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Quasistationary states of long-range interacting systems have been studied at length over the last 15 years.
It is known that the collisional terms of the Balescu-Lenard and Landau equations vanish for one-dimensional
systems in homogeneous states, thus requiring a new kinetic equation with a proper dependence on the number of
particles. Here we show that the scalings discussed in the literature are mainly due either to small size effects or the
use of unsuitable variables to describe the dynamics. The scaling obtained from both simulations and theoretical
considerations is proportional to the square of the number of particles, and a general form for the kinetic equation
valid for the homogeneous regime is obtained. Numerical evidence is given for the Hamiltonian mean field and
ring models, and a kinetic equation valid for the homogeneous state is obtained for the former system.
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I. INTRODUCTION

Classical systems with long-range interaction can present
unusual properties such as as nonergodicity, anomalous
diffusion, aging, non-Gaussian quasistationary states, negative
microcanonical heat capacity, and ensemble inequivalence,
captured from the well-known result of the positivity of
the heat capacity in the canonical ensemble [1–10]. A pair
interaction potential is said to be long ranged if it decays at long
distances as r−α with α � d where d is the spatial dimension
[5]. The dynamics of such systems has essentially three stages:
(1) a violent relaxation [11,12] even though a satisfactory
theory is still lacking [9,13–15]), towards a quasistationary
state (QSS) in a short time roughly independent on the number
of particles N ; (2) a QSS with a very long relaxation time to
thermodynamic equilibrium that diverges with N ; and finally,
(3) the system reaches the thermodynamic equilibrium. In the
N → ∞ limit stage (3) is never attained. After the first stage
the system may also oscillate around a QSS with an amplitude
decreasing with time due to a nonlinear Landau damping
[16]. The slowly varying state remains Vlasov stable and
in some cases may lose its stability and rapidly evolve into
another QSS, thereby resuming the slow evolution towards
equilibrium [17]. This slow dynamics of the QSS have been
extensively studied in the literature (see Refs. [1–4,18–25]
and references therein) for different systems such as the
Hamiltonian mean field (HMF) model [26–31]:

H =
N∑

i=1

p2
i

2
+ 1

N

N∑
i<j=1

[1 − cos(θi − θj )], (1)

with θi is the position angle of particle i on a circle and pi its
conjugate momentum. Here we also investigate the dynamics
of the homogeneous QSS for the ring model with Hamiltonian
[32]

H =
N∑

i=1

p2
i

2
+ 1

N

N∑
i<j=1

1√
2
√

1 − cos(θi − θj ) + ε
, (2)

where θi and pi have the same meanings as for the HMF
model. Other systems with long-range interactions of interest,
but not considered here, are one-, two-, and three-dimensional
self-gravitating systems discussed in Refs. [33–37], [38,39],

and [40–42], respectively. The study of such systems along
the same lines will be addressed in a future publication.

The first stage of the dynamics is described by the
Vlasov equation (VE), which is satisfied by the one particle
distribution function in the N → ∞ limit [17,43]. For finite
N this equation is valid only for short times encompassing
the outburst of the violent relaxation. After this initial stage,
collisional effects (graininess) accumulate, and the VE must be
corrected by considering higher order terms in an expansion in
powers of 1/N as will be discussed below, leading to kinetic
equations such as the Landau or Balescu-Lenard equations
[44–46].

A sensible revision of the known kinetic equations
for long-range interacting systems and their deductions,
with all proper references, is presented by Chavanis in
Refs. [47,52–54]. These equations usually can be obtained
from the Bogoliubov—Born—Green—Kirkwood—Yvon hi-
erarchy [46] by taking into account contributions from the two-
body correlation functions, which are of order 1/N [44,47],
that result in a time scale of collisional relaxation proportional
to N [47]. For three-dimensional gravity the dynamics scales
as N/ log N , known as the Chandrasekhar scaling [48]. The
Balescu-Lenard equation for a one-dimensional homogeneous
system is written as [44]

∂

∂t
f1(p1; t)=2π2n

∂

∂p1

∫
dp2

∫
dk

k2Ṽ (k)2

|ε(k,kp1)|2 δ[k(p1 − p2)]

