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Most of the investigations to date on tight-binding, quantum percolation models focused on the quantum
percolation threshold, i.e., the analog to the Anderson transition. It appears to occur if roughly 30% of the
hopping terms are actually present. Thus, models in the delocalized regime may still be substantially disordered,
hence analyzing their transport properties is a nontrivial task which we pursue in the paper at hand. Using a
method based on quantum typicality to numerically perform linear response theory we find that conductivity and
mean free paths are in good accord with results from very simple heuristic considerations. Furthermore we find
that depending on the percentage of actually present hopping terms, the transport properties may or may not be
described by a Drude model. An investigation of the Einstein relation is also presented.
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I. INTRODUCTION

Percolation theory is a well-known method to describe
transport properties of crystals or other systems which feature
regular lattices with substantial amounts of defects, impurities,
etc. It has been vastly studied from a classical point of
view [1,2]. Here usually bonds (or sites) are filled at random
on the above lattice with a probability p. It turns out that,
depending on the type of lattice, there exists some p at which
the probability of getting a connected cluster of bonds (sites)
which extends through the whole lattice changes abruptly from
approximately zero to approximately one. This p is called the
critical probability pc.

Due to increasing interest in microscopic structures, which
may be significantly affected by quantum effects, percolation
models based on quantum mechanics, have also received
considerable attention. Also genuinely quantum phenomena
like, e.g., quantum hall effect [3], Fermi-Bose mixtures [4] or
general (anti)ferromagnetic systems [5], have been addressed
by means of percolation theory.

The main focus of the literature on quantum percolation
appears to be on the transition from the “nontransport” to
the transport regime which is essentially of the same type
as the well-known Anderson transition [6,7]. Much effort is
dedicated to the determination of the quantum percolation
threshold pq . It is found that the quantum percolation threshold
is greater than the classical one [6,8,9]. For example, the
classical threshold for bond percolation in three dimensions
on a simple cubic lattice is determined to be pb

c ≈ 0.25 [2,10]
whereas the threshold for quantum percolation has been
determined to lie at pq ≈ 0.31 [8,11]. However, quantitative
investigations of transport in the delocalized regime appear
to be restricted to preliminary studies close to the quantum
percolation threshold [6,8,11]. With the work at hand we aim
in contrast at a more detailed understanding of transport in
systems whose structures are on one hand far away from
clean crystals but on the other also far from being collections
of disconnected clusters. More specifically, we quantitatively

*danischm@uos.de
†akhodja@uos.de
‡jgemmer@uos.de

address transport properties at bond probabilities p at which
almost all energy eigenstates are delocalized. Generally we
expect (and find) diffusive behavior. Unlike the diffusive
behavior in periodic systems which is restricted to finite time
(and length) scales [12–14] the diffusive behavior here persists
due to broken translational symmetry.

The primary motivation for the work at hand is of principal
and theoretical nature. Just like it has been recently done
for the Anderson model [15], we intend to demonstrate that
also in percolation models regular diffusive behavior must not
necessarily be induced by decoherence sources like phonon
coupling, etc., but may emerge in a fully coherent setup from
the electronic model itself. Furthermore, even in the absence
of decoherence this transport behavior will be demonstrated
to be in good accord with simple statistical descriptions
like the Drude model. However, the considerations are not
entirely detached from concrete experimental research. In the
context of research based on ultracold atoms the dynamics of
a moderate number of atoms (playing the role of electrons)
subject to a trap and an underlying optical lattice (but com-
pletely isolated from any environment otherwise) is observed.
Among the central questions are the transport properties of
such coherent systems [16,17]. The percolation models we
address below may also possibly be implemented within such
an experimental framework through a modification of the
optical lattice. In this context bond percolation may be more
convenient to implement than site percolation. Furthermore, in
the context of real materials, percolation models may be very
rough descriptions of binary mixed crystal alloys in which the
on-site potential of one species exceeds the bandwidth of a
regular crystal formed by the other species. In this case the
lattice would separate in two sublattices, each formed by sites
occupied by the same species only. This would correspond
to site percolation rather than bond percolation, however,
transport properties may be expected to behave similarly.
Recent investigations on magnesium alloys indicate a massive
increase of resistivity caused by the substitution of only a few
percent of the sites by another species, this being in accord
with the findings in the paper at hand [18]. This is discussed
in more detail in Sec. VI.

