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Effective temperatures of hot Brownian motion
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We derive generalized Langevin equations for the translational and rotational motion of a heated Brownian
particle from the fluctuating hydrodynamics of its nonisothermal solvent. The temperature gradient around the
particle couples to the hydrodynamic modes excited by the particle itself so that the resulting noise spectrum is
governed by a frequency-dependent temperature. We show how the effective temperatures at which the particle
coordinates and (angular) velocities appear to be thermalized emerge from this central quantity.
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I. INTRODUCTION

Hot Brownian motion [1] is the diffusive dynamics of a
colloidal particle persistently maintained at higher temperature
than the surrounding fluid, so that the fluid temperature
field T (r) = T (r) decays radially around the particle. It
is of practical relevance, e.g., for laser-heated suspended
nanoparticles involved in several experimental applications
ranging from particle trapping and tracking [2,3] to self-
thermophoretic microswimmers [4,5]. Besides, it is also of
considerable theoretical interest, since it can be thought of
as an archetypical example of a system in contact with
a nonisothermal bath, hence far from thermal equilibrium.
Nevertheless, for important conceptual and practical purposes,
the hot particle can often be treated like an equivalent Brownian
particle in equilibrium, with appropriate effective transport
coefficients.

In particular, it has been shown analytically [6,7] that
free and confined diffusion of a hot spherical particle are,
in the long-time limit, governed by effective “positional”
temperatures, denoted by T X and T � for translation in the
X direction and rotation along an angle �, respectively. The
positional temperatures enter the effective Stokes-Einstein
relations and Boltzmann factors for translation and rotation
of the particle, respectively. Additionally, extensive numerical
simulations [6,8] have shown that the Maxwellian (angular)
velocity distribution and the short-time response of the hot
Brownian particle are characterized by yet other, somewhat
higher, effective temperatures, so-called kinetic temperatures
T V and T �. None of these effective temperatures are generally
equal to the solvent temperature Ts ≡ T (r → R) at the particle
surface or to the ambient temperature T0 ≡ T (r → ∞). This
complex behavior has led to the conclusion that an effective
Langevin description of hot Brownian motion is restricted to
the Markov limit [8].

Here we show constructively how this limitation can be
overcome, starting from the fluctuating hydrodynamics of
a solvent maintained at local thermal equilibrium with a
temperature field T (r). On this basis, we derive the generalized
Langevin equation (GLE) for a heated spherical particle.
Conceptually, nonspherical particles can be treated along the
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same lines, albeit with additional complications [7]. The most
conspicuous feature of the theory is a frequency-dependent
noise temperature T (ω) [9]. It arises from the hydrodynamic
coupling between the particle and distant solvent volume
elements that are locally equilibrated at different temperatures
T (r). From this central quantity analytical predictions for the
mentioned kinetic and positional effective temperatures are
derived.

The characteristic frequency scales that primarily select the
dominant modes from the “temperature spectrum” T (ω) are
(for a translating sphere of mass m, density �p, and radius R)

ωf ≡ 2ν

R2
and ωp ≡ 6πηR

m
= 9�

4�p

ωf , (1)

namely, the inverse time scale for vorticity diffusion across
the particle, and the inverse Stokes relaxation time of the
particle momentum, respectively. The former characterizes
how efficiently the particle momentum is spatially dispersed
in a solvent of kinematic viscosity ν = η/� and density �, and
the latter how, as a result, the motion of the particle adjusts to
that of the fluid. The meaning of slow and fast processes, or
low and high frequencies of the noise spectrum, is primarily
provided by these rates. It should be clear, though, that any
externally imposed additional time scale that interferes with
these rates can be expected to yield additional features.

The paper is structured as follows. In the next section
we introduce the theoretical model of a Brownian particle
in a nonisothermal solvent. We then sketch the contraction
of the coupled solvent-particle system to the GLE for the
particle motion, alone. Details of the calculation are given in
Appendix A. In Sec. III we examine the frequency-dependent
temperatures T (ω) that govern the Langevin noise for the
translational and rotational degrees of freedom of a heated
sphere and give a qualitative physical interpretation of their
functional form, while some technicalities are deferred to
Appendix B. From this central quantity, we derive the effective
rotational and translational kinetic temperatures of a free
particle in Sec. IV. We analyze their explicit dependence on
the characteristic time scales for the velocity relaxation of the
particle and the solvent by varying their density ratio. Also we
regain the known positional temperatures for translation and
rotation [6,7] as the low-frequency limits of T (ω). In Sec. V,
we consider a hot Brownian particle trapped in a harmonic
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potential. While the known effective-equilibrium description
can be retrieved in the Markov limit, we point out that the
kinetic and positional temperatures may differ from those in
the free case for very stiff traps, due to the interference of the
characteristic trap time scale with the rates defined in Eq. (1).
We conclude with a summary and short outlook.