×
(

∂

∂p1
− ∂

∂p2

)
f1(p1; t)f1(p2; t), (3)

where f1(p1; t) is the one-particle reduced distribution func-
tion, n the particle density, pi the momentum of particle i,
Ṽ (k) the Fourier transform of the pair interaction potential, and
ε(k,kp1) is the dielectric function. Collective effects are ruled
out if one takes ε(k,kp1) = 1 and that results in the Landau
equation. The right-hand side of Eq. (3) vanishes identically
due to the Dirac delta function [49,50]. Therefore higher order
terms must be kept when truncating the hierarchy, leading to a
different scaling of the time evolution of a homogeneous state.
More recently Sano proposed a derivation of a kinetic equa-
tion for one-dimensional homogeneous systems by summing
contributions of all orders in the hierarchy [51]. Unfortunately
his approach is limited to dilute gases and is not relevant for
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the problems addressed in this paper. It would be natural to
expect that in the present case the predominant collisional
corrections to the kinetic equation come from higher order
terms proportional to 1/N2. This implies a relaxation scaling
proportional to N2, as expected from a more straightforward
application of kinetic theory such as that discussed by Chavanis
in Refs. [47,52–54], even though he did not obtained a closed
form kinetic equation at this order.

The N2 scaling of the dynamics has previously been
observed for one-dimensional neutral plasmas [55,56]. How-
ever, different scalings proportional to N1.7 and exp(N ) were
reported in Refs. [57], [26], and [27], respectively, for different
types of initial conditions. The present authors obtained for the
HMF model and different type of initial condition a scaling
proportional to N2 [17], which strongly suggests that the domi-
nant contribution to the collisional term in the kinetic equation
is given by the next term in the 1/N expansion. A possible
explanation for these discrepancies may originate from the
fact that the number of particles in the simulations described in
Ref. [17] are much greater than in Refs. [26] and [27]; thereby
a possible finite size effect should be carefully examined.

We argue that to properly probe how the dynamics depends
on the number of particles a better choice of dynamical
variables is to use higher moments of the velocity distribution,
but keeping in mind that the second moment of p is constant
in the QSS due to energy conservation (homogeneity fixes the
value of the magnetization and therefore of the potential energy
up to small fluctuations). On the other hand, both this moment
and the total magnetization can be used to determine the
lifetime of the homogeneous QSS given by the value of time at
which their previously constant values start to change rapidly.

We stress the point that the magnetization is not a useful
variable to follow the system dynamics (and therefore its
scaling with N ), as it depends only on the spatial distribution,
which is fixed in a homogeneous QSS.

In this paper one shows that the direct observation of the
higher order moments of the velocity distribution leads to a
different estimation of the scaling of the dynamics. We extend
the calculations for the ring model and show that the N2 scaling
is observed for homogeneous states of the systems described
by this model. In this case, to the authors’ knowledge, the
scaling of the dynamics of the QSS for this model has not
been studied due to the difficulty to pinpoint homogeneous
QSS with a finite lifetime and the computation cost necessary
for numerical simulations.

II. NUMERICAL SIMULATIONS

To corroborate our arguments (1) we have performed
numerical simulations for the HMF model using the same
type of initial conditions as considered in Refs. [26,27] and
varying the number of particles up to larger values than those
encompassed in previous studies and (2) derive the kinetic
equation to show that the relaxation scaling of the dynamics is
proportional to N2.

We note that the exp(N ) scaling as claimed in Ref. [27] was
obtained by conjecturing on the extrapolation of the dynamics
of the phase of the magnetization vector, though it lacks more
formal justification.

As explained above M2 = 〈p2〉 is constant (up to fluctu-
ations) in a homogeneous QSS, so we look at the fourth
moment M4 = 〈p4〉 of the momentum distribution starting
from a homogeneous waterbag initial condition defined by
f (p; 0) = 1/2p0 if |p| < p0, and 0 otherwise (p0 constant).
The moment M4 varies slowly with time as a consequence
of collisional corrections to the VE, the dependence of the
dynamics on N being the inverse of that for the collisional
term in the kinetic equation. All simulations were performed
using a parallel implementation of a fourth-order symplectic
integrator as described in Ref. [58].