The paper at hand is organized as follows. In Sec. II we
introduce our one-particle, tight-binding percolation model
and comment rather briefly on localization using the density
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of states and the inverse participation number in Sec. III.
Thereafter (Sec. IV) we specify the quantities of interest,
namely the dc conductivity and current autocorrelation func-
tion as connected by linear response theory. We address
those quantities numerically and employ a method based on
“quantum typicality” whenever samples are required that are
too large to be assessed by means of exact diagonalization. We
find hints of a transition from “non-Boltzmann” to Boltzmann-
type transport with increasing p. Section V establishes the
validity of the Einstein relation and, based on the latter
introduces a mean free path. A numerical investigation of
this mean free path confirms the above “non-Boltzmann”
to Boltzmann-transport transition. Section VI is dedicated
to a comparison of our results to experimental data on
binary magnesium alloys. The paper closes with summary
and conclusions in Sec. VII.

II. TIGHT-BINDING BOND PERCOLATION MODEL

The field of percolation models includes a vast number of
various approaches to describe processes in semiconductors
or other disordered materials. A general division is given by
the description of defects, or whatever is causing the disorder,
either by loss of particles (site percolation) or loss of bonds
between sites (bond percolation), whereby instead of loss one
can observe various bond strength or energies at the sites as
well [6,8].
In the paper at hand we investigate transport in bond percola-
tion models. The intention here is not the detailed description
of any specific material but rather the overall description of
transport in quantum models of the percolation type. Therefore
we consider in the following a three-dimensional cubic lattice
with edge length L, i.e., the total number of sites (or quantum
dimension of the Hamiltonian) is dim{Ĥ } = (L

a
)3 = N , where

a denotes the lattice constant, i.e., the distance between
neighboring sites.
Generally (quantum) one-particle, tight-binding bond perco-
lation may be described by

Ĥ =
∑
〈ij〉

tij â
†
i âj , (1)

where 〈ij 〉 denotes the summation over next neighbors and tij
is known as transfer amplitude. This amplitude may be given
by

tij =
{
t exp(−2πiφij ) for connected bond

0 for disconnected bond
. (2)

Here, t denotes a parameter which quantifies the hoping
strength and φij denotes a parameter which may describe
interactions with an external field, e.g., magnetic fields; then
φij is the Peierls phase [6]. However, for simplicity and in
order to guarantee time reversibility we set φij = 0. Moreover
the on-site potential is set to zero for all sites, i.e., tii = 0. Note
that we also set in all calculations kB = 1 and � = 1.
The distribution of the bond “strengths” (one for connected,
zero for disconnected) is given by

P (tij ) = pδ(tij = t) + (1 − p)δ(tij = 0). (3)

Figure 1 shows a two-dimensional sketch of bond percolation
p = 0.5. In the classical case one would certainly say that the

FIG. 1. Two-dimensional model of classical bond percolation
with p = 0.5. In classical considerations this describes the situation
right at the percolation threshold, whereas from a quantum point of
view this model would be below the quantum percolation threshold,
even in a three-dimensional version. This is due to an effect
comparable to Anderson localization.

percolation threshold is just reached, but as found in [8,9,19]
the quantum threshold is (possibly against a naive guess)
higher than the classical threshold, i.e., quantum transport
would not be possible in the above model, even if it was
three-dimensional.