II. FLUCTUATING HYDRODYNAMICS OF A HEATED
PARTICLE

We consider a spherical particle of radius R immersed
in an incompressible fluid of density �. The time evolution
of fluid momentum is described by the linearized fluctuating
hydrodynamic equations [10–13]

�∂tv(r,t) − ∇ · σ (r,t) = ∇ · τ (r,t), (2a)

∇ · v(r,t) = 0, (2b)

v(r,t) = V (t) + �(t) × r on S, (2c)

where the velocity field v of the fluid is defined in the volume
V outside the particle and the no-slip boundary condition on
the particle surface S is imposed by Eq. (2c). The stress tensor
σ has components

σij (r,t) = −p(r,t)δij + 2η(r,t)�ij (r,t), (3)

where p is the pressure and �ij = (∂ivj + ∂jvi)/2 the shear
rate tensor, with the dynamic viscosity η. The incompress-
ibility condition Eq. (2b) can be eliminated by expressing p

(and thus σ ) as a functional of the flow field v. Finally, the
thermal noise is represented by a zero-mean Gaussian random
stress tensor τ that vanishes on the particle surface [12] and
otherwise obeys the fluctuation-dissipation relation

〈τij (r,t)τkl(r ′,t ′)〉 = 2η(r,t)kBT (r,t)δ(r − r ′)

× δ(t − t ′)(δikδjl + δilδjk) (4)

corresponding to a local equilibrium with the prescribed
deterministic temperature field T (r,t) [14]. In general, the
dynamical viscosity η(r,t) inherits some spatiotemporal de-
pendence of T (r,t). The vectors V (t) and �(t), denoting the
translational and rotational velocity of the Brownian particle,
couple to the solvent dynamics via the boundary condition (2c)
on the particle surface S. They evolve themselves according
to Newton’s equations of motion

mV̇ (t) = F(t) + Fe(t), (5a)

I �̇(t) = T (t) + T e(t), (5b)

where m is the mass of the particle, I the moment of inertia,
Fe and T e are the external force and torque, and F and T
are the hydrodynamic force and torque exerted by the fluid,
defined by

F(t) = −
∫
S

σ (r,t) · n d2r, (6a)

T (t) = −
∫
S

r × (σ (r,t) · n) d2r, (6b)

with n the inner radial unit vector. Note that we have
suppressed the time dependence of S in Eqs. (2c) and (6) in
order to make the above set of equations linear not only in the

flow field but also in the particle velocity. See Refs. [15,16] for
a discussion of the validity of linear hydrodynamics in relation
to Brownian motion. We also suppress the corresponding time-
dependent thermal advection, by requiring the deterministic
part of the temperature field to obey the stationary heat
equation in the comoving frame,

∇2T (r) = 0, T (r) = T0 + �T on S, T (r → ∞) = T0.

(7)

This technical simplification and other implicit idealizations,
such as neglecting the viscous heating due to the particle
motion with respect to the housekeeping heat and taking
the heat conductivity of the solvent to be constant, can
be justified for common experimental conditions, such as
those realized for laser-heated nanoparticles in water [1,17].
Together with the prescription Eq. (7), the system (2)–(4)
then entirely describes the time evolution of the fluid and
the heated Brownian particle. Notice that the fluctuations
in the fluid temperature are irrelevant in our hydrodynamic
description as they do not couple with momentum fluctuations
thanks to the incompressibility assumption. Consequently,
only the deterministic fluid temperature T (r) is considered.
The solution of Eq. (7) is the radial field:

T (r) = T0 + �T R/r. (8)

While the following derivation does not strictly depend on
the specific form of T (r) (as long as it does not depend
on the particle velocity), and even an explicit externally
imposed dependence on time could be included, we restrict the
discussion in the following sections to this paradigmatic case.

We now proceed to contract the description of fluid plus
particle into an equation for the particle alone. We rewrite the
hydrodynamic forces introduced in Eq. (5) in the form

F ≡ Fd + ξT , (9a)

T ≡ T d + ξR (9b)

to account for contributions ξ independent of the particle
velocity that are expected to arise due to the inhomogeneity of
Eq. (2a). By Eq. (2), v(r,t) is a linear functional of V (t ′) and
�(t ′) with −∞ < t ′ < t , so in view of Eq. (6) this implies that
the systematic components Fd and T d are linear functionals
of V (t ′) and �(t ′), respectively, with −∞ < t ′ < t . Hence, we
can write

Fd (t) = −
∫ t

−∞
ζ (t − t ′)V (t ′) dt ′, (10)

T d (t) = −
∫ t

−∞
γ (t − t ′)�(t ′) dt ′, (11)

where ζ (t) and γ (t) are positive, time-symmetric memory
kernels accounting for the time-dependent drag on the particle
[12]. Equations (5) then take the GLE form

M V̇ (t) = −
∫ t

−∞
ζ (t − t ′)V (t ′) dt ′ + ξT (t) + Fe(t), (12)

I �̇(t) = −
∫ t

−∞
γ (t − t ′)�(t ′) dt ′ + ξR(t) + T e(t), (13)
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once we identify ξT ,R as the Langevin noise, whose statistical
properties have to be derived from those of the random stress
tensor τ .

