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Record statistics of financial time series and geometric random walks
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The study of record statistics of correlated series in physics, such as random walks, is gaining momentum, and
several analytical results have been obtained in the past few years. In this work, we study the record statistics
of correlated empirical data for which random walk models have relevance. We obtain results for the records
statistics of select stock market data and the geometric random walk, primarily through simulations. We show
that the distribution of the age of records is a power law with the exponent α lying in the range 1.5 � α � 1.8.
Further, the longest record ages follow the Fréchet distribution of extreme value theory. The records statistics of
geometric random walk series is in good agreement with that obtained from empirical stock data.
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I. INTRODUCTION

In popular parlance, records are associated with record-
breaking events. Common examples include extreme weather
events such as the occurrences of lowest or highest temperature
[1], unparalleled sport performances in Olympic and other
events [2], and financial downturns like the major stock
market crashes. In recent years, there is an increasing interest
in the study of record statistics in the context of global
warming and climate change [3], occurrences of cyclones and
floods [4], and stock markets. In physics, records statistics
is useful in understanding the behavior of stochastic motion
of a domain wall in metallic ferromagnetic materials [5], as
a model for the growth of networks based on record events
[6], in understanding magnetization of superconductors and
spin-glasses [7] and as an alternative indicator of quantum
chaos in kicked rotor model [8]. Even as the record-breaking
events continue to enjoy media attention, there is also an
increased research interest in the theoretical study of record
events [9–14].

For a discretely sampled stochastic time series xt ,t =
1, 2, 3....N , the record events are those that are larger (smaller)
than all the preceding events. An event at t = T would be an
upper record if xT > max(x1, x2,...xT −1). Then, some of the
relevant questions of interest are the probability for the occur-
rence of record at any given time, mean number of records in
a certain time window, and record age, i.e., how long a record
is expected to survive. Results for most of these questions is
known for uncorrelated random variables [15]. However, it is
known that most of the physically observed time series, e.g.,
temperature, stock market volatility, earthquake magnitudes,
are strongly correlated [16]. The record statistics for such
correlated systems is beginning to receive research attention.

Recently, the record statistics of correlated series such as
the positions of random walker was studied [9,12,13]. Random
walk is a fundamental model in physics and has applications
in many areas, including the dynamics of stock markets. If the
increments of the random walker are drawn from a continuous
and symmetric function φ(ξ ), it was shown that the mean
number of records, for large N , is proportional to

√
N and the

mean record age 〈r〉 ∝ N [9]. These results have further been
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generalized to the case of random walk with a constant drift
with application to stock market data [17] and also to multiple
random walkers [13].

In spite of such growing interest in correlated series, very
few works have focused on the record statistics in empirical
stock data [13,14,18]. In this paper, we report on the record
statistics of empirical stock data to understand two quantities of
interest not studied earlier, namely: (i) the distribution of record
age and (ii) the distribution of longest record ages. We present
our analysis of stock data in the context of geometric random
walk (GRW) model, which is considered as one of the suitable
models for the dynamics of stock data [19]. In addition, it
must be pointed out that GRW has other applications as well,
including as a model for interacting neurons [20].

In this paper, we analyze the upper record statistics for 18
stocks, for which longest data is available in the public domain.
The data used in this work is described in the Appendix.
Most aspects of record statistics, especially quantities such as
the mean number of records, record age distribution, longest
record age, etc., depend only on the position of record-breaking
event on time axis and not on its magnitude. We study these
quantities using geometric random walk as the benchmark
model. We show that both for the records in stock data and
geometric random walk series the distribution of record age r is
consistent with P (r) ∼ r−α , with the exponent 1.5 � α � 1.8,
and the longest record age rmax falls in the class of type-II
generalized extreme value (Fréchet) distribution.

II. DISTRIBUTION OF RECORD AGES

GRW has not attracted as much attention as the random
walk model except in the context of financial applications
[19]. GRW model is given by

yi+1 = yi exp(ξi), i = 1, 2, 3 . . . N. (1)

In this, ξi is Gaussian distributed G(μ,σ ) with mean μ and
standard deviation σ . This implies that the “log returns”
Ri = log(yi+1/yi) are also Gaussian. The log-returns from the
empirical stock data is known to be approximately Gaussian
distributed over a wide range of timescales [19].

Record age is the time duration r between successive
occurrences of record events, i.e., the time for which a record
survives. Record age distribution will provide insights into
how long a record can be expected to survive and is useful in
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FIG. 1. (Color online) (a) Record ages (in days) calculated from
IBM stock data. (b) The (logarithmically binned) distribution of
record ages for three stocks. The solid line in (b) has slope
−1.623 ± 0.081.

hazard estimation problems. Though the mean record age 〈r〉
has been analytically determined for random walk problems
in the earlier works [9,17], no results have been obtained for
the distribution of record age.