In order to develop our approach, we show in Fig. 1 the
numerical results for larger values of N , as the fluctuations
turn out to be less important, and it can be seen that a N2

scaling is yet more evident, while the N1.7 scaling is clearly
inappropriate. In Fig. 2 we show numerical results for the
time evolution of M4 for the same range of particle numbers
N as in Ref. [26] with two different time scalings: N1.7 and
N2. Although the influence of fluctuations are important, a
somewhat better data collapse is obtained for the N2 scaling.

Figure 3 shows the observed lifetimes of the QSS for the
initial conditions in Figs. 1 and 2. The lifetimes are determined
when the potential energy varies more than a given percentage
(5%) of its QSS value. In the left panel a scaling close to N1.7

is obtained for N < 10 000 while the N2 scaling is obtained
for N > 10 000 in the right-hand panel. Note also that the
error bars for smaller N are far from negligible such that a
N2 scaling is compatible with simulation data. This apparent
discrepancy is explained by noting that the lifetime of the
homogeneous QSS is defined by the exact moment in time
that the states loses its stability. Once the distribution function
evolved closer to the stability threshold [17], fluctuations may
trigger an instability and drive the system out of the QSS
regime. Therefore fluctuations play an important role for small
N (they are of order N−1/2), and thus generate a larger error
bar for the lifetimes. In this case, the dynamics is governed by
a kinetic equation with a N2 scaling, while the lifetime can on
average deviate from this scaling as a consequence of larger
fluctuations for small N .

To address the scaling exp(N ) as presented in Ref. [27] for
the HMF model we redo the same simulations under the same
type of semielliptic initial conditions. Figure 4 shows the time
evolution of M4 for a time span greater than the lifetime
of the QSS for ε = 0.69, and Fig. 5 shows results for ε = 0.8.
The latter case corresponds to the same energy used in Ref. [27]
and is such that the system remains always homogeneous up to
the final thermodynamic equilibrium. Again a very good data
collapse is obtained for the N2 scaling for both energies.

We also consider here the scaling with time of the lifetime of
homogeneous QSS for the ring model. The time dependence
of the kinetic energy for some values of N and ε = 0.1 are
shown in Fig. 6. We note that due to the QSS’s being close to
the stability threshold fluctuations are more pronounced, but
the N2 scaling is nevertheless clearly observed.

III. KINETIC EQUATION

All the numeric data presented here point out to a kinetic
equation obtained from the next order correction in N−1. To
justify theoretically our findings we now briefly sketch how to
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FIG. 1. (Color online) Moments M4 as a function of time for the HMF model, with a homogeneous waterbag initial condition with
energy per particle e = 0.69 and N = 20 000, 40 000, 60 000, 80 000, 100 000. (a) Time is rescaled as t → t/(N × 10−3)1.7. (b) Time window
corresponding to the duration of the QSS with the same time scaling as (a). (c) Time rescaled as t → t/(N × 10−3)2. (d) Time window
corresponding to the duration of the QSS with the same time scaling as (a). The graphics shows clearly that for larger number of particles the
correct scaling is N2.

obtain a kinetic equation for the simpler HMF system, leaving
a more detailed discussion of a kinetic equation valid at the
next order of approximation, either in a 1/N expansion or
in the weak coupling limit characterized by parameter α to a
separate publication [59]. The HMF system (as the ring model)
belongs to a class of systems with generic Hamiltonian

H (p,θ ) =
N∑

j=1

p2
j

2
+ α

N

N∑
j<k=1

V (θj − θk). (4)

