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Thermal noise of mechanical oscillators in steady states with a heat flux
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We present an experimental investigation of the statistical properties of the position fluctuations of low-loss
oscillators in nonequilibrium steady states. The oscillators are coupled to a heat bath, and a nonequilibrium
steady state is produced by flowing a constant heat flux, setting a temperature difference across the oscillators.
We investigated the distribution of the measurements of the square of the oscillator position and searched for signs
of changes with respect to the equilibrium case. We found that, after normalization by the mean value, the second,
third, and fourth standardized statistical moments are not modified by the underlying thermodynamic state. This
differs from the behavior of the absolute, i.e., not normalized, second moment, which is strongly affected by
temperature gradients and heat fluxes. We illustrate this with a numerical experiment in which we study via
molecular dynamics the fluctuations of the length of a one-dimensional chain of identical particles interacting via
anharmonic interparticle potentials, with the extremes thermostated at different temperatures: we use the variance
of the length in correspondence to its first elastic mode of resonance to define an effective temperature which we
observe to depart from the thermodynamic one in the nonequilibrium states. We investigate the effect of changing
the interparticle potential and show that the qualitative behavior of the nonequilibrium excess is unchanged. Our
numerical results are consistent with the chain length being Gaussian distributed in the nonequilibrium states.
Our experimental investigation reveals that the position variance is the only, and crucially easily accessible,
observable for distinguishing equilibrium from nonequilibrium steady states. The consequences of this fact for
the design of interferometric gravitational wave detectors are discussed.
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I. INTRODUCTION

Knowledge of the probability density function (PDF) of
stochastic observables is of key importance in experimental
physics. Even the significance of the mean value and root-
mean-square of an observable depends on some hypotheses
about its statistical distribution. In the case of low signal-to-
noise ratio experiments, such as in the search for gravitational
waves [1], detailed knowledge of the spontaneous fluctuations
is mandatory if one wants to distinguish the (small) signal
from the noise. While equilibrium systems are well described
by the Boltzmann-Gibbs distribution, an equivalent general
framework valid for nonequilibrium systems is not available.

In the literature a wide set of experiments are dedicated to
the study of the fluctuations in either transient or stationary
states (see, for instance, Refs. [2–6]). From a theoretical
viewpoint, the nonequilibrium states are characterized by
the failure of the detailed balance. Experimentally, the
nonequilibrium state is revealed either by a fictitious effective
temperature, usually greater than the thermodynamic one, or
by the non-Gaussianity of the observed distributions. In this
context power-law distributions have attracted much attention
because they are found in a very wide variety of contexts (see,
for instance, the review [7]). However, the quantification of
the absence of equilibrium is still a subject of research [8–10].
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Therefore it is difficult to predict whether nonequilibrium
phenomena will manifest in a given system and eventually
to size them. Indeed, it is not even clear how to operationally
identify a steady state, e.g., by setting an upper limit on the time
derivative of thermodynamic quantities, such as temperature.