III. PRELIMINARY INVESTIGATION OF LOCALIZATION

Below (Sec. IV) we compute conductivities in the high
temperature limit, i.e., all energy regimes contribute to
transport. In such a setting a decrease of the conductivity with
decreasing p may indicate both, either an increase of resistivity
in the delocalized energy regime, or simply an increase of the
fraction of localized energy eigenstates. Since we are primarily
interested in the former we perform in the following a rough
analysis of the fraction of delocalized states for different p’s.
Then we concentrate on the regime in which the vast majority
of the energy eigenstates is delocalized. Generally the precise
calculation of mobility edges is a challenge that is dealt with
using sophisticated methods [20–22]. For the purposes at hand,
however, a rather rough determination of the mobility edge
suffices. To this end we follow the general approach presented
in [23].
The investigation at hand is based on the inverse participation
number (IPN),

I (En) =
∑

i

|ψi(En)|4, (4)

where ψi(En) denotes the the ith component of the energy
eigenstate corresponding to En. As described in [23] a
convenient way to find the mobility edge is to plot the IPN
at a given energy against the system size L on a doubly
logarithmic scale. In this representation graphs corresponding
to localized states are expected to “bend upwards” while
graphs corresponding to extended states are expected to “bend
downwards.” Only the logarithmic IPN’s at the mobility
edge are supposed to form a straight line, i.e., the inverse
participation number is expected to scale as

I (Ec) ∝ L−d2 , (5)

where Ec denotes the critical energy (mobility edge) and d2

is referred to as the fractal dimension. Although the exact
determination of fractal dimensions is beyond the scope of
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FIG. 2. Scaling of the IPN with system size L at several energies
and percolation ratio p = 0.38. Since only at the mobility edge the
scaling is all over linear we locate the mobility edges roughly at
E = −1 and E = 1. Only the last one E = 1 is actually displayed
above.

this paper, we note that at p = 0.38 the fractal dimension in
our model is approximately given by d2 ≈ 1.6 (cf. Fig. 2).
This value stands in accord with results of a recent work [24]
where the critical exponent for the localization length is
d = 1.627 ± 0.055.

Figure 2 shows some of the described scaling graphs for
various energies for p = 0.38, all calculated by means of
direct numerical diagonalization. This figure suggests that
the mobility edge is around E ≈ 1 (since E = 1 appears to
correspond to the straightest line). In accord with an overall
symmetry of the spectrum with respect to energy (see Fig. 3)
we find the second mobility edge at E = −1. For later purpose
it is useful to calculate the density of states (DOS) since it will
allow us to estimate the energy range in which most energy
eigenstates are delocalized. To that end we define the portion of
delocalized eigenstates with respect to all eigenstates between
the above calculated mobility edges which we denote by �(p).

�(p) =
∫

�E

ρ(E)dE. (6)

Before we proceed and introduce the main purpose of this
work, we would like to have a closer look at the density of
states for consistency of the given results.
One finds that for few impurities, i.e., p > 0.65, the density of
states is smooth and the graph is well described by a Gaussian
function, regardless of some peaks which correspond to special
cluster configurations within the system (cf. [9,24]).
On one hand one finds for low p’s that the peaks become
more visible; on the other hand one notices a dip around the
energy E ≈ 0, which becomes more significant for decreasing
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FIG. 3. The density of states, here for p = 0.45, is symmetrical
with respect to the energy E = 0. There are several distinct peaks,
namely at E = 0, which correspond to special cluster configurations
(cf. [9]). Also notable is the dip around E = 0, that only occurs at
low p.

p’s. For visualization of that fact we calculated the density of
states for p = 0.45. The results are presented in Fig. 3.

The results are displayed in Fig. 4. From the latter it
is obvious that the regime in which the vast majority of
eigenstates are delocalized is bound from below by p ≈ 0.5.
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FIG. 4. Ratio of delocalized eigenstates with respect to all energy
eigenstates �(p) as calculated by counting the states between the
mobility edges.
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Furthermore the data appear to be in accord with the value of
pc ≈ 0.31 from the literature for the Anderson transition.

IV. CURRENT DYNAMICS AND CONDUCTIVITY

As already stated our primary interest in the paper at hand
is (other than in many works in the respective literature) not
the determination of the quantum percolation threshold; rather
it is a quantitative description of transport behavior well above
that threshold, i.e., in a regime where the vast majority of states
are extended. We aim at finding the dc conductivity σdc from
linear response theory (Kubo formula) which amounts to the
calculation of the particle-current autocorrelation function.
We restrict ourselves here to the limit of high temperatures and
low fillings. Therefore the framework of the grand canonical
ensemble is used [25–28] which results in

σdc = σ (t → ∞),

σ (t) = f

kBT

∫ t

0

1

V
Tr{Ĵ (t ′)Ĵ (0)}dt ′. (7)