The pair potential interaction is rescaled by the Kac factor 1/N

in such a way that the energy is extensive (but nonadditive)
as for the Hamiltonians in Eqs. (1) and (2) [60]. The meaning
of the dimensionless parameter α will be explained later in
the paper. The kinetic equation for a homogeneous state can
be obtained starting from the Liouville equation ∂fN/∂t =
{H,fN } for the N particle distribution function in phase space
fN (θ1,v1, . . . ,θN ,vN ; t) normalized to unity and {H,fN } is
the Poisson bracket of fN with H . Defining the s-particle
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FIG. 2. (Color online) Moments M4 as a function of time for the HMF model, with a homogeneous waterbag initial condition with
energy per particle e = 0.69 and small N from 1000 up to 8000, averaged over 100 realizations each. Left: The time was rescaled as t →
t/(N × 10−3)2. Right: Time rescaled as t → t/(N × 10−3)1.7. The insets are a zoom over the time interval where the system is in a homogeneous
state.
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FIG. 3. (Color online) Left: Lifetimes for the homogeneous waterbag state of the HMF model with energy per particle e = 0.69 (solid
circles) with respective error bars. The best fit yields a power law scaling N1.76. Right: Same as the left panel but with greater number of
particles and a best fit scaling of N1.99. In this case the error bars are at most the size of the circles.

distribution function

fs ≡ fs(θ1,v1, . . . ,θs,vs ; t) =
∫

dθs+1dvs+1 · · · dθNdvN

× fN (θ1,v1, . . . ,θN ,vN ; t), (5)

the BBGKY hierarchy is obtained as [44,46]

∂

∂t
fs =

s∑
j=1

K̂jfs + 1

N

s∑
j<k=1

	̂jkfs

+ N − s

N

s∑
j=1

∫
dθs+1 dvs+1	̂j,s+1fs+1, (6)

with

K̂j = −vj

∂

∂θj

, 	̂jk = − ∂

∂θj

V (θj − θk)∂jk,

(7)

∂jk ≡ ∂

∂vj

− ∂

∂vk

.

From this point onward we replace pi by vi (all particles
have unit mass). In order to obtain a kinetic equation for the
one-particle distribution function f1 we must obtain f2 as a
functional of f1. For that purpose we introduce the irreducible
cluster representation (correlation expansion) for the reduced

distribution functions fs up to s = 4 as [44,46]

f2(1,2) = f1(1)f1(2) + C2(1,2), (8)

f3(1,2,3) = f1(1)f1(2)f1(3)

+
∑

P (i,j,k)

f1(i)C2(j,k) + C3(1,2,3), (9)

f4(1,2,3,4) = f1(1)f1(2)f1(3)f1(4)

+
∑

P (i,j,k,l)

[f1(i)C3(j,k,l) + C2(i,j )C2(k,l)

+ f1(i)f1(j )C2(k,l)] + C4(1,2,3,4), (10)

where for simplicity the dependencies of each function on
particle position and velocity is represented by the particle
index, e.g., C2(1,2) ≡ C2(θ1,θ2,v1,v2,t) and

∑
P (i,j,k) stands

for the sum over all different permutations between parti-
cles 1, 2, and 3, f1(1) ≡ f (v1), f2(1,2) ≡ f2(θ1 − θ2,v1,v2),
f3(1,2,3) ≡ f2(θ1 − θ2,θ2 − θ3,v1,v2,v2) and similarly for the
other terms. Since the reduced distributions are taken as fully
symmetric by the permutation of any two particles, the same
is valid for the pure correlation functions Cs .

Two-particle correlation requires the interaction of two
particles, and therefore C2 is of order N−1. For three-particle
correlations a two-particle interaction between, say, particles 1
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FIG. 4. (Color online) Moments M4 as a function of time for the HMF model, with a homogeneous semielliptic initial condition with
energy per particle e = 0.69 and N = 20 000, 30 000, 40 000, 50 000, 100 000. Left: The time was rescaled as t → t/(N × 10−3)1.7. Right:
Time rescaled as t → t/(N × 10−3)2.
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FIG. 5. (Color online) Fourth moment M4 of the velocity distri-
bution as a function of time for the HMF model, with a homogeneous
semielliptic initial condition with energy per particle e = 0.8 and
N = 20 000, 30 000, 40 000, 50 000, 100 000. The time variable is
rescaled as t → t/(N/2 × 10−4)2 revealing the data collapse.

and 2, and then between particles 2 and 3 are required, and C3

is therefore of order N−2, and so on. The Vlasov and Landau
equations are obtained at order N0 and N−1, respectively.
In order to explain our results and since the collision term
vanishes at order N−1, we must resort to the next order term
proportional to 1/N2. For a one-dimensional homogeneous
system we obtain after replacing Eq. (8) into Eq. (6)

∂

∂t
f (v1,t) =

∫
dθ2 dv2	̂12C2(θ1,θ2,v1,v2,t). (11)

In the equation above we dropped out the index in f1, and in
the subsequent equations. We now expand C2 and C3 in the
form

C2 = 1

N
C

(1)
2 + 1

N2
C

(2)
2 + O

(
1

N3

)
,

(12)

C3 = 1

N2
C

(2)
3 + O

(
1

N3

)
.