For better readability, the actual calculation is detailed in
Appendix A, and only the main results and their physical
interpretations are given in the main text. We focus mostly
on the translational motion, but the rotational case is very
analogous. It is moreover convenient to switch to the frequency
representation defining, for a generic function g(ω), the
Fourier transform g(ω) ≡ ∫ ∞

−∞ eiωtg(t) dt and the half-Fourier
transform g+(ω) ≡ ∫ ∞

0 eiωtg(t) dt .
To complete the contraction, we compare the energy

dissipated by the fluid friction acting on the particle at a mean
velocity 〈V (ω)〉

ζ (ω)δij 〈Vi(ω)〉〈V ∗
j (ω)〉 = 2

∫
V

φT (r,ω) d3r, (14)

with the correlation function of the energy supplied by the
random force at frequencies ω and ω′:〈

ξT
i (ω)ξT ∗

j (ω′)
〉〈Vi(ω)〉〈V ∗

j (ω′)〉

= 2kBδ(ω − ω′)
∫
V

φT (r,ω)T (r) d3r . (15)

From Appendix A, we have quoted the representation in terms
of the dissipation function,

φT (r,ω) ≡ η(∂iuj ∂iu
∗
j + ∂iuj ∂ju

∗
i ), (16)

which gives the energy dissipated by the fluid at position r and
frequency ω in terms of the average flow field u(r,ω). Setting
the arbitrary average velocity of the particle to unity, Eq. (14)
allows one to calculate the memory kernel ζ (ω) in terms of the
spatial integral of the dissipation function φT (r,ω).

From Eqs. (14) and (15) we then find the relation〈
ξT
i (ω)ξT ∗

j (ω′)
〉〈Vi(ω)〉〈V ∗

j (ω′)〉
= kBT T (ω)ζ (ω)δij δ(ω − ω′)〈Vi(ω)〉〈V ∗

j (ω′)〉 (17)

with

T T (ω) ≡
∫
V φT (r,ω)T (r) d3r∫

V φT (r,ω) d3r
. (18)

Since φT (r,ω) is a quadratic function of 〈V (ω)〉 (see
Appendix B) the ratio in Eq. (18) is independent of 〈V (ω)〉.
Moreover, as the particle velocity 〈V (ω)〉 is arbitrary it can be
deleted in Eq. (17), which renders Eq. (17) in the form of a
generalized fluctuation-dissipation relation:〈

ξT
i (ω)ξT ∗

j (ω′)
〉 = kBT T (ω)ζ (ω)δij δ(ω − ω′) . (19)

According to Eq. (A9), the Langevin noise ξT is Gaussian dis-
tributed with mean zero. Therefore Eq. (19) fully characterizes
the noise statistics. Analogous results hold for the rotational
motion. They are obtained by substituting ζ → γ in Eq. (19)
and φT → φR in the definition (18).

III. THE NOISE TEMPERATURE T (ω)

Equation (18) defines the frequency-dependent noise tem-
perature that is the central quantity for the Brownian motion
under nonisothermal conditions. Its nonlocal nature manifests
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FIG. 1. (Color online) The universal frequency-dependent noise
temperatures for the motion of a Brownian particle, obtained by
the definitions (16) and (18) assuming a temperature-independent
solvent viscosity η. The rotational noise temperature (blue/top line)
is given by the exact expression Eq. (B3), while the translational one
(red/bottom line) is obtained by numerical integration of Eqs. (18)
and (B1). The vertical solid line indicates the characteristic frequency
beyond which the finite compressibility of water would matter for a
solid particle of radius R 
 100 nm.

itself in the weighted average over the temperature field
T (r), with the dissipation function determining how strongly
the diverse local temperatures in the surroundings affect the
Brownian motion of the particle at the origin.

Clearly, the noise autocorrelation can always be cast in such
a form by defining a suitable function T (ω) that measures the
violation of the equilibrium fluctuation-dissipation relation.
Here the nontrivial statement is that T (ω) is explicitly derived
from an underlying hydrodynamic description. Moreover, in
the next sections, we will show that T (ω) plays the role of a
frequency-dependent effective temperature, in the sense that
dynamical isothermal relations can directly be extended to the
nonisothermal case if the temperature T0 is replaced by T (ω).

Contenting ourselves with explicit evaluations to leading
order in the temperature heterogeneity T (r) − T0, we can in
the following neglect a possible temperature dependence of the
viscosity, which would affect our results to subleading order,
only. Figure 1 shows the frequency-dependent temperatures
T (ω) for the translational and the rotational motion of a
sphere, which are derived in Appendix B assuming constant
heat conductivity and viscosity, i.e., Eq. (7) and η(r) = η.
As a consequence, η cancels in Eq. (18), and the obtained
noise temperatures are universal functions independent of the
solvent properties. All the subsequent results are derived under
the latter approximation.

To gain a physical understanding of the functional form of
T (ω), consider its origin from the hydrodynamic coupling
between the particle and distant solvent volume elements
that are locally equilibrated at different temperatures T (r).
In our low-Reynolds number approximation, the exchange of
momentum is dominated by vorticity diffusion [18] with the
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diffusivity given by the kinematic viscosity ν ≡ η/�. This
defines the inverse characteristic time scale ωf ≡ 2ν/R2 for
fluid transport over distances on the order of the particle radius,
as introduced in Eq. (1).

Low-frequency fluctuations are those with ω � ωf , during
which the vorticity spreads out considerably from the particle.
Since the translational field is more long-range than the
rotational one (uT ∼ 1/r versus uR ∼ 1/r2), the transla-
tional noise is effectively cooler, as it involves an average
over farther, i.e., cooler, regions of fluid. Ultimately, in the
limit ω → 0, we find that the noise temperatures reduce
to the effective temperatures T X,�

HBM known to characterize
the overdamped hot Brownian motion of the positions and
angles, respectively [6,7], for which we employ the shorthand
notation

T X ≡ T T (0) = T0 + 5
12�T,

T � ≡ T R(0) = T0 + 3
4�T .

