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Critical temperature of noninteracting bosonic gases in cubic optical lattices
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We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of
noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large
densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case
of ideal homogeneous Bose gases.
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I. INTRODUCTION

Ultracold bosonic atoms in optical lattices have sparked
investigations of strongly correlated many-body quantum
phases with ultracold atoms [1] that are now at the forefront
of current research. They may be used as quantum emulations
of a more complex condensed matter system. Experimentally
they are created by superimposing two counterpropagating
laser beams of the same wavelength and frequency that act
as an periodic potential. In the simplest case, when the depth
is constant and isotropic, the potential can be represented as
follows:

VL(r) = V0

d∑
α=1

sin2
(
kα

0 rα

)
, (1)

where the wave vector k0 ≡ {kα
0 } is related to the laser

wavelength λα as kα
0 = 2π/λα , and d is the space dimension

of a cubic lattice, d = 1,2,3.
It is well known that an ideal homogenious Bose (IHB)

gas of noninteracting atoms consists of free atoms with
the plane wave exp(ik · r), and with the energy dispersion
relation εk = k2/2m. The creation of an optical lattice may
be considered as a procedure of loading preliminarily mag-
netically trapped ultracold Bose atoms into a well-tuned laser
field, whose influence on the atoms, being in fact the Stark
effect, is simulated via a periodic potential (1). Now the
dispersion is no longer quadratic with the momentum, but
develops gaps at specific locations determined by the lattice
structure. This energy can be specified by a band index and
a quasimomentum, taking on values within the first Brillouin
zone only. As to the wave function it can be written as a Bloch
function χnk(r) = ∑

i exp(ik · r)ωn(r − ri) in the Wannier
representation. In the limit V0 � ER , where ER is the recoil
energy, each well of the periodic potential supports a number
of vibrational levels, separated by an energy ω0 � ER . At low
temperatures, atoms are restricted to the vibrational level at
each site. Their kinetic energy is then frozen, except for the
small tunneling amplitude to neighboring sites. The associated
single-particle eigenstates in the lowest band are Bloch
waves with quasimomentum q and energy ε0(q) = 3/2ω0 −
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2J [cos(qxa) + cos(qya) + cos(qza)] + · · · , where ω0 is the
energy of local oscillations in the well [2]. This is one of the
main differences between IHB gas and noninteracting Bose
gas in optical lattices, which is no longer homogeneous either.
The bandwidth parameter J > 0 is the gain in the kinetic
energy due to the nearest neighbor tunneling, which can be
approximated for d = 3 as

J ≈ 4√
π

ER exp

[
−2

√
V0

ER

] [
V0

ER

]3/4

, (2)

where ER = k2
0/2m, k0 =| k0 | is the laser wave vector

modulus, and k0 = π/a, a is the lattice spacing.
By the assumption that only the lowest band is taken into

account, an optical lattice without a harmonic trap can be
described by the Bose-Hubbard model [3],

Ĥ = −J
∑
〈i,j〉

(b̂+
i b̂j + hc) + U

2

Ns∑
j

n̂j (n̂j − 1), (3)

where b̂+
i and b̂i are the bosonic creation and annihilation

operators on the site i; the sum over 〈i,j 〉 includes only pairs
of nearest neighbors; J is the hopping amplitude, which is
responsible for the tunneling of an atom from one site to
another neighboring site; U is the on-site repulsion energy, n̂j

is the number operator, and Ns the number of sites. Depending
on the ratio κ = U/J , the filling factor ν, and the temperature
T , the system may be in superfluid (SF), Mott insulator (MI), or
normal (N) phases. Note that, strictly speaking MI phase may
be reached only for T = 0 and commensurate, i.e., integer
filling factors [4], ν = N/Ns , where N is the total number
of atoms. The filling factor is related to the average atomic
density, ρ = N/V as ν = ρad , where V is volume of the
system occupied with the atoms.

The critical temperature Tc of the phase transition is deter-
mined by the filling factor, the interatomic coupling strength,
and the parameters of external harmonic trap. In general, Tc

may be considered as a sum of following three terms [5]:

Tc = T 0
c + �T HT

c + �T U
c , (4)

where �T HT
c and �T U

c are the shifts due to the trap
and interatomic interactions, respectively, and T 0

c is the
critical temperature for the ideal case corresponding to the
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Hamiltonian with U = 0 in Eq. (3). Presently Tc has been
estimated in quantum Monte Carlo (QMC) simulations for
d = 2 [6] and for d = 3 [7] as well as experimentally [8].
These calculations, including the ones based on the mean
field approximation [9,10], have shown the down shift of Tc