Here f denotes the filling factor, i.e., the number of particles
per site at equilibrium, and Ĵ (t) denotes the current operator
in the Heisenberg picture. Furthermore T is the temperature
and kB is the Boltzmann constant. The volume of the system
is denoted by V = a3N .
In order to employ (7) we need to specify an adequate current
operator. In the context of periodic systems this is often done
using a continuity equation for the site probabilities [29–31].
Since we do not have fully evolved periodicity here we fol-
low [32] in starting from a velocity operator instead. The veloc-
ity operator (corresponding to motion in the x direction) reads

v̂ = i

�
[Ĥ ,x̂], (8)

where x̂ denotes the x-position operator (xi denotes the x
coordinate of the ith site),

x̂ =
N∑

i=1

xin̂i n̂i := â
†
i âi xi = ia. (9)

Thus, the velocity operator v̂ reads

v̂ = i

�

N∑
ij

(i − j ) a tji â
†
j âi . (10)

Note that this expression is at odds with periodic boundaries,
i.e., a (short) transition from one edge of the sample through
the the “periodic boundary closure” is, give (10), equivalent
to a (long) transition through the whole sample in the opposite
direction. Therefore we modify the expression to ensure that
only the “shortest” transitions are taken into account. This is
achieved by the following definition of the current operator:

Ĵ =
N∑
ij

Jji â
†
j âi , (11)

Jji = q

�

{
(j − i) a tij , |i − j |a < L

2

sgn(j − i)([L − (j − i)] a tij ), |i − j |a > L
2 .

L = 28
L = 26
L = 24
L = 18
L = 16
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FIG. 5. Normalized current autocorrelation functions j ′(t) for
various system sizes L. The graphs coincide regardless of size in
regions where they are substantially different from zero, for, say
L � 18. Hence data can reliably be expected to contain negligible
finite-size effects at L = 28.

Here q denotes the electric charge per particle, e.g.,
elementary charge of a single electron. In addition to the
current operator we introduce one more quantity, namely the
normalized current autocorrelation function j ′(t), which is
better suited for the investigation of finite-size effects and
convergence behavior than the actual current autocorrelation.
It is given by

j ′(t) = Tr{Ĵ (t)Ĵ (0)}
Tr{Ĵ 2(0)} . (12)

Numerical results for (12) are displayed in Fig. 5 for various
system sizes. (Each curve is the average over 15 runs for
different models featuring the same p. However, variations
with different individual implementations turn out to be small.)
Since the graphs coincide for times where they are significantly
different from zero for, say, L � 18, it is justified to assume
that at L = 28 the system is no longer affected by finite-size
effects. This conclusion is supported by the observation, that
the calculation of (7) reveals a deviation of the results for
a system with L = 26 compared to one with L = 28 of
approximate 0.9%, and continuous decrease of the deviation
for larger systems.
At this point a comment on numerical techniques is appropri-
ate. Results up to L = 24 in this paper are always obtained by
numerical matrix diagonalization, whereas all results for sizes
above this limitation are calculated by means of an algorithm
based on “typicality” that allows for the determination of
correlation functions on the basis of propagation of single
pure states. In the work at hand the pure state propagation
is performed using a standard Runge-Kutta algorithm. For a
full account of this typicality technique and its theoretical

032127-4



TRANSPORT IN TIGHT-BINDING BOND PERCOLATION . . . PHYSICAL REVIEW E 90, 032127 (2014)

0.41 p/(1-p)

σ
'(

p
)

0

1

2

3

4

p
0.45 0.55 0.65 0.75

FIG. 6. Numerically calculated scaled dc conductivity
σ ′ := Tf −1σdc compared to the result of a simple heuristic
theory given in the text. The agreement is good; deviations appear at
and below p ≈ 0.45. This is due to non-negligible localization. Note
that all data points carry error bars, however, for small p they are
barely visible.

background, see Refs. [33–35]. We were able to treat systems
up to L = 34 (N ≈ 39 000) with this algorithm on standard
computing equipment, however, as pointed out above, but
L = 28 appears to be sufficient for a reasonable extraction
of quantitative results. Nevertheless, based on data only from
exact diagonalization the whole investigation presented here
would have been far less conclusive.