In contrast, during high-frequency fluctuations with ω 
ωf , fluid momentum cannot diffuse significantly from the
particle surface. The vorticity emanating from a particle
oscillating at frequency ω cannot penetrate the fluid be-
yond the skin depth k−1

0 ≡ (2ν/ω)1/2 � R, resulting in an
exponential decay φ(r,ω) ∝ e−k0(r−R) of the dissipation func-
tion; see Eqs. (B1) and (B2). Therefore, the average in
Eq. (18) is essentially restricted to a thin skin of solvent
around the particle surface, and the noise temperatures tend
towards the surface temperature Ts = T0 + �T for large
ω. However, note that the finite compressibility becomes
relevant at very high frequencies. As a consequence, the
noise temperature may deviate significantly from our pre-
dictions for frequencies larger than the inverse of the time
it takes a sound wave in the solvent to traverse a distance
R [15,19].

It is worth mentioning another peculiarity implied by the
incompressibility assumption. To accelerate a particle in an
incompressible fluid, the displaced fluid has to be moved from
the front to the back of the particle. Therefore, the layer
of fluid that is set into motion never collapses completely
onto the particle surface, as it does for rotation at high
frequencies. While the noise temperature is not affected,
since the bulk dissipation turns out to be subdominant (see
Appendix B), incompressibility results in a renormalized
particle mass [10,12]:

M = m + m�/(2�p). (20)

The added mass in Eq. (20), owing to the inertia of the
displaced fluid, becomes relevant in the following. In the
next sections we analyze some immediate implications of
the above results for the dynamics of a hot Brownian sphere
that is either freely diffusing or trapped in a confining
potential.

IV. THE KINETIC TEMPERATURE

The GLEs (5a) and (5b) both contain a Gaussian noise
satisfying a fluctuation-dissipation relation with constant
effective temperatures in the high-frequency limit. Therefore,
one may expect to find Maxwell-Boltzmann distributions of

translational and angular velocities under stationary condi-
tions, which is corroborated by molecular dynamics simula-
tions [6,7]. We thus define the kinetic temperatures such that
the stationary averages of the velocities satisfy

3
2kBT V ≡ 1

2M〈V 2〉, 3
2kBT � ≡ 1

2I 〈�2〉, (21)

which reduce to the equipartition theorem with T � = T V =
T0 in case of a constant fluid temperature T (r) ≡ T0. For
simplicity, we concentrate on the translational motion, in the
following, but the same procedure applies also to the rotational
motion.

From the Fourier transform of Eq. (12) in the absence of an
external force,

−iωmV (ω) = −ζ+(ω)V (ω) + ξT (ω), (22)

we derive the velocity spectral density

CV (ω) ≡ 〈V (ω) · V (−ω)〉 = |RV (ω)|2CT
ξ (ω) . (23)

Here

CT
ξ (ω) = 3kBT T (ω)ζ (ω) (24)

is the noise spectral density and RV (ω) is the velocity response
defined as

RV (ω) = 1

ζ +(ω) − iωM
. (25)

The Wiener-Khinchine theorem then gives the velocity auto-
correlation function

〈V (t) · V (0)〉 = 1

2π

∫ ∞

−∞
|RV (ω)|2CT

ξ (ω)e−iωt dω, (26)

from which the translational kinetic temperature T V , defined
in Eq. (21), follows as

T V = M

π

∫ ∞

0
|RV (ω)|2T T (ω)ζ (ω) dω, (27)

since the integrand is an even function of ω.
To further evaluate this result, we introduce into the

response RV the explicit expression for the memory kernel
of a sphere translating in an incompressible fluid with no-slip
boundary conditions [12]:

ζ+(ω) = 6πηR

[
1 + (1 − i)

√
R2ω

2ν
− iR2ω/9ν

]
. (28)

The first term in the brackets is the usual Stokes friction ζ+(ω=
0) ≡ ζ , the second describes the vorticity diffusion and gives
rise to the long-time tails [20,21]. The third term accounts
for the mentioned mass renormalization [Eq. (20)]. With the
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notation x2 = ω/ωf , Eq. (27) now reads

T V = 1

π

∫ ∞

0

4αx(x + 1)T T (x)

(1 + x)2 + x2(1 + αx)2
dx, (29)

which depends on the particle-to-fluid density ratio via the parameter α ≡ 2(2�p/� + 1)/9. The same procedure gives the
rotational kinetic temperature

T � = 1

π

∫ ∞

0

12βx(1 + 2x + 2x2)(3 + 6x + 6x2 + 2x3)T R(x)

{(3 + 6x + 6x2 + 2x3)2 + x4[2(1 + x)+3β(1 + 2x + 2x2)]2} dx (30)

with β ≡ 2�p/(15�).
Equations (29) and (30) can be integrated numerically

using the translational and rotational noise temperatures T (ω)
introduced in Sec. III. The results are shown in Fig. 2. The
kinetic temperatures are seen to depend on the density ratio
�p/�. To understand this, consider a translating sphere. In
the Markov limit, its velocity relaxes within the Stokes time,
corresponding to the relaxation rate

ωp ≡ ζ

M
= 6πηR

M
= 9�

4�p

ωf , (31)

introduced in Eq. (1). The density ratio thus relates the
characteristic time for the kinematic equilibration of the
particle with the fluid, i.e., the time it takes to spread the particle
momentum to a fluid mass comparable to the particle mass,
to the time it takes to spread its momentum to a fluid volume
comparable to the particle volume. Accordingly, the kinematic
equilibration affects either a small or large fluid volume
compared to the particle size, suggesting a kinetic temperature
close to the temperature Ts at the particle surface or close to
the stationary effective temperature T X, respectively.