Inserting the cluster expansion in Eqs. (8)–(10) and the
expansions given at Eq. (12) into the hierarchy in Eq. (6)

we obtain for s = 2 at orders 1/N and 1/N2, respectively:(
∂

∂t
+ v1

∂

∂θ1
+ v2

∂

∂θ2

)
C

(1)
2 (θ12,v1,v2,t)

= V ′(θ12) ∂12f (v1,t)f (v2,t)

+ ∂

∂v1
f (v1,t)

∫
dθ3 dv3 V ′(θ13)C(1)

2 (θ23,v2,v3,t)

+ ∂

∂v2
f (v2,t)

∫
dθ3 dv3 V ′(θ23)C(1)

2 (θ13,v1,v3,t), (13)

(
∂

∂t
+ v1

∂

∂θ1
+ v2

∂

∂θ2

)
C

(2)
2 (θ12,v1,v2,t)

= −f (v1,t)
∫

dθ3 dv3 V ′(θ23)
∂

∂v2
C

(1)
2 (θ23,v2,v3,t)

− 2
∂

∂v1
f (v1,t)

∫
dθ3 dv3 V ′(θ13)C(1)

2 (θ23,v2,v3,t)

+ ∂

∂v1
f (v1,t)

∫
dθ3 dv3 V ′(θ13)C(2)

2 (θ23,v2,v3,t)

+
∫

dθ3 dv3 V ′(θ23)
∂

∂v2
C

(2)
3 (θ12,θ23,v1,v2,v3,t)

+ 1 ←→ 2 + V ′(θ12) ∂12C
(1)
2 (θ12,v1,v2,t), (14)

with 1 ←→ 2 standing for permutation of particles 1 and 2.
For s = 3 we obtain at the leading order:

(
∂

∂t
+ v1

∂

∂θ1
+ v2

∂

∂θ2
+ v3

∂

∂θ3

)
C

(2)
3 (θ12,θ23,v1,v2,v3,t)

=
∑

P (i,j,k)

[
∂ijV

′(θij )C(1)
2 (θjk,vj ,vk,t) − f (vi,t)

∂

∂vj

× f (vj ,t)
∫

dθ4 dv4V
′(θj4)C(1)

2 (θk4,vk,v4,t)

+ ∂

∂vi

f (vi,t)
∫

dθ4 dv4 V ′(θi4)

×C
(2)
3 (θjk,θk4,vj ,vk,v4) + ∂

∂vi

C
(1)
2 (θij ,vi,vj ,t)

×
∫

dθ4 dv4 V ′(θj4)C(1)
2 (θj4,vj ,v4,t)

]
. (15)
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FIG. 6. (Color online) Left: Kinetic energy per particle for the ring model for a homogeneous waterbag initial condition with p0 = 0.59
(f (p) = 1/2p0 if −p0 < p < p0) and ε = 0.1, for a few different numbers of particles. The time is rescaled as t → t/(N/10 240)2. Right:
Lifetimes for the QSSs in the left panel. The dashed line corresponds to the N2 scaling.
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In Eqs. (13)–(15) we used the notation θij ≡ θi − θj as for a
homogeneous state fs and Cs depend on position only through
θij .

Equation (13) is and integro-differential equation for
C

(1)
2 . Noting that only the integral of H2 ≡ ∫

d v3C
(1)
2 is

required in the kinetic integral, Lenard was able to solve the
corresponding equation for H2, but not for C

(1)
2 explicitly

[45], which is required to solve the remaining equations
(14) and (15). With some additional considerations on the
strength of the interparticle force in a homogeneous state
a closed form expression for the two- and three-particle
correlation functions can be obtained, as we proceed to
show.