The results on conductivity are shown in Fig. 6 where σ ′
relates to the σdc from (7) as

σdc = f q2t2

kBT a�[E]
σ ′, (13)

thus σ ′ is a dimensionless integrated current autocorrelation
function, i.e, q,� are set to unity and [E] is the unity
according to which energy is measured. Each conductivity
represents the average over 15 different percolation models
featuring the same p. The error bars indicate the mean square
deviation corresponding to the respective 15 conductivities.
As expected, the conductivity increases with increasing p.
A systematic interpretation of this result appears challenging.
Nevertheless we want to point out the reasonable agreement of
the results displayed in (6) with results from a simple heuristic
reasoning. From simple Drude-type arguments one expects
the conductivity to be proportional to the square of the mean
particle velocity v2 and the mean collision-free or relaxation
time τ , i.e. [36],

σ ∝ v2τ. (14)

For the square of the mean particle velocity one may simply
take v2 := Tr{Ĵ 2(0)}/N . From the current operator as given
in (11) it is straightforward to see that his quantity must scale

p = 0.6
p = 0.9
fit (0.6) : exp(-2.799 t2)
fit (0.9) : exp(-0.5974 t)

j'(
t)

0

0.2

0.4

0.6

0.8

1

t

0 1 2 3 4 5 6

FIG. 7. Normalized current autocorrelation functions j ′(t) at
L = 28 for p = 0.9 (few defects) and p = 0.6 (medium defects).
At p = 0.6 the decay appears to be Gaussian, whereas at p = 0.9
one finds rough agreement with an exponential decay. The latter hints
in the direction of Drude-type transport.

as p, i.e., e v2 ∝ p. The relaxation time τ is (by definition)
inversely proportional to a scattering rate R. In the percolation
model at hand scattering (and thus relaxation of the current)
is caused by the “missing connections.” The number of the
latter is proportional to 1 − p, hence one obtains for the rate
R ∝ 1/(1 − p). Plugging those results into (14) yields

σ ∝ p

1 − p
. (15)

The solid line in Fig. 6 shows a fit based on (15) yielding σ
′ =

0.41p/(1 − p). Obviously the agreement is rather good for
p � 0.45. Apparently in this regime the above simple heuristic
argument captures the relevant physics, even though below say
p ≈ 0.9 this regime can certainly not be classified as a weak
scattering regime. Below p ≈ 0.45 the fit appears to deviate,
however, as may be inferred from Fig. 4, this is the point at
which localization massively sets in. We thus conclude that the
simple theory given in (15) holds for p down to the quantum
percolation threshold. Furthermore, it is clearly noticeable that
the statistical splay of the results increases with increasing p.
This, however, may be readily interpreted as a consequence of
the law of large numbers: The fewer scattering centers there
are the larger is the statistical variation of all quantities that
depend on scattering.

Next we consider the specific kind of decay of the current
autocorrelation function. As shown in Fig. 7 a transition
of transport types appears to occur between p = 0.9 and
p = 0.6. Decay at p = 0.9 is compared to a monoexponential
decay; as to be expected from a simple Drude model or
a linear Boltzmann equation in relaxation time approxima-
tion [25,36,37], the agreement is reasonable. At p = 0.65,
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however, the decay behavior is much closer to a Gaussian
as illustrated in Fig. 7. This transition from exponential to
Gaussian decay behavior on the way from weak to strong
scattering has been observed in various other, similar models
before. There it has been explained within the framework of a
time-convolutionless projection operator investigation [15,38].
If one projects onto the current and performs a perturbative,
leading order treatment, then exponential decay of the current
autocorrelation function results at weak, and Gaussian decay at
intermediate strength perturbations. From the results displayed
in Fig. 7 it appears evident that the same applies to the model
at hand as well.