Indeed, if �p/� � 1, only the upper part of the spectrum
T (ω) contributes to the kinetic temperatures, as seen from
Eqs. (29) and (30), where the integrand contributes signifi-
cantly only for x 1. Hence, the rotational kinetic temperature

0 2 4 6 8 10
0.6

0.7

0.8

0.9

1

p

T
V

,Ω
−

T
0

/
Δ

T

T V

T Ω

FIG. 2. (Color online) Rotational (blue/top line) and translational
(red/bottom line) kinetic temperature as function of the density ratio
�p/�.

T � approaches the surface temperature:

T � ∼ T R(∞) = T0 + �T = Ts for �p/� → 0. (32)

Due to the mass renormalization [Eq. (20)] the translational
kinetic temperature T V always remains somewhat below this
limit, though. Although the noise temperature attempts to
shake the particle with a strength proportional to the surface
temperature Ts , the particle cannot move without exciting a
long-range flow field that ultimately increases its own inertia.
This effect limits the velocity fluctuations of the particle to
a nonuniversal apparent “equipartition” temperature T V that
depends on the density ratio �p/� and attains the limit

T V 
 T0 + 0.86 �T < Ts for �p/� → 0. (33)

As a consequence, the translational particle velocity never
thermalizes to the fluid temperature at the particle surface.

In the opposite limit, �p/�  1, the frequency-dependent
terms in Eq. (28), which are proportional to R2ωp/ν =
2ωp/ωf � 1, become small. In this limit, the kinetic tempera-
ture approaches the stationary values of the respective effective
noise temperatures T (0), which coincide with the known
temperatures for the configurational degrees of freedom,
represented by the positional and orientational coordinates X

and � [6,7] (see Sec. III). They determine the translational and
rotational diffusion coefficient of the hot Brownian particle,
e.g., for translation,

D = lim
t→∞

1

6

d

dt
〈[X(t) − X(0)]2〉

= 1

2

∫ ∞

−∞
〈V (t) · V (0)〉 dt = 1

2
CV (ω = 0). (34)

Using Eqs. (23)–(25) and (28), we recover (to leading order
in the temperature increment �T , i.e., not accounting for the
temperature-induced spatial variations in the viscosity) the
generalized Einstein relation [6]

DHBM = kBT T (ω)

ζ+(ω)

∣∣∣∣
ω=0

= kB(T0 + 5
12�T )

6πηR
. (35)

The same reasoning applies to the orientation �. Hence, we
see that for a hot Brownian particle that is much denser than
the solvent, the kinetic temperatures reduce to the effective
configurational temperatures,

T V,� ∼ T T ,R(0) = T X,� for �p/� → ∞ . (36)

Moreover, in any case, both the translational and rotational
velocities of a hot spherical particle can be statistically
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characterized by a (nonuniversal) Maxwell-Boltzmann distri-
bution

P (V ,�) ∝ exp

(
− MV 2

2kBT V
− I�2

2kBT �

)
(37)

with effective temperatures that depend on the density ratio
�p/�, in agreement with the fact that probability distributions
of nonequilibrium ensembles explicitly depend on the dynam-
ics of the system.

V. PARTICLE IN A HARMONIC POTENTIAL

The discussion of the previous section can be repeated
for a particle trapped in a harmonic potential. While the
kinetic temperature of a free particle is determined by the
competition between the vorticity diffusion time ω−1

f and
the Stokes relaxation time ω−1

p introduced in Eq. (1), a
sufficiently narrow confining potential introduces an additional
interfering time scale. In the following, we examine more
closely the case of translational diffusion in confinement, but
qualitatively similar results can be derived for the rotational
case. The parabolic confinement potential U(X) = K X2/2
gives rise to the trap relaxation time

ω−1
t = 6πηR/K = ωp/ω2

0, (38)

where ω2
0 = K/m is the undamped oscillation frequency. With

Fe = −K X , the Fourier-transformed Eq. (12),

−mω2 X(ω) = iωζ +(ω)X(ω) − K X(ω) + ξ (ω),

yields the spectral density

CX(ω) ≡ 〈X(ω) · X(−ω)〉 = |RX(ω)|2Cξ (ω), (39)

where the positional response function is defined by

RX(ω) = 1

m
(
ω2

0 − ω2
) − iωζ+(ω)

. (40)

We use the relation

〈V (t) · V (0)〉 = − d2

dt2
〈X(t) · X(0)〉

between the stationary correlation functions for position and
velocity in frequency space, CV (ω) = ω2CX(ω). The kinetic
temperature, as defined in Eq. (21), follows as