In Ref. [11] we reported the experimental investigation of
the mean energy content of oscillators subject to constant heat
fluxes. A schematics of the system under study is shown in
Fig. 1 (see more details in Ref. [11]): an aluminium rod
(length = 0.1 m) with square cross section is kept in the vertical
position with the top end fixed and the bottom end loaded
by a cuboid mass (mass ∼ 0.2 kg) which is free to vibrate.
With a capacitive readout coupled to a low-noise amplifier
we monitored the vibration fluctuations around the resonance
of the first transverse and longitudinal acoustic modes, re-
spectively at about fm1 ∼ 320 Hz and fm2 ∼ 1420 Hz: the
elastic deformation corresponding to these modes is shown
in panels b and c of Fig. 1. In the low-loss approximation,
around their resonance these modes are realization of normal
harmonic oscillators. The top end of the rod was connected to
a thermal bath at temperature T1 while the mass at the bottom
was coupled to a heat source, which raises its temperature to T2:
thus, by flowing heat, we controlled the temperature difference
�T = T2 − T1 across the rod. Conduction is the dominant
heat transfer mechanism. For the mentioned oscillators, in
stationary states out of equilibrium, we observed an excess of
the mean kinetic energy (averaged over periods of 0.5–1 h)
with respect to the values expected from the thermodynamic
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FIG. 1. (a) Schematic representation of the experimental setup.
A metal rod with one end fixed and the other loaded by a mass free to
vibrate is kept in the vertical position; the rod length is 0.1 m, and the
mass weighs about 0.2 kg. A capacitive readout realized between the
mass bottom surface and a facing fixed electrode monitors the mass
vibrations: it is coupled to a custom low-noise amplifier, and then the
signal is digitized and acquired. A thermal source facing the mass
sets a thermal difference �T between the top and bottom end of the
rod, respectively, at T1 and T2, �T = T2 − T1. The thermal profile
along the rod in the steady state is shown in gray shading (increasing
temperature from light to dark). The deformation of the body is shown
which corresponds to the transverse (b) and longitudinal (c) acoustic
mode under study; the shape of the body at rest is shown with dashed
lines for comparison. For parts (b) and (c) the gray scale shows the
total deformation, which is larger at darker gray levels.

temperatures. In other words, in the presence of a heat flux
along the piece, the mean kinetic energy noticeably exceeded
even the maximum of the end temperatures. This shows that
in the nonequilibrium state the energy equipartition does not
hold: the low-frequency elastic modes show an energy content
that depends on the nonequilibrium driving in addition to
T and that exceeds the energy of the very high-frequency
modes which originate the temperature T sensed by local
thermometers.

We interpreted this excess in terms of correlations, caused
by the heat flux, among the acoustic modes of the system. The
excess is substantial even close to equilibrium, with relative
temperature differences of the order of a few percent. Using
a linear approximation for thermal conduction valid close to
equilibrium, we derived an expression for the variance 〈x2〉NEQ

of the position fluctuations of a single mode of vibration as a
function of the nonequilibrium driving, i.e.:

〈x2〉NEQ = η

η − λ(φ)2
〈x2〉EQ, (1)

λ(φ) = 1

2φ
(1 −

√
1 + 4ηφ2); η = μ

Mω2
1(kBT )2

, (2)

where 〈x2〉EQ is the variance in equilibrium at the average
physical temperature T , φ is proportional to the nonequilib-
rium driving, being the fraction of heat transfer rate carried on
average by the mode, η plays the role of a parameter which

discriminates between the small and large driving regimes [see
Eqs. (3) and (4) below], ω1 is the mode resonant frequency,
M is the mode mass, and μ is a mass parameter attributed
to the other modes coupled with this one. It comprises a
linear combination of all the other modes’ masses contained
in the heat flux term, and it reflects diagonalization of the
Hamiltonian. μ is well approximated by a single-mode mass
when the coupling with that one is much stronger than with all
the others. In the limit of small or large driving, one finds

〈x2〉NEQ � 〈x2〉EQ (1 + η φ2); |φ| � 1/
√

η, (3)

〈x2〉NEQ � 〈x2〉EQ
√

η |φ|; |φ| � 1/
√

η. (4)

In Ref. [11] we found that in the nonequilibrium states the
effective temperature Teff = Mω2

1〈x2〉NEQ becomes larger than
the physical temperature and that the difference is of the
same order of magnitude as T itself. The dependence on
the square of �T similar to that in Ref. [12] suggests that
the correlation among oscillators can be interpreted in terms
of entropy production. For T fixed, letting φ = c �T/T and
a = η c2, Eqs. (1) and (2) can be rewritten in dimensionless
terms:

ζ (s) = 1

2s
(1 −

√
1 + 4as2), (5)

RNEQ/EQ = 〈x2〉NEQ

〈x2〉EQ
= a

a − ζ (s)2
; s = �T

T
. (6)

We note that the parameter a in Eq. (6) depends on the
temperature of the system; indeed, our choice is to consider T

as the average physical temperature, thus making a maximum
error of order O(�T ). Hence we expect the equation (6) to
break down for large relative temperature differences.