V. EINSTEIN RELATION AND MEAN FREE PATH

The diffusion constant of a system is certainly interesting in
its own right. However, the main purpose of this section is to
establish the validity of an Einstein relation in order to arrive
at a reasonable definition of a mean free path. The validity
of the Einstein relation in quantum systems is frequently
discussed [39,40]. Here we examine it in its most elementary
form, namely as the claim of a proportional relation between
conductivity and diffusion constant,

D(t) = T

ε2
σ (t), (16)

where D(t) denotes the (time-dependent) diffusion constant,
and ε2 denotes the uncertainty (variance) of the transported
quantity per site at equilibrium. Since the uncertainty for the
dc current equals at low densities the filling factor f , cf. [12],
we find from linear response theory (7),

DK (t) =
∫ t

0

1

N
Tr{Ĵ (t ′)Ĵ (0)}dt ′. (17)

DK (t) is to be compared to a direct computation of the
diffusion constant in order to check (16). If a diffusion
equation holds, the derivation with respect to time of the spatial
variance of the diffusing quantity equals twice the diffusion
constant [41].
To directly observe this spatial variance we define an initial
density operator,

ρ̂(0) = 1

Z
exp

(
−

(
x̂ − L

2

)2

2d

)
,

Z = Tr

{
exp

(
−

(
x̂ − L

2

)2

2d

)}
, (18)

where d denotes an initial variance, which is here chosen as
d = 0.95.
This implies that the initial site occupation probability is
concentrated in a thin slab of a thickness on the order of one
perpendicular to the x axis.
Based on this ρ̂(0) we calculate the time-dependent variance
and take the derivative with respect to time to obtain a diffusion
constant; here named DD(t).

DD(t) = 1

2

d

dt
Tr{x̂2(t)ρ(0)}. (19)

Note that, since the mean particle position does not drift
d
dt

Tr{x̂(t)ρ(0)} remains without influence.

DK : L = 28
DD : L = 18
DD : L = 20
DD : L = 22
DD : L = 24

D
(t
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t

0 2 4 6 8 10 12 14

FIG. 8. Comparison of time-dependent diffusion constants either
calculated by (17) or (19) at p = 0.5. The calculation according
to (19) obviously suffers from strong finite-size effects, however,
agreement in the limit of large sizes is evident. This indicates the
validity of the Einstein relation.

If the Einstein relation holds, DK (t) and DD(t) should
coincide. Figure 8 shows the comparison of both diffusion
constants and reveals that the Einstein relation is apparently
fulfilled. Moreover it is obvious that the calculation of the
diffusion constant in the sense of (19) is strongly influenced
by finite-size effects.

However, the validity of the Einstein relation allows for
a reasonable definition of a mean free path λ which may be
calculated based on (17).

Ballistic transport behavior, as exhibited by initially con-
centrated, free, nonscattering particles is characterized by a
quadratic increase of the spatial variance with respect to time,
i.e., 〈x̂2〉 ∝ t2 or D ∝ t , Since the increase of the diffusion
constant is linear in the beginning, cf. Fig. 8, we define the
increase of standard deviation

√
〈x̂2〉 during this ballistic initial

period as the mean free path λ. We define the ballistic initial
period as the period before D(t) has reached 90% of its final
value. Of course this choice is not imperative, however, from
looking at Fig. 8 it appears reasonable. Figure 9 shows the
results for the mean free path λ.

Much like the consideration on conductivity in Sec. IV we
discuss the agreement of a simple, heuristically derived form
of λ with the computed data in Fig. 9 in the following. Consider
some “chain” of either connections or voids along some crystal
axis. Assume, for simplicity, that this chain was ordered (which
it is in fact not). Assume furthermore that a longer sequence
of connections alternates with just one void. Call the length
of the sequence of connections l. Then the total ratio p of
connections per total number of sites is p = l/ l + 1. Or the
length of the uninterrupted sequence of connections depends
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FIG. 9. Numerically calculated mean free path λ compared to the
result of a simple heuristic theory given in the text. The agreement is
good; deviations appear below p ≈ 0.5. This is due to non-negligible
localization. Note that all data points carry error bars, however, for
small p they are barely visible.

on the connection probability as

l(p) = p

1 − p
. (20)

We may associate l with a free path. In order to find the
mean free path we multiply l by p since this is the probability
(relative frequency) of a “site” to sit on a sequence of
connections. We thus get

λ(p) = p2

1 − p
. (21)

This expression for the mean free path is represented in Fig. 9
by the solid line. Given the simplicity of the argument the
agreement with the computed data is good. Of course such an
expression can only be expected to yield reasonable results
down to p = 0.5. However, from Fig. 8 we know that below
that localization effects set in anyway. Thus for the fully
delocalized regime (21) appears to capture the relevant physics.