T V = M

π

∫ ∞

0
ω2|RX(ω)|2T T (ω)ζ (ω) dω

= 1

π

∫ ∞

0

4αx5(x + 1)T T (x)

x4(1 + x)2 + (x3 + αx4 − ωt/ωf )2
dx. (41)

The result is again integrated numerically and depicted in
Fig. 3. Clearly, if ωt � ωf , which means that the potential
is not effective while the velocity is relaxing, we recover
the result for free diffusion [Eq. (29)]. This should be the
case for an optically trapped nanoparticle in water under
standard experimental conditions. Indeed, for a gold particle
with R 
 100 nm, assuming a trap stiffness K = 10−6 Nm−1

[22], we estimate ωt/ωf 
 10−2. The velocity relaxation time
decreases as we increase the ratio ωt/ωf , resulting in a higher
kinetic temperature. When ωt  ωf the narrow confinement
eventually overrides the inertia of the particle motion due
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FIG. 3. (Color online) Kinetic temperature T V of a particle in
harmonic confinement, as given by Eq. (41) for various ωt/ωf =
10−3, . . . ,102. For ωt/ωf � 10−1, T V is hardly distinguishable from
the kinetic temperature of a free particle.

to its effective mass M , so that the kinetic temperature T V

approaches the surface temperature Ts . Similarly as for the
particle velocity, we define the positional temperature of a hot
Brownian particle in a harmonic potential via the generalized
equipartition theorem,

3
2kBT X ≡ 1

2ω2
0m〈X2〉, (42)

where the average is taken with respect to the stationary
distribution. Using Eqs. (39) and (40) we straightforwardly
obtain

T X = ω2
0m

π

∫ ∞

0
|RX(ω)|2T T (ω)ζ (ω) dω

= 1

π

∫ ∞

0

4(ωt/ωf )x(x + 1)T T (x)

x4(1 + x)2 + (x3 + αx4 − ωt/ωf )2
dx. (43)

This result is integrated numerically and plotted in Fig. 4.
Again, if ωt � ωf , we recover the configurational temperature
of a free particle, since the integrand in Eq. (43) is sharply
peaked at x � 1, corresponding to ω � ωf . Physically, the
relaxation in the potential takes place quasistatically with
respect to the free hot Brownian motion, which can then be
represented in the Markov approximation, in perfect analogy
to the equilibrium case. The corresponding Langevin equation
is

ζ Ẋ =−∇U + ξ , 〈ξi(t)ξj (t ′)〉=2DHBMδ(t − t ′)δij ,

and its stationary solution is the generalized Boltzmann
distribution

P (X) ∝ exp

(
−U(X)

kBT X

)
.

with the effective temperature

T X = ζDHBM = T0 + 5
12�T (44)

of free hot Brownian motion [6] (originally denoted by THBM).
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FIG. 4. (Color online) Positional temperature T X of a particle in
harmonic confinement, as given by Eq. (43) for various ωt/ωf =
10−3, . . . ,102. At small ωt/ωf the temperature is independent of
�p/�.

In contrast, if ωt ≈ ωp the potential interferes with the
relaxation of the particle, resulting in a higher T X than in
the free case. Eventually, in the extreme limit ωt  ωp,
the integral peaks near ωt , and T X approaches the kinetic
temperature T V (nonuniformly in �p/�). It is moreover worth
noting that the stationary probability distribution can in any
case still be written in the form of Eq. (37), albeit with
nonuniversal temperatures T V and T X that generally depend on
the density ratio �p/� and on the stiffness K of the potential.
Analogous conclusions hold for the rotational degrees of
freedom.

VI. CONCLUSION

Starting from the fluctuating hydrodynamic description
of the solvent, which we required to be in local thermal
equilibrium with an inhomogeneous temperature field T (r),
we have derived a generalized Langevin equation for the
motion of a Brownian suspended particle. While the discussion
was limited to the important case of hot Brownian motion,
where T (r) decays radially around the particle, essentially the
same reasoning applies to more general temperature profiles
[9]. As a consequence of the nonisothermal conditions, the
noise temperature T (ω) characterizing the strength of the
stochastic Langevin forces becomes frequency dependent and
differs between different degrees of freedom, which couple to
different hydrodynamic modes. We remark that the frequency-
dependent noise temperature is not merely defined, as it is
customary, through the violation of equilibrium ensemble
properties of the particle position and velocity, e.g., the broken
proportionality between response and equilibrium correlation
functions expressed by the (first-kind) fluctuation-dissipation
theorem [23,24]. Rather, T (ω) is derived upon contraction of
the underlying stochastic description and its physical origin
is fully understood in terms of nonequilibrium hydrodynamic
fluctuations of the viscous solvent.

From the noise temperature we derived approximate expres-
sions for the effective temperatures at which the rotational and
translational degrees of freedom of a spherical particle appear
to thermalize. Explicit numerical results have been limited to
first order in the temperature increment �T , so that the tem-
perature dependence of the fluid viscosity could be neglected.
We found the (angular) velocities to be Maxwell-Boltzmann
distributed with nonuniversal, but explicitly known, effective
temperatures. The violation of the equilibrium (second-kind)
fluctuation-dissipation theorem given by Eq. (19), i.e., the
broken proportionality between noise correlation and memory
kernel, is ultimately the reason why effective temperatures
appear in the equilibrium-like distributions of the particle
position and velocity [9]. In the long-time limit we regained
previous results for the configurational temperatures governing
free and weakly confined hot Brownian motion.

