimes, there appears an intermediate,
bridging regime, where κ changes at a lower rate (see

FIG. 3. (Color online) (a) The heat conductivity κ versus the
system size N for the 1D diatomic gas model. From top to bottom,
the mass ratio M is, respectively, 1.07, 1.10, 1.14, 1.22, 1.30, 1.40,
the golden mean (≈1.618), and 3. The corresponding tangent α

of the κ-N curve is given in (b) with the same symbols. In the inset
we plot the turning point N∗, after which α starts growing with N ,
as a function of M − 1. The best fitting (the dotted line) suggests
N∗ = 54/(M − 1)3.2.

particularly the cases of M = 1.22 and 1.30). Actually, in
this intermediate regime, as M is decreased, the conductivity
κ tends to be constant over a larger and larger interval. For
M � 3 instead (data not shown here) the dependence κ ∼ N1/3

appears more and more clearly in agreement with the existing
theories [7,8].

In order to better understand the dependence of κ on N ,
along each curve provided in Fig. 3(a) we computed its tangent
α(N ) and plot the results in Fig. 3(b). Note that α(N ) exhibits
a nonmonotonic behavior and reaches a minimum at a certain
system size N∗. Interestingly enough, the value of N∗ appears
to grow very fast with decreasing M [see the inset in Fig. 3(b)].
This result shows that a very small tangent α, i.e., a Fourier-
like behavior of thermal conduction, can be observed over
an increasingly large system size when the integrable limit
is approached. At the same time, for N > N∗, anomalous
behavior emerges gradually.

The conclusion is that for any mass ratio different from
unity the behavior κ ∼ N1/3 seems to always take place even
though it cannot be detected numerically when the mass ratio
approaches unity since in this limit N∗ becomes exceedingly
large. On the other hand, based on our available data, the
possibility that there is a phase transition around M ≈ 1.3
cannot be ruled out with certainty.
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FIG. 4. (Color online) (a) The heat conductivity measured in the
nonequilibrium setting for the 1D diatomic Toda lattice with mass
M = 1 (the integrable case), 1.07, 1.10, 1.14, 1.22, 1.30, 1.50, and 2.
The dotted lines indicate, respectively, the ballistic behavior κ ∼ N

and the power law best fitting to the case of M = 2, κ ∼ Nα , with
α = 0.25. The horizontal lines denote the saturated values of κGK(N )
for M = 1.07 and 1.10. (b) The corresponding tangent α of the κ-N
curve with the same symbols. (c) The heat current correlation function
for M = 1.10 with N = 25 600, showing a decay faster than ∼1/t .

III. 1D DIATOMIC TODA CHAIN

The above described scenario in which the Fourier law
appears in the “vicinity” of the integrable limit is not exclusive
of the gas model. In the following we show that it is also the
case for lattices. The model we consider here is a diatomic
variant of the Toda lattice [18,21] with the Hamiltonian,

H =
∑

i

[
p2

i

2μi

+ U (xi − xi−1)

]
, (6)

where the potential is U (x) = exp(−x) + x, and the particles
take masses M and m ≡ 1 alternatively. As for the gas model,
this system is integrable when the mass ratio is one. We

measure the heat conductivity in both the nonequilibrium and
equilibrium settings again, and find that the results turn out
to agree with each other. In the nonequilibrium simulations,
we couple the system to two Langevin heat baths [22] with
the temperature TL = 1.2 and TR = 0.8. The heat current is
defined as j ≡ 〈ji〉 with ji ≡ vi∂U (xi+1 − xi)/∂xi [23]. In
Fig. 4(a) the measured κ for different values of M is given.
Again, for mass ratios close to unity, κ is close to the integrable
case when the system is small (N < 102) but tends to a value
which agrees with that obtained by using the Green-Kubo
formula for the large system’s size (N > 104). For larger
mass ratio (see the case of M = 2) the heat conductivity
is anomalous. Similarly to the hard-point gas model, the
tangent α(N ) exhibits a nonmonotonic behavior, with the
minimum reached at a system size N∗ rapidly growing when
the integrable limit M = 1 is approached [see Fig. 4(b)]. With
regard to the equilibrium simulations, we assume periodic
boundary conditions, null total momentum, and total energy
corresponding to T = 1. The total heat current is J = ∑

i ji

and its correlation function for M = 1.1 is shown in Fig. 4(c),
where it exhibits a faster than ∼1/t decay as expected in
the case of normal heat conduction. The overall emerging
picture is the same as presented above for the gas model.
This similarity is unlikely a coincidence due to the contrasting
difference in the dynamics of the two systems; rather, it
strongly suggests some general mechanisms in the heat
conduction properties as one departs from the integrable limit.

IV. SUMMARY AND DISCUSSIONS

We have shown that in two 1D momentum-conserving
paradigmatic systems, the heat conductivity can be indepen-
dent of the system size over a considerably wide range. Such
a Fourier-like behavior appears as a quite general feature for
lattice or gas models close to the integrable limit. Apart from
theoretical implications in transport theory, our finding may
have experimental relevance as well, because the system size
over which the heat conductivity keeps constant, grows very
fast as the system approaches its integrable limit.

Our present understanding of the heat conduction problem
is mainly based on numerical empirical evidence while
rigorous analytical results are hard to obtain. Numerical
analysis consists of steady-state, nonequilibrium simulations
or of equilibrium simulations based on linear response theory
and the Green-Kubo formula. If both methods give reasonable
evidence for the Fourier law and if, moreover, they lead to
the same numerical value of the heat conductivity κ , then this
has been generally considered as a conclusive evidence that
the Fourier law is valid. This conclusion, however, could not
be correct. As we have shown in this paper, the agreement
between equilibrium and nonequilibrium simulations does not
allow, per se, to draw any definite conclusion. Indeed this
agreement might be a finite size effect and the Fourier law
may appear to hold up to some system size N after which
anomalous behavior sets in. The main point is that we have
no indications at all about the critical value of N after which
conductivity becomes anomalous. What we know from the
numerical analysis of this paper is that this critical value seems
to diverge rapidly as one approaches the integrable limit. This
result is quite surprising to us and it is a feature which we
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do not understand yet. While it is natural to expect an initial
ballistic behavior for larger and larger system sizes as one
approaches the integrable limit, it is absolutely not clear why
the value of κ appears to saturate to a constant value and why
this Fourier-like behavior may persist in an increasingly wide
range of the system size before entering the anomalous regime.
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