We also performed a numerical experiment with a Fermi-
Pasta-Ulam-like one-dimensional chain, with one end fixed
and the other end free [13], each connected to a thermostat
at temperature, respectively, T1 and T2, with T2 − T1 � 0
and (T1 + T1)/2 constant. The identical particles of the chain
interacted with first- and second neighbors, via Lennard-Jones-
type potentials of the kind [14]

VLJ(d) = V12,6(d) = ε

[(d0

d

)12
− 2

(d0

d

)6
]
, (7)

where d is the distance between any two interacting particles,
d0 = r0 for nearest neighbors, d0 = 2r0 for second neighbors,
and r0 is the particles’ separation at T = 0. The Fourier
analysis of the total length of the chain gave results very similar
to those of the real experiment; moreover, the ratio between the
total energy of the first mode of the chain in the nonequilibrium
state with T2 − T1 > 0 around (T1 + T1)/2 and the total energy
of the mode in equilibrium at the same (T1 + T1)/2 were well
fitted by our theoretical model of Eq. (6) [11].

In this paper we investigate how the new energy dis-
tribution depends on the specific interparticle potential in
our one-dimensional numerical model. Thus we perform the
same numerical analysis described in Ref. [11] but with
a potential different from that of Eq. (7). Moreover we
investigate the statistics of the fluctuations of the position
of low-loss oscillators in steady states due to constant heat
fluxes. We stress that even for such a simple nonequilibrium
system the probability distribution concerning microscopic
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configurations is not known. To single out changes in the
statistical distributions with respect to the equilibrium case, we
study the second, third, and fourth moments of the statistical
distribution of the square of the oscillator positions and
compare the values obtained in the nonequilibrium states with
those at equilibrium. We normalize the second moment (i.e.,
the variance) to the mean value, to focus on its statistical
distribution, rather on its mean value. The position variance,
used in Ref. [11] to characterize the oscillator effective energy,
is proved here to be the only easily accessible parameter
that needs consideration in high-sensitivity experiments, as
the gravitational wave detectors, in order to account for the
subtle dissipation effects taking place in such instruments. We
conclude the paper with a prediction of the nonequilibrium
effect in gravitational wave detectors.

II. NUMERICAL MODEL

The numerical model discussed in Ref. [11] gives results
which agree both with the theoretical model and with the
experimental finding for the longitudinal mode. To assess
whether such agreement is accidental or the sign of a more
general behavior, we consider here a second model which
differs that of Ref. [11] for the interparticle potential different
from VL. In the present study we investigate the chain with the
potential

V12,8(d) = ε

[
2

(
d0

d

)12

− 3

(
d0

d

)8]
, (8)

which is equal to Eq. (7) in the repulsive part and has the
same energy depth ε. At the lowest temperatures one can
approximate:

VLJ(d) � 1
2kel(d − d0)2 = 36 ε (d − d0)2,

V12,8(d) � 1
2k′

el(d − d0)2 = 48 ε (d − d0)2.
(9)

Thus in the two cases the elastic constants differ by about 30%.
The time evolution of the length of a chain of 128 identical
particles interacting via potential V12,8 is studied via molecular
dynamics techniques; as in Ref. [11], one of the chain ends
is fixed and thermostatted at T1 while the other is left free
and thermostatted at T2, with �T = T2 − T1 � 0 and (T1 +
T2)/2 = Tavg constant. The Fourier analysis of the length chain
allows us to estimate the mean energy of its first mode of
resonance.

The ratio RNEQ/EQ defined in Eq. (6) is plotted in Fig. 2;
for a better comparison in the same figure we also show
the results obtained in Ref. [11] with the potential VLJ. The
nonequilibrium driving has a dramatic impact on the mode
energy, i.e., on the variance of the mode coordinate: with just
a 10% thermal difference the variance increases by a factor
of about two with the potential V12,8. Each set of numerical
data is fitted with the one-parameter curve of Eq. (6), and
the results are also shown in Fig. 2. The change of the
interparticle potential does not lead to qualitatively different
results: quantitatively the change is also limited, and the
agreement with our theoretical model of Eq. (6) remains good.