VI. SEMIQUANTITATIVE COMPARISON OF THE
RESULTS TO MEASURED CONDUCTION DATA

ON BINARY ALLOYS

As already pointed out in the Introduction the primary
intentions of the paper at hand are of principal nature. However,
a short comment on the relation of the results to conductivities
of binary alloys should be in order. The electronic system of
a binary alloy in a mixed crystal phase may be viewed as an
implementation of a percolation model. If the valency of the
solute element is very different from that of the host metal, the
on-site potentials at the solute sites may be so low (high) that,
as a rough approximation, the solute sites may be regarded

as being “frozen out,” i.e., not contributing to the conduction
process. Such a picture suggests a site percolation rather than
a bond percolation model, but since bond and site percolation
are expected to behave more or less comparably we simply
ignore this difference in this consideration. The conductivity of
weakly or noninteracting fermions at rather low temperatures
(kBT small compared to the bandwidth) is roughly given by

σf ≈ n(Ef )

N

∫ t

0

1

Tr{P̂f }Tr{Ĵ (t ′)Ĵ (0)P̂f }dt ′, (22)

[25], where n(Ef ) is the density of states at the Fermi energy, N
is the total number of states in the conduction band of the one-
particle model, and P̂f is a projector which projects onto an
energy shell (Hilbert space spanned by energy eigenstates) of
width kBT around the Fermi energy. Separating dimensionless
quantities from quantities carrying dimensions yields

σf ≈ n(Ef )q2t2

Na�[E]
σ ′

f , (23)

where σ ′
f is the corresponding dimensionless current auto-

correlation function, just like σ ′ in (7). Since we are only
doing an estimate we replace σ ′

f by σ ′ as given in Fig. 6,
i.e., σ ′

f ≈ 0.41p/1 − p. If the percentage of solute atoms
c[%] := 100(1 − p) is low we may approximate σ ′

f ≈ 41/c.
We intend to compare our results to recently measured data
on magnesium alloys, specifically a magnesium-zirconium
alloy [18]. In order to do so we use the following values in (23):
The bandwidth of metallic magnesium is ca. 14 eV [42], our
simple cubic basis model yields a bandwidth of ca. 14 eV if the
hopping terms are chosen as t = 1.2 eV. (Obviously we use eV
as an energy unit). According to [42] we furthermore set the
relative density of states to n(Ef )/N ≈ 0.16/eV. Since our
model does not account for any lattice distortions, the lattice
constant is set to a = 3 Å which is about the mean lattice con-
stant of metallic magnesium. And, naturally, the transported
charge per particle is the electron charge, i.e., q = e. Plugging
in all these numbers and calculating the specific electrical
resistivity ρ = 1/σf rather than the conductivity itself, we get

ρ ≈ c×1.3×10−7 (m). (24)

Of course this cannot be taken as an absolute result since
even pure magnesium (c = 0) has a nonzero resistivity due
to phonons, impurities, etc. But if one, as suggested by
Matthiessen’s rule, regards (24) as an expression for the
increase of the resistivity due to the gradual addition of a a
solute, (24) may be compared to experimental data. Pan et al.
report in Ref. [18] for a magnesium-zirconium alloy a value of

ρmeasured = c×9.311×10−8 (m). (25)

The atomic volume difference between magnesium and
zirconium is rather low, such that few lattice distortions can be
expected. Furthermore the valency of zirconium (+4) is rather
high. However, note that our model has simple cubic rather
than hexagonal symmetry, we consider bond rather than site
percolation, the concept of zirconium sites being frozen out
is surely not completely correct, we neglect lattice distortions
entirely, etc. Regarding all these limitations the agreement
of (24) with (25) within about 30% appears reasonable.
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VII. SUMMARY AND CONCLUSION