ACKNOWLEDGMENT

We acknowledge financial support from the European
Union and the Free State of Saxony, the Deutsche Forschungs-
gemeinschaft (DFG) through FOR 877, and the Leipzig
School of Natural Science—Building with Molecules and
Nano-objects (BuildMoNa). D.R. acknowledges support by
the European Commission within the Seventh Framework
Programme through the European Soft Matter Infrastructure
(Project No. 262348).

APPENDIX A: DERIVATION OF THE GLE’s NOISE
AUTOCORRELATION FUNCTION

Extending the calculation presented in Ref. [13] to a
nonisothermal solvent, we derive expressions (14) and (15)
in Sec. II for the translational motion. The same procedure
can be applied separately to rotational motion bearing in mind
that, due to linearity and spherical symmetry, the flow field
v can be divided into the two independent fields vT and vR

generated, respectively, by the particle translation and rotation,
and satisfying the boundary conditions:

vT (r,t) = V (t) on S,

vR(r,t) = �(t) × r on S.

Since we focus on the translational motion only, we omit the
superscript T. Using Eq. (10), the Fourier transform of the
generalized Langevin equation (12) reads

−iωmV (ω) = −ζ+(ω)V (ω) + ξ (ω) + Fe(ω)

and may be rewritten as

−iωmV (ω) = f (ω) + f̃ (ω) + Fe(ω), (A1)

where we have divided the force exerted by the fluid into
deterministic f (ω) and random f̃ (ω) components:

f (ω) ≡ −ζ+(ω)〈V (ω)〉, (A2a)

f̃ (ω) ≡ −ζ+(ω)Ṽ (ω) + ξ (ω) , (A2b)

with V ≡ 〈V 〉 + Ṽ . It is easy to see that f (ω) is the force
exerted by the deterministic flow field u ≡ 〈v〉, the solution
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of

iω�u(r,ω) + ∇ · σ (r,ω) = 0, (A3a)

∇ · u(r,ω) = 0, (A3b)

u(r,ω) = 〈V (ω)〉 on S, (A3c)

while f̃ (ω) is the force exerted by the stochastic flow field ũ ≡ v − 〈v〉, the solution of

iω�ũ(r,ω) + ∇ · σ̃ (r,ω) = −∇ · τ (r,ω), (A4a)

∇ · ũ(r,ω) = 0, (A4b)

ũ(r,ω) = Ṽ (ω) on S. (A4c)

This splitting of equations and boundary conditions is again allowed by the linearity of the problem. In the following calculation,
in order to ease the notation, we omit the arguments r and ω of the hydrodynamic fields where there is no possibility of confusion.

We start by calculating twice the energy dissipated by the particle moving at velocity 〈V (ω)〉:
〈Vi(ω)〉[ζ+(ω) + ζ+∗(ω)]〈V ∗

i (ω)〉 (A2a)= −[fi(ω)〈V ∗
i (ω)〉 + f ∗

i (ω)〈Vi(ω)〉]
(6)= 〈V ∗

i (ω)〉
∫
S

σijnj d2r + 〈Vi(ω)〉
∫
S

σ ∗
ij nj d2r

(A3c)=
∫
S

u∗
i σij nj d2r +

∫
S

uiσ
∗
ij nj d2r (A5)

=
∫
V

∂j (u∗
i σij ) d3r +

∫
V

∂j (uiσ
∗
ij ) d3r

(A3a)=
∫
V

(σij ∂ju
∗
i + σ ∗

ij ∂jui) d3r

(A3b)=
∫
V

2η(�ij ∂ju
∗
i + �∗

ij ∂jui) d3r

= 2
∫
V

φ(r,ω) d3r, (A6)

where in Eq. (A5) we employed the divergence theorem and in Eq. (A6) we defined the dissipation function:

φ(r,ω)≡η(r)
(
∂iuj ∂iu

∗
j + ∂iuj ∂ju

∗
i

)
(r,ω).

Since ζ (ω) = 2�eζ+(ω) = ζ+(ω) + ζ+∗(ω), being ζ (t) real and time symmetric, we can rewrite Eq. (A6) in the following form:

ζ (ω)δij 〈Vi(ω)〉〈V ∗
j (ω)〉 = 2

∫
V

φ(r,ω) d3r. (A7)

This proves Eq. (14). We proceed with the evaluation of the energy supplied by the random force ξ (ω):

ξi(ω)〈Vi(ω)〉 (A2b)= [f̃i(ω) + ζ+(ω)Ṽi(ω)]〈Vi(ω)〉
(A2a)= f̃i(ω)〈Vi(ω)〉 − fi(ω)Ṽi(ω)

(6)= −〈Vi(ω)〉
∫
S

σ̃ij nj d2r + Ṽi(ω)
∫
S

σijnj d2r

(A3c) (A4c)= −
∫
S

uiσ̃ij nj d2r +
∫
S

ũiσij nj d2r (A8)