[i.e., �Tc = (Tc − T 0
c )/T 0

c < 0] at large U/J . Note that the
majority of calculations including �T HT

c as well as �T U
c are

performed for small ν,(ν � 3) [5], so the dependence of even
T 0

c (ν) on ν > 3 is poorly known. Thus evaluation of T 0
c (ν)

for various filling factors may be a subject of separate studies.
In the present work we will calculate T 0

c (ν) for d = 1,2,3
for arbitrary integer filling factors and make an interpolation
of the T 0

c (ν) function. Since an ideal gas with the quadratic
spectrum at a small momentum, i.e., ε(k) = ck2 + O(k3)
cannot exhibit superfluidity [11], our discussions will concern
the phase transition from the Bose-Einstein condensate (BEC)
phase into a normal phase. Although, strictly speaking, an ideal
gas is an unstable system with anomalously strong particle
fluctuations [12], the present work will give an opportunity for
estimations in future experiments and QMC calculations for
large values of ν and may serve as a check point in theoretical
studies in the limit (U/J ) → 0. In Secs. II and III we study
the critical temperature T 0

c (ν) and the condensed fraction n0,
respectively. In Sec. III we compare some scaling properties
of thermodynamic quantities of noninteracting Bose atoms in
optical lattices with that of IHB gas also. The results will be
briefly summarized in Sec. IV. Below we use � = 1, kB = 1.

II. THE CRITICAL TEMPERATURE

The density of a homogeneous ideal atomic Bose gas with
chemical potential μ is given by

ρ = N

V
=

∫
ddk

(2π )d (e(εk−μ)/T − 1)
, (5)

where εk = k2/2m. The phase transition BEC → N occurs
when μ = 0, so that the critical temperature T̃ 0

c is determined
by the following equation with a given density ρc:

ρc =
∫

ddk

(2π )d (eεk/T̃ 0
c − 1)

, (6)

which may be formally evaluated analytically to give

T̃ 0
c = 2π

m

[
ρc

gd/2(1)

]2/d

, (7)

where gp(z) = 1/�(p)
∫ ∞

0 x(p−1) dx/[exp(x)z−1 − 1] is a
Bose function. However, when d � 2 the momentum inte-
gration in (6) has an infrared divergency at small k and
cannot be evaluated. Physically this means that for d � 2
the chemical potential cannot reach zero; in other words,
there would be no phase transition from BEC into a normal
phase at finite temperatures [13]. Nevertheless, in one and
two dimensions the systems may exhibit superfluidity or
Berezinski-Kosterlitz-Thouless (BKT) phase transition, which
may take place at a critical temperature T̃ 0

c .
Now we turn to the case of a periodic system of ideal,

i.e., noninteracting Bose gases in optical lattices, which are
described by the Hamiltonian (3) with U = 0 and J 
= 0. This
system is discrete with a lattice spacing ai = λi/2 and contains

a finite number of atoms, N < ∞. Since the optical potential
is periodic, VL(r + ai) = VL(r), one may employ the Bloch
functions, ϕnk(r) = eik·rfnk(r), labeled by the band index n

where the quasimomentum k pertains to the Brillouin zone
B = {k : −π/ai � kα � π/ai}. The number of k points in the
Brillouin zone equals to the number of sites: Ns ≡ V a−d =∑

k∈B(1). Thus, assuming that the thermodynamic limit holds
for a such system for arbitrary ν, one may rewrite Eq. (6) as
follows [14,15]:

ν = 1

Nd
s

Ns−1∑
q1=1

Ns−1∑
q2=1

· · ·
Ns−1∑
qd=1

1

eε(q)/T 0
c − 1

, (8)

with the bare dispersion

ε(q) = 2J

[
d −

d∑
α=1

cos(2πqα/Ns)

]
. (9)

Note that the q = 0 mode, i.e., Goldstone mode, is omitted
from the sum due to the orthogonality between the con-
densed and noncondensed modes due to the prescription
given by Danshita and Naidon [15]. For d = 3, the function
q2/{exp[ε(q)/T 0

c ] − 1} is regular at q = 0, and in the ther-
modynamic limit (Ns → ∞) the summation in (8) may be
replaced by the integration as follows [9,10]:

ν �
∫ 1

0
dq1 dq2 dq3

1

eε′(q)/T 0
c − 1

, (10)

with ε′(q) = 2J
∑3

α=1(1 − cos πqα).
In numerical calculations it is convenient to rewrite (8) in

following dimensionless form:

ν = 1

Ns

∑
q

1

e2ε̃(q)/νt0
c (ν)d − 1

, (11)

where we presented T 0
c and ε(q) as

T 0
c = νdJ t0

c (ν), ε(q) = 2J ε̃(q) (12)

and introduced the notation

1

Ns

∑
q

f (q) ≡ 1

Nd
s

Ns−1∑
q1=1

Ns−1∑
q2=1

· · ·
Ns−1∑
qd=1

f (q1,q2, . . . ,qd ). (13)

Now for given parameters, Ns � 60 and d, one may perform
numerical summation (or integration) in (11) and evaluate t0

c (ν)
for any filling factor ν. In Fig. 1(a) we present t0

c (ν) as an exact
solution to Eq. (11). It is seen that t0

c (ν) reaches its asymptotic
value (shown by the dashed line) even at ν ∼ 10 where it
becomes constant.