We observe that in a homogeneous state of the HMF model
the force on a given particle is very small. Thus it is reasonable
on a phenomenological ground to use some sort of weak
coupling approximation to simplify the system of Eqs. (13)–
(15). Indeed, the mean-field force on each particle is given by
F = −V ′ ∝ (1/N ) × N × α = α, i.e., the Kac factor times
the particle number (from the sum over the remaining particles)
with α characterizing the effective interaction strength in
the homogeneous state, which is proportional to the small
magnitude of the fluctuations of the space distribution function
around homogeneity. Such fluctuations, as illustrated in Fig. 7,
diminishes with increasing N . In fact, we are considering that
the approximation presented is a generalization of the Landau
equation for one-dimensional systems in a homogeneous
state. In this way we have the following orders of magnitude:
Cs ∝ αs−1 and V ′ ∝ α. In Eq. (13) the last two terms on the
right-hand side can then be neglected, i.e., we keep terms up
to order α and neglect terms of order α2. The third term in the
summation in the right-hand side of Eq. (15) is of order α3 and
is also negligible.

Since the physical space of the HMF model is periodic, it
is convenient to introduce the Fourier series (discarding for
convenience the constant term in V ):

V (θ12) =
∑

n

Ṽ (n)einθ12 ,

C2(θ12,v1,v2; t) =
∑

n

C̃2(k,v1,v2; t)einθ12 , (16)

C3(θ12,θ23,v1,v2; t) =
∑
n,m

C̃3(n,m,v1,v2; t)einθ12 eimθ23

with n,m integers ranging from −∞ to ∞ and

Ṽ (n) = 1

2π

∫
dθ12V (θ12)e−inθ12 = −1

2
[δn,1 + δn,−1],

C̃2(n,v1,v2; t) = 1

2π

∫
dθ12C2(θ12,v1,v2; t)e−inθ12 ,

(17)
C̃3(n,m,v1,v2,v3; t) = 1

(2π )2

∫
dθ12 dθ23

×C2(θ12,θ23,v1,v2,v3; t)e−inθ12 e−inθ23 ,

where δn,m is the Kronecker delta. Note that C4 is neglected
at this approximation as it is of order 1/N3. Equation (11) is
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FIG. 7. Force on a single particle for (a) N = 1000, (b) N =
10 000, and (c) N = 10 000 000 with energy per particle e = 0.69.

rewritten as
∂

∂t
f (v1; t) = i

∫
dv2

∑
n

nṼ (n) ∂12C̃2(n,v1,v2; t)

= i

2

∂

∂v1

∫
dv2[C̃2(−1,v1,v2,t) − C2(1,v1,v2,t)]

= ∂

∂v1

∫
dv2 Im [C2(1,v1,v2,t)] , (18)

where we used the property C2(−1,v1,v2,t) = C2(1,v1,v2,t)∗
as it is the Fourier coefficient of a real function. Thus only the
imaginary part of the Fourier transform C̃2 contributes to the
kinetic equation.

Using the Fourier series in Eqs. (16) and (17) as well as the
Fourier coefficients for the HMF potential yields(

∂

∂t
+ iv12m

)
C̃

(1)
2 (m,v1,v2,t)

= − i

2
(δm,1 − δm,−1)∂12f (v1,t)f (v2,t), (19)
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with vjk ≡ vj − vk and C̃(s)
n the Fourier coefficient of C(s)

n .
Before solving Eq. (19) we must determine the time evolution
of the one-particle distribution function, which is given by the
ballistic approximation (free motion with constant velocity),
valid up to order 1/N2 in the present case f (v,t) = f (v) +
O(N−2). The solution of Eq. (19) is now easily obtained as

C̃
(1)
2 (m,v1,v2,t) = C̃

(1)
2 (m,v1,v2,0) e−iv12mt − i

2
(δm,1 − δm,−1)

×
∫ t

0
dτ eiv12mτ ∂12f (v1,τ )f (v2,τ ). (20)