= −
∫
V

∂j (uiσ̃ij ) d3r +
∫
V

∂j (ũiσij ) d3r

(A3a) (A4a)= −
∫
V

σ̃ij ∂jui d
3r +

∫
V

σij ∂j ũi d
3r +

∫
V

ui∂j τij d3r

(A3b) (A4b)=
∫
V

ui∂j τij d3r = −
∫
V

τij ∂jui d
3r

In Eq. (A8) we made use again of the divergence theorem. Summing up,

ξi(ω)〈Vi(ω)〉 = −
∫
V

τij (r,ω)∂jui(r,ω) d3r, (A9)
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which asserts that ξ (ω) is Gaussian with vanishing mean, being the integral of the deterministic quantity ∂jui times the zero-mean
Gaussian field τij . Using Eq. (A9) we evaluate the noise correlation function:

〈ξi(ω)ξ ∗
j (ω′)〉〈Vi(ω)〉〈V ∗

j (ω′)〉 =
∫
V

d3r ′
∫
V

d3r∂jui(r,ω)〈τij (r,ω)τ ∗
kl(r ′,ω′)〉∂lu

∗
k(r ′,ω′)

= 2kBδ(ω − ω′)
∫
V

η
(
∂iuj ∂iu

∗
j + ∂iuj ∂ju

∗
i

)
T d3r

= 2kBδ(ω − ω′)
∫
V

φ(r,ω)T (r) d3r. (A10)

In Eq. (A10) we used the Fourier transform of Eq. (4) together with τ ∗
kl(r ′,ω′) = τkl(r ′, − ω′), since τ is real. This proves

Eq. (15).

APPENDIX B: HYDRODYNAMICS OF A TRANSLATION AND ROTATING SPHERE

1. Translational motion

The Fourier transform of the flow field generated by a sphere translating with velocity 〈V (ω)〉ez reads in polar coordinates
(r,ϕ,θ ) [11, p. 623]:

uT (r,θ,ω) = 1

r

[
sin θ

(
g + r

dg

dr

)
eθ − 2g cos θer

]
,

with

g(r,ω) = 3〈V (ω)〉R
2(kr)2

{
(ikr − 1) eik(r−R) −

[
1 + ikR − 1

3
(kR)2

]}
,

where k = (1 + i)k0, and k0 = √
ω/2ν is the inverse of the characteristic fluid diffusion length. The associated dissipation

function is

φT = η

(
12

r4
cos2 θ

∣∣∣∣g − r
dg

dr

∣∣∣∣
2

+ sin2 θ

∣∣∣∣ d2g

dr2

∣∣∣∣
2
)

,

that becomes after integration over θ :∫ π

0
φT(r,θ,ω) sin θ dθ

= 3η|〈V (ω)〉|2R2

2k4
0r

8

{
5[9 + 2k0R(9 + k0R(9 + 2k0R(3 + k0R)))]

+ e−2k0(r−R)[45 + 2k0r[45 + k0r(45 + k0r(30 + k0r(15 + 2k0r(3 + k0r))))]]

− 2e−k0(r−R)
[(

45 + 45k0R + 15k0(3 + 2k0R(3 + k0R))r + 12k3
0R(3 + 2k0R)r2 + 2k3

0(−3 + 2k2
0R

2)r3
)

cos[k0(R − r)]

− k0
( − 15R(3 + 2k0R) + 15

(
3 − 2k2

0R
2)r + 36k0(1 + k0R)r2 + 2k2

0(3 + 2k0R(3 + k0R))r3) sin[k0(R − r)]
]}

. (B1)

Notice that Eq. (B1) displays a term which does not decay with an exponential cutoff but only algebraically as 1/r8. But
its contribution to T (ω) actually diminishes at high frequencies, k0 → ∞. In order to obtain T (ω) we numerically integrate
Eq. (18) together with Eq. (B1). The result is shown in Fig. 1.

2. Rotational motion

The Fourier transform of the flow field generated by a sphere rotating with angular velocity 〈�(ω)〉ez reads [10, p. 91]

uR(r,θ,ω) = 〈�(ω)〉R3

r2
sin ϑ

1 − ikr

1 − ikR
ei[k(r−R)]eϕ ≡ f (r,ϑ,ω)eϕ.

The associated dissipation function φR(r,ω) is

φR = η

r2
(|r∂rf − f |2 + |∂ϑf − cot ϑf |2)

= η|〈�(ω)〉|2R6[9 + 18k0r + 18(k0r)2 + 12(k0r)3 + 4(k0r)4] sin2ϑe−2k0(r−R)

r6[1 + 2k0R + 2(k0R)2]
. (B2)
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Notice in Eq. (B2) the exponential cutoff where the fluid’s diffusion characteristic length k−1
0 appears. Using Eqs. (18) and (B2)

we obtain the first-order approximation in �T for the noise temperature of rotational motion:

T R(ω) − T0

�T
= 9 + 18k0R + 18(k0R)2 + 12(k0R)3 − 8(k0R)4E1(2k0R)e2k0R

4[3 + 6k0R + 6(k0R)2 + 2(k0R)3]
, (B3)

where E1(x) = ∫ ∞
1 dy e−xy/y is the exponential integral. The result is plotted in Fig. 1.
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