We investigated a simple quantum bond percolation model
on the basis of a one-particle, tight-binding Hamiltonian. We
focus on investigation of transport properties in the fully
delocalized regime, i.e., a regime in which only a negligible
fraction of all energy eigenstates is localized. This turns out to
be the case at bond probabilities of p � 0.5. The conductivity
in this regime has been calculated using linear response theory
(Kubo formula) and a numerical algorithm based on quantum
typicality for the evaluation of the current autocorrelation
function. As expected the conductivity increases rapidly with
increasing p and is found to be in accord with the result
of a simple heuristic reasoning involving mean collision free
times and mean particle velocities. The latter may be defined
even though at p � 0.5 no true dispersion relations exist.

Furthermore a gradual transition from a current decay that
is not in accord with a Drude model to a current decay that is,
is observed between p ≈ 0.6 and p ≈ 0.9. The proportionality
of the conductivity and the diffusion constant, i.e., the Einstein
relation is analyzed numerically and found to hold. This
finding allows for a definition of a mean free path. Numerical
calculations of this mean free path coincide well with results
from yet another heuristic consideration based on counting
the mean length of uninterrupted sequences of connections in
the lattice. Thus, to conclude, in the regime above p = 0.5,
although being fully quantum and strongly disordered, the
dynamics of the model appear to be remarkably well described
by purely probabilistic, classical reasoning. Furthermore
the result based on the percolation model are in reason-
able agreement with measured data on binary magnesium
alloys.

[1] B. Shapiro, Percolation Structures and Processes, Vol. 5
(Annals of the Israel Physics Society, Haifa, 1983).

[2] S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).
[3] D. H. Lee, Phys. Rev. B 50, 10788 (1994).
[4] A. Sanpera, A. Kantian, L. Sanchez-Palencia, J. Zakrzewski,

and M. Lewenstein, Phys. Rev. Lett. 93, 040401 (2004).
[5] R. Yu, T. Roscilde, and S. Haas, Phys. Rev. Lett. 94, 197204

(2005).
[6] A. Kaneko and T. Ohtsuki, J. Phys. Soc. Jpn. 68, 1488 (1999).
[7] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[8] C. M. Soukoulis, Q. Li, and G. S. Grest, Phys. Rev. B 45, 7724

(1992).
[9] G. Schubert, A. Weisse, and H. Fehske, Phys. Rev. B 71, 045126

(2005).
[10] C. D. Lorenz and R. M. Ziff, Phys. Rev. E 57, 230 (1998).
[11] R. Berkovits and Y. Avishai, Phys. Rev. B 53, R16125 (1996).
[12] N. Hashitsume, M. Toda, R. Kubo, and N. Saito, Statistical

Physics II: Nonequilibrium Statistical Mechanics (Springer,
Berlin, 1992).

[13] P. Gaspard, Phys. Rev. E 53, 4379 (1996).
[14] R. Steinigeweg, J. Gemmer, H.-P. Breuer, and H.-J. Schmidt,

Eur. Phys. J. B 69, 275 (2009).
[15] R. Steinigeweg, H. Niemeyer, and J. Gemmer, New J. Phys 12,

113001 (2010).
[16] U. Schneider and L. Hackmüller, Nat. Phys. 8, 213 (2012).
[17] L. Hackmüller and U. Schneider, Science 327, 1621 (2010).
[18] H. Pan and F. Pan, J. Mater. Sci. 49, 3107 (2014).
[19] C. M. Soukoulis and G. S. Grest, Phys. Rev. B 44, 4685 (1991).
[20] E. Abrahams, 50 Years of Anderson Localization (World

Scientific, Singapore, 2010).
[21] D. J. Priour, Phys. Rev. B 85, 014209 (2012).
[22] I. Mertig, E. Mrosan, and P. Ziesche, Multiple Scattering Theory

of Point Defects in Metals: Electronic Properties, 11th ed.
(Teubner-Texte zur Physik Series, Springer, Berlin, 1987).

[23] J. Brndiar and P. Markos, Phys. Rev. B 74, 153103 (2006).
[24] L. Ujfalusi and I. Varga, arXiv.1405.1985.
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