To understand such behavior of the function t0
c (ν) in

detail we consider the case with a large filling factor, ν � 1.
Approximating the exponential function in (11) as ex ≈ 1 + x

and solving the resulting equation with respect to t0
c (ν) one

finds1

lim
ν→∞ t0

c (ν) = 2

dCd

≡ a, (14)

1Although this simple approximation is not valid for the system of
homogenous atomic gases, it is justified for optical lattices due to the
fact that ε̃(q) is bounded above, i.e., | ε̃(q) |� 2d .
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(a) (b)

FIG. 1. (Color online) The solution of Eq. (11) t0
c (ν) (a) shown

as symbols, and the dimensionless critical temperature, T 0
c /J , (b) of

ideal cubic optical lattice versus the filling factor ν in realistic
dimensions d = 1,2,3. The dashed lines in panel (a) show the
asymptotics of t0

c (ν) given by (14).

where

Cd = 1

Ns

∑
q

1

ε̃(q)
(15)

is a C number (see Table 1). Therefore, from Eqs. (12) and (14)
one may conclude that in the limit ν � 1, T 0

c (ν) is linear in ν,
i.e., T 0

c (ν) ≈ 2Jν/Cd . The linear dependence of the function
T 0

c (ν) on ν was also shown by Yukalov [4] in Debye-like
approximation, when the integral over the Brillouin zone is
replaced by the Debye sphere, whose radius is chosen so that
to retain the normalization condition

∫
B d�k/(2π )d = ρ/ν.

It is seen from Fig. 1(a) that t0
c (ν) reaches its asymptotics

given by (14) at rather small values of ν. For ν > 3 this function
may be approximated as

t0
c (ν) = aeb/ν (16)

and hence

T 0
c = νJ daeb/ν, (17)

where the fitted values of b for various d are presented in
Table I.

In Fig. 1(b) the critical temperatures T 0
c (ν) (in units J )

for noninteracting Bose gases in optical lattices versus filling
factor ν, evaluated exactly from Eqs. (11) and (12), are
presented. It may be concluded that the critical temperature
of ideal optical lattice has a rather linear dependence on ν,
which plays the role of the density than IHB gas with the (2/3)
power law dependence given by Eq. (7).

III. THE CONDENSED FRACTION AND SCALING

It is well known that for IHB gas in the d = 3 dimension
the critical behavior of the condensed fraction ñ0(T ) is given

TABLE I. The parameters of the function T 0
c = νJdaeb/ν . The

last column presents numerical values of Cd evaluated by Eq. (15).

d a b Cd

1 0.15 0.19 13.33
2 0.86 0.33 1.16
3 1.32 0.37 0.505

by a (3/2) power law:

ñ0(T ) = 1 −
[

T

T̃ 0
c

]3/2

. (18)

As for the energy E(T ) and the heat capacity Cv(T ) =
[∂E(T )/∂T ]V in the condensed phase, they increase with
the temperature as E(T ) ∼ T 5/2 and Cv(T ) ∼ T 3/2 [11]. The
question arises, do these power laws hold for the system of
ideal Bose gases in optical lattices as well? Below we will
show that in this case, especially at large filling factors, the
system prefers a linear dependence of n0(T ) and E(T ) rather
than 3/2 or 5/2.

Actually, the corresponding condensed fraction n0(T ) may
be presented as

n0(T ) = 1 − 1

νNs

∑
q

1

eε(q)/T − 1

≡ 1

νNs

∑
q

1

eε(q)/T 0
c − 1

− 1

νNs

∑
q

1

eε(q)/T − 1
. (19)

In the large ν � 1 limit one may use the linear approximation
in the exponential functions in (19) to obtain a relation similar
to (18). In fact, introducing the reduced temperature t as t =
T/T 0

c , 0 � t � 1, we have obtained

n0(T ) |ν�1 ≈ 1

νNs

∑
q

[
dνt0

c (ν)

2ε̃(q)
− tdνt0

c (ν)

2ε̃(q)

]

= 1 − t = 1 − T

T 0
c

, (20)

where we have used Eqs. (12) and (14). Therefore at large ν

the condensed fraction exhibits a linear power law at T � T 0
c

as n0|ν→∞ = 1 − T/T 0
c in contrast to Eq. (18). The linearity

of the function E(T )/N , i.e., the energy per atom in the BEC
phase, defined as2

E(T )

N
= 1

νNs

∑
q

ε(q)

eε(q)/T − 1
= T

ν
+ O

(
T 2

ν2

)
, (21)

at large filling factors, and hence, the condition

lim
ν→∞ Cv(T ) = Ns (22)

may be proven in a similar way.
In Fig. 2 the condensed fraction n0(T ) versus T/T 0

c , found
as an exact solution to Eq. (19), is presented for various
values of ν. To illustrate the contrast between the ideal gases,
satisfying Eq. (18) and the optical lattices, we plot here the
(3/2) power law dependence also (solid thick line). It is seen
that the function n0(T ) exhibits a linear dependence for ν � 5.