In Fig. 1(a), we show the record ages obtained from IBM
stock data. In this, record ages longer than 500 are not shown
since they mask the details near r = 1. The longest record
age [not visible in Fig. 1(a)] is 2313 days and the shortest is
1 day. Thus, in this case, the record ages vary over 3 orders
of magnitude. Clearly, they depend on the length N of data
being considered since the longest observed record age cannot
exceed the length of data. Fig. 1(b) displays the distribution
of record age computed from the stock prices of three stocks
(HPQ, XOM, and IBM) with the longest available time series.
In the plot shown in this figure, the distribution, for the most
part, is consistent with a power law of the form

P (r) ∼ Ar−α, (2)

with the exponent α ≈ 1.623 and A being the normalization
constant that can be written in terms of generalized ζ function
ζ (α,rmin), where the power law regime begins at r = rmin.
However, the tail of computed distribution flattens out due
to effects arising from the finite size of the data. In order to
improve the statistics, we use GRW simulations [Eq. (1)] with
ξi drawn from normal distribution with parameters values μ =
〈μemp〉 = 0.00031 and σ = 〈σemp〉 = 0.015. These parameter
values 〈μemp〉 and 〈σemp〉 were computed from the empirical
stock data by averaging over the individual values of μ

and σ obtained for each stock. The record age distribution
for each value of N , shown in Fig. 2(a), is averaged over
105 GRW realizations. Clearly, the distribution in Fig. 2(a)
can be described by a power law as in Eq. (2), with the
exponent α = 1.652 ± 0.006. Significantly, it is independent
of the value of N . In contrast to quantities like the mean
number of records that depend on N [9,14,17], the distribution
of record ages is characteristic statistical property of record
breaking events independent of the length of data. Further,
as N increases, the range over which the power law is valid
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FIG. 2. (Color online) The (logarithmically binned) distribution
of record ages obtained from (a) GRW simulations for three values of
N and (b) stock data other than those shown in Fig. 1(b). The solid line
in (a) has slope −1.652 ± 0.006 and in (b) has slope −1.611 ± 0.051.
See text for details.

also increases, implying that the tail behavior is a finite size
effect. Within the parametric regime relevant for the stocks
listed in the Appendix, namely, 0.0001 � μ � 0.0005 and
0.01 � σ � 0.05, we did not find any systematic relation
between these parameters and the exponent α.

Based on the results displayed in Fig. 1(b), we might expect
that all the individual stocks will display nearly the same value
of α even if N is different for each one of them. As shown
in Fig. 3, the value of the exponent lies in the range 1.5 �
α � 1.8 for the stocks listed in the Appendix. These values
are maximum likelihood estimates obtained using the method
in Ref. [21]. Hence, we combined the record ages computed
from the rest of stock data in the Appendix (other than HPQ,
XOM, and IBM) and the resulting distribution is displayed
in Fig. 2(b). The power law form [Eq. (2)] is seen in the
figure and the maximum likelihood estimate of the exponent
is α ≈ 1.611 ± 0.051.

III. LONGEST RECORD AGE

Given that the record age is distributed as a power law, it
is of interest to understand the distribution of longest record
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FIG. 3. Maximum likelihood estimate for the power-law expo-
nent α for the stocks studied in this work. The error bars represent the
uncertainty in the estimated value of α [21]. Full name of the stocks
in x axis is given in the Appendix.
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FIG. 4. (Color online) The autocorrelation function of the record
ages obtained from three different stock data and GRW simulations.
For GRW results, we have used the same value of N as for IBM stock,
〈μemp〉 = 0.00031 and 〈σemp〉 = 0.015. See text for details.

age. Clearly, shortest record age cannot be less than unity, a
restriction arising from the resolution of the data measurement.
Similarly, any record age longer than the length of the time
series N cannot be resolved. In Refs. [9,14], it was pointed out
that for a symmetric random walk process, the longest record
age is proportional to N . However, the distribution of longest
record age has not been discussed earlier.

In this section, we show that the longest record age falls
in the class of type-II generalized extreme value distribution,
namely, the Fréchet distribution [22]. First clue for this result
arises from the record ages that are uncorrelated, to a good
approximation. Figure 4 shows the autocorrelation function
C(τ ) = 〈xtxt+τ 〉 for the stock data. It reveals that the record
ages are, at best, weakly correlated. The record ages obtained
from GRW simulations [with parameters μ = 〈μemp〉,σ =
〈σemp〉 chosen as done for Fig. 2(a)] also show a similar
behavior. For such fast decay of correlations, extreme value
theory for independent variables holds good [23]. Hence, we
can expect the longest record age to follow the generalized
extreme value distributions.