We conclude this section with a test of the hypothesis
that the chain length z(t) is Gaussian distributed even in the
nonequilibrium states: we stress that this is not a test for the
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FIG. 2. Plot of the ratio RNEQ/EQ as function of the relative
temperature difference across the one-dimensional chain. The stars
(respectively, squares) show the results obtained with the interparticle
potential V12,8 (respectively, VLJ); the dashed (respectively, solid) line
is the fit of the data with the theoretical model of Eq. (6). The fit
results in a = 240 ± 3 for V12,8 and a = 129 ± 2 for VLJ.

distribution only of the first modes of the chain (as with the
experiment; see Sec. IV) but in the whole frequency range,
i.e., for every frequency ω. This is possible due to the fact
that in the numerical simulations there are no external noise
forces, except for the algorithmic baths; this differs from
the real experiment, where the normal modes emerge from
the electronic noise only near their resonances. With this in
mind, we analyze the indeterminacy which accompanies the
estimation of the power spectra, which is directly related to
the probability distribution of the variable z(t). Although we
used FFT for the calculations, in the following the underlying
theory is derived in the continuum limit and for frequencies
ω 
= 0 (a more complete derivation can be found in Ref. [15]).

Consider the following (stochastic) variable:

X (ω) = z(0)
∫ +∞

−∞
eiωt z(t) dt = z(0)z̃(ω). (10)

X can be thought of as the spectral decomposition in a single
simulation run or in a single time buffer. The mean of X is
obtained by averaging over many runs or buffers, and it is by
definition the power spectral density S(ω) of the position

S(ω) = 〈X (ω)〉. (11)

Here we are interested in the variance of X , which allows us
to estimate the sample standard deviation in a series of runs or
buffers.

With the hypothesis that z(t) is a fully Gaussian process
with zero mean, it follows that four-point averages can be
decomposed into the sum of products of two-point averages,
in the following way:

〈z(t1)z(t2)z(t3)z(t4)〉
= 〈z(t1)z(t2)〉〈z(t3)z(t4)〉 + 〈z(t1)z(t3)〉〈z(t2)z(t4)〉

+ 〈z(t1)z(t4)〉〈z(t2)z(t3)〉. (12)
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FIG. 3. Simulations with relative gradient of 10%. Comparison
of S(ω) = 〈X (ω)〉 (solid lines) and σX (ω) =

√
〈X 2(ω)〉 − S2(ω)

(◦ points), for the interparticle potentials VLJ (top panel) and V12,8

(bottom panel): for both potentials, the difference can hardly be
appreciated, being less than 5%. 
1 stands for the resonance
frequency ω1 of the first mode in the specific case of the LJ potential,
and it serves as normalization for comparison.

In order to get the variance of X , we need first to evaluate
the mean of

X 2(ω) = z2(0)
∫ +∞

−∞

∫ +∞

−∞
eiωt z(t)eiωt ′z(t ′) dt dt ′, (13)

which, due to the Gaussian decomposition, leads to

〈X 2(ω)〉

= 2S2(ω) + 〈z2(0)〉
∫ +∞

−∞

∫ +∞

−∞
eiω(t+t ′)〈z(t)z(t ′)〉 dt dt ′.

(14)

The second term on the r.h.s. of this equation is null
in stationary states, by virtue of the equalities 〈z(t)z(t ′)〉 =
〈z(t − t ′)z(0)〉 and 〈z(0)z(τ )〉 = 〈z(0)z(−τ )〉, which imply for
ω 
= 0

∫ +∞

−∞

∫ +∞

−∞
eiω(t+t ′)〈z(t)z(t ′)〉 dt dt ′

= 1

2

∫ +∞

−∞
dte2iωt

[ ∫ +∞

−∞
eiωτ 〈z(0)z(τ )〉 dτ

−
∫ +∞

−∞
e−iωτ 〈z(0)z(τ )〉 dτ

]