The energy E(t)/Ns in units T 0
c and the heat capacity

Cv(t)/Ns for different values of ν are plotted in Figs. 3
and 4, respectively. It is seen that the energy becomes
linear on temperature, and the corresponding heat capacity,
Cv/Ns reaches its asymptotics, i.e., unity even at ν ∼ 5,
t ∼ 0.4. On the other hand, it is well known that, e.g., heat
capacity per particle of IHB gas is a function of only the

2Here the vacuum energy, E(T = 0)/N , has been subtracted.
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FIG. 2. (Color online) The condensed fraction n0 vs reduced
temperature t = T/T 0

c , as an exact solution of Eq. (19) for d = 3
and different values of ν. The thick solid line corresponds to the IHB
gas.

reduced temperature and does not depend on the density, i.e.,
[Cv/N ]gas ≡ [CV /N]gas(t). But, for the case of noninteracting
gas in the periodic potential, one may note from Fig. 4 that its
heat capacity depends on the filling factor also, which plays
the role of the density. This is one of the main results of the
present work. This dependence may be approximated as

Cv(t,ν)

Ns

=
[

1 − 1

e2.286ν

]
t0.716/ν (23)

in the BEC regime, i.e., for t � 1. The heat capacity per particle
may be found from (23) by using the formula Cv(t,ν)/N =
[Cv(t,ν)/Ns]/ν.

FIG. 3. (Color online) The total energy per site in units T 0
c vs

reduced temperature t = T/T 0
c , for d = 3 and different values of ν.

The thick solid line corresponds to the IHB gas.

FIG. 4. (Color online) The same as in Fig. 3 but for the heat
capacity, Cv/Ns . It seen that at high filling factors, ν � 10, the Cv/Ns

becomes constant at T � 0.1T 0
c

In Fig. 5 the entropy per particle, [S/N ](t,ν), of the
condensed noninteracting atoms in optical lattice is presented
for various ν. One can again see that the scaling relation
[S/N ](t) ∼ t3/2 which holds for IHB gas does not hold for the
system of noninteracting atoms in optical lattices. For small
filling factors [S/N ](t,ν) is almost linear in the temperature.
As for the ν dependence of this function, the entropy decreases
as 1/ν with increasing ν. A similar behavior of [S/N ](t,ν)
was found by Blakie and Porto [16] where the authors studied
entropy-temperature curves in a large scale of temperature for
ν � 4.

FIG. 5. (Color online) The same as in Fig. 3 but for the entropy
per particle, S/N . It is seen that t3/2 power law does not hold even at
ν = 1.
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There is a simple relation between the internal energy and
the pressure P :

E = d

2
PV, (24)

which holds for IHB gas. In textbooks it is usually derived
by the integration by parts of the free energy, � = −PV .
On the other hand, it can be shown that [17] this relation
is a consequence of the scale invariance of the Hamiltonian
with respect to the dilation of coordinates, i.e., r → λr . It is
clear that the presence of the periodic potential (1) breaks this
invariance, and hence the relation (24) is not valid in optical
lattices.

IV. CONCLUSION

We have studied the critical temperature for ideal Bose
gases loaded into the cubic periodic lattice potential without
a harmonic trap. We obtained the transition temperatures,
T 0

c (ν)/J , with arbitrary filling factors including the high filling
limit. In one dimension this limit corresponds to the quantum
rotor regime. We have proposed a simple interpolating formula

for T 0
c (ν) that approximates the transition temperatures for

one, two, and three spatial dimensions. It was shown that T 0
c /J

is linear for ν � 5 at any realistic dimensions. In contrast to
the ideal homogeneous Bose gases, the ones in optical lattices
exhibit a linear temperature dependence of the condensed
fraction and the energy per particle, especially at large filling
factors. We have also shown that thermodynamic quantities
such as the energy, heat capacity, and the entropy of the system
of even noninteracting atoms in optical lattices depend not
only on the reduced temperature, but also on the density, i.e.,
on filling factor ν = ρad .

These results may serve as a checkpoint for various
experiments on optical lattices as well as theoretical studies of
weakly interacting Bose systems in periodic potentials.
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