The first term on the right-hand side is a transient that describes
the memory of the initial correlation and rapidly becomes
negligible (see Ref. [44] for a detailed discussion of this point).
On the other hand, the integral in τ tends to the Cauchy integral
for large t [44]:

∫ ∞

0
dt eiv12mt = πδ(v12m) + iP

(
1

v12m

)
, (21)

with P(1/a) the principal part of 1/a and δ(a) the Dirac delta
function. This last step is a Markovianization procedure of the
solution for the correlation function. Therefore, the solution of

Eq. (13) takes the form

C̃
(1)
2 (m,v1,v2,t) = 1

2
P

(
1

v12m

)
(δm,1 − δm,−1)

× ∂12f (v1,t)f (v2,t). (22)

In Eq. (14) all terms must be kept. Indeed, if we keep only terms
of order α2 this would imply discarding all terms containing
C̃

(2)
3 . It can be shown that the next order correction C̃

(2)
2 would

be real (see, for instance, the appendix in Ref. [45]), not
contributing to the kinetic equation. Consequently the next
order nonvanishing correction to the kinetic equation comes
from the contribution of three-particle correlations. The later
can be determined by solving Eq. (15) neglecting terms of
order α3, i.e., the last two terms between brackets on the
right-hand side. Both remaining equations (14) and (15) are
then written in Fourier space and the latter solved for C̃

(2)
3 .

This solution is then replaced in Eq. (14), and that is solved
for C̃

(2)
2 , which together with Eq. (18) yield the desired kinetic

equation. All these calculations are straightforward but quite
long and tedious, but easily handled using a computer algebra
system [61] with specific routines developed by the authors
for this purpose and given in Ref. [62]. Here we show only the
final result for Im C̃

(2)
2 obtained as delineated above:

Im C̃2(1,v1,v2,t) = 1

N2
Im C̃

(2)
2 (1,v1,v2,t) = π2

4
P

(
1

v1 − v2

) {
P ′

(
1

v1 − v2

)
K̂I + P ′′

(
1

v1 − v2

)
K̂II

}

× f (v1)f (v2)f (v3)
∣∣
v3=2v2−v1

+ 1 ←→ 2, (23)

where 1 ←→ 2 stands for terms obtained from a permutation
of particles 1 and 2, and

K̂I ≡ 3
∂

∂v2

∂

∂v3
− 2

∂2

∂v2
3

− 2
∂

∂v1

∂

∂v3
− ∂

∂v1

∂

∂v2
+ 2

∂2

∂v2
2

,

K̂II ≡ −2
∂

∂v2
+ ∂

∂v1
+ ∂

∂v3
. (24)

Equations (18) and (23) give the final form of the kinetic
equation for the HMF model in a homogeneous state. The
collisional integral is nonvanishing and proportional to 1/N2

explaining, from a theoretical viewpoint, the scale N2 for
the dynamics of one-dimensional homogeneous systems, as
shown in all the simulations reported in this paper. Our results
are at variance with previous results reported in the literature,
and its origin may be understood as an effect of the size of N on
those calculations. In Ref. [63] Ettoumi and Firpo developed a
stochastic theory based on the first passage time approach and
taking into account the role of fluctuations. Their approach
nevertheless requires the numeric determination of a diffusion
coefficient and is therefore limited to the number of particles
considered (up to N = 20 000). These authors were able to
obtain the exponent 1.7, and it would be interesting to extend
their work to larger number of particles as they have been
considered here, where a N2 scaling is expected.

IV. CONCLUDING REMARKS

Our results strongly suggest that although the dynamics,
as represented here by the time evolution of the velocity
moments, scales as N2, even for small N , but when the effect
of fluctuations is taken into account in the destabilization of the
QSS, a different exponent can be obtained. Further research in
course should clarify these points. As a concluding remark, in
the present paper we show that the use of the magnetization
as relevant dynamical variable depends only on the space
fluctuations around homogeneity (the magnetization is always
zero up to fluctuations). On the other hand, the dynamics in
the velocity distribution, which changes over time according to
the kinetic equation, is not probed. The statistical moments of
the velocity distribution are therefore more suitable variables
to describe the dependence of the dynamics on the particle
number N .
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