Figures 5(a) and 5(b) show the distribution of longest record
age rmax, in terms of the scaled variable

z = 1 + k(rmax − aN )/bN,

for the GRW simulations with parameters the same as
described in the legend of Fig. 2(a). In this, aN and bN are, re-
spectively, the location and scale parameters dependent on N .
This figure reveals a good agreement with the Fréchet
distribution [22]

F (z) = 1

bN

z−1−1/ke−z−1/k

, (z > 0), (3)

and F (z) = 0 for z � 0 and k > 0 is the shape parameter.
This is the extreme value distribution consistent with results
shown in Figs. 1 and 2, i.e., the distribution of record ages
P (r) has a lower-end cutoff and its tail decays as a power
law. The agreement with Fréchet distribution gets better for
N >> 1. The dependence of the location parameter aN and
the scale parameter bN on N shown in Figs. 5(c) and 5(d)
reveals that ln N function provides a good representation of
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FIG. 5. (Color online) Scaled distribution of longest record
age obtained from GRW simulations with (a) N = 15 000 and
(b) N = 85 000. The solid curve is the Fréchet distribution with
shape parameter k > 0. (c) The location parameter aN and (d) the
scale parameter bN of the Fréchet distribution shown as a function of
N . The solid line in (c, d) is the logarithmic fit for N > 30 000.

the data for N > 30 000. Using this fit and the mean of Fréchet
distribution 〈z〉 = aN + (bN/k)[�(1 − k) − 1], we get the
asymptotic mean of the longest record ages as 〈rmax〉 ∝ ln N .
This is the result obtained analytically in Ref. [14] without
using extreme value theory.

Finally, we compute the distribution of the longest record
age from stock data. To circumvent the shortage of data,
we divided the empirical stock data into windows of length
N = 1 000. The longest record age from each of these windows
was tabulated for each stock. All such data of extreme record
ages from all the stocks were combined together to compute
the (scaled) distribution shown in Fig. 6 as solid circles. The
histogram in the figure is obtained from 105 ensemble GRW
simulations with N = 1 000 and other parameters chosen as
described in the legend of Fig. 2. The solid curve is the Fréchet
distribution with k > 0. The distribution F (z) computed from
stock data displays a reasonable agreement with Fréchet
distribution. The deviations could partly be attributed to the
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FIG. 6. (Color online) The distribution of scaled longest record
ages computed from stock data (solid circles), GRW simulations (his-
togram) with N = 1 000. The solid curve is the Fréchet distribution
with parameters aN and bN corresponding to N = 1 000.
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insufficient stock market data to compute extreme record ages.
We must also point out that both GRW simulations and stock
data display pronounced deviation from Fréchet distribution
for z < 1.

IV. SUMMARY AND DISCUSSIONS

In summary, we have analyzed the stock data for two
quantities of interest in the study of record statistics, namely,
the distribution of record age and the longest record age. The
results have been obtained based on the analysis of 18 stocks
for which the data is available in the public domain. We also
study the geometric random walk series as a suitable reference
model in the context of the time series of stocks. For the stock
data and the GRW simulations, the record ages are distributed
as a power law with exponent in the range 1.5 � α � 1.8. The
record ages are uncorrelated, to a good approximation. The
distribution of the longest record age is well described by
the Fréchet distribution of the extreme value theory.

The results presented in this work also apply to the records
statistics of the positions of a standard random walker. This
is possible because the random walk and GRW are related
through a simple time-independent transformation. The record
age distribution P (r) is independent of N to within the
numerical errors and it does not preclude the mean record age
from being dependent on N [14]. Record ages being nearly
uncorrelated implies that predicting the length of time before
the occurrence of next record event based on historical data is
unlikely to be easy, even though the mean record age can be
determined [9]. The longest record age is Fréchet distributed
for N >> 1 and pronounced deviations exist for small N .
While an analysis of longer and bigger portfolio of stock data
will yield better estimate for the power law exponent α and also

for the longest record age distribution, it would be interesting
to analytically obtain these results.

APPENDIX: DATA USED IN THE ANALYSIS

In this work, we use the daily closing values, corrected
for splits and dividends, of the following stocks. These are
publicly accessible from finance.yahoo.com. Standard stock
symbols used in the respective stock exchanges are used to
indicate stock names.

Stock Years Length Stock
of data exchange

IBM (IBM) 1962–2012 12 764 NYSE
GIS (General Mills Inc.) 1983–2012 7 358 NYSE
AAPL(Apple Inc.) 1984–2012 7 067 NASDAQ
XOM (Exxon Mobil Inc.) 1970–2012 10 777 NYSE
FP.PA (Total SA) 2000–2012 3 435 PARIS
GD (General Dynamics Co.) 1977–2012 8 600 NYSE
GE (General Electric Co.) 1962–2012 12 764 NYSE
HPQ (Hewlett-Packard Co.) 1962–2012 12 747 NYSE
NTT (Nippon Telegraph...) 1994–2013 4 656 NYSE
SNP (China Petroleum and...) 2000–2013 3 124 NYSE
TM (Toyoto Motor Co.) 1993–2013 5 021 NYSE
VOW.DE (Volkswagen AG) 2000–2013 3 423 XETRA
CVX (Chevron Co.) 1970–2013 10 910 NYSE
WMT (Walmart Stores Inc.) 1972–2013 10 238 NYSE
F (Ford Motors) 1977–2013 9 141 NYSE
COP (ConocoPhilips) 1982–2013 7 878 NYSE
BRK.A (Berkshire Hathaway) 1990–2013 5 825 NYSE
BP (BP plc) 1988–2013 6 445 NYSE
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