= −1

2

∫ +∞

−∞
dte2iωt

[ ∫ +∞

−∞
eiωτ 〈z(0)z(τ )〉 dτ

−
∫ +∞

−∞
e−iωτ 〈z(0)z(τ )〉 dτ

]
= 0. (15)

It follows for the variance of X (ω)

σ 2
X (ω) = 〈X 2(ω)〉 − 〈X (ω)〉2 = S2(ω). (16)

Thus, if z(t) is a Gaussian process, the sample standard
deviation of the power spectrum equals the power spectrum
itself. We use this equality as a test of Gaussianity of the chain
length in the nonequilibrium states. In Fig. 3 we compare the
two quantities in the case of both the interparticle potentials:
the curve σX (ω) =

√
〈X 2(ω)〉 − S2(ω) is indistinguishable

from the power spectrum of the simulations, the relative
difference being always smaller than 5%. Thus this property
shows that in the nonequilibrium states our numerical results
are consistent with the Gaussian hypothesis.

III. EXPERIMENTAL DATA ANALYSIS PROCEDURE

The signal of the capacitive readout that senses the position
fluctuations of the metal rod (see Fig. 1) is dominated at low
frequency by the mechanical noise of the floor: a suspension
system which supports the experimental apparatus is effective
in reducing the noise level to a negligible level above about
200 Hz. To isolate the contribution of the two modes (in the
following referred to as mode 1, m1, for the transverse mode
and mode 2, m2, for the longitudinal mode), the time series
si of the acquired signal, which is the output of the amplifier
following the capacitive readout, was filtered via a lock-in
analysis: for each mode, two time series xmj , ymj (j = 1,2)
were formed by multiplying the input signal with in-phase and
in-quadrature component of a reference signal:

x∗
mj = si cos (2πflck,j ti),

y∗
mj = si sin (2πflck,j ti),

(17)

where flck,j is the lock-in frequency and is chosen to match
fmj ; ti+1 − ti is the inverse of the sampling frequency fs =
8 kHz of the data acquisition. The resulting time series were
then filtered in the frequency domain, multiplying the FFT of
signal and filter: this is a low-pass Kaiser filter. The standard
overlap-save method was used to divide the data in overlapping
buffers and to perform the convolution. The resulting signals
were then decimated to decorrelate for the filter frequency
width: the decimation factor was three times the lock-in filter
time width, i.e., 10 s for the transverse mode (m1) and 0.6 s for
the longitudinal mode (m2). We refer to the filtered, decimated
time series as xmj and ymj corresponding, respectively, to x∗

mj

and y∗
mj of Eq. (17).

To guarantee that the lock-in is centered at the mode
resonance, we updated the lock-in frequency flck,j every 32
and 55 min for m1 and m2, respectively: we made it coincident
with the value of the resonant frequency estimated by the
Lorentzian fit of the time-averaged power spectral density.
The procedure leading to the resonant frequency estimates is
described in Ref. [11].

The signals xmj and ymj describe the oscillator position with
respect to the reference sinusoidal curve. We combined them
in quadrature to get a quantity proportional to the energy of
the oscillator:

r2
mj = x2

mj + y2
mj (18)

with j = 1,2. The phase with respect to the reference signal
is obtained by the arctangent function φmj = atan2

(
ymj , xmj

)
,

which is expected to be uniformly distributed in the range
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(−π, + π ]. If the signals of Eq. (17) are independent and
Gaussian distributed, as expected for an equilibrium oscillator,
then r2

mj follows a chi-square distribution of order 2, i.e., the
exponential law of the canonical ensemble. To conform with
Ref. [11], rather than studying the statistical distribution of xmj

and ymj , we chose to study the distribution of r2
mj and φmj .

The data of each decimated time series produced by the
lock-in filters were grouped in time buffers lasting �tmj : for
each buffer we computed the first moments of the statistical
distribution of the data. The durations of the long buffers of the
decimated data were chosen as a compromise between the need
to have many buffers, i.e., many independent measurements
of the statistics moments, and the need to populate sufficiently
the buffer so that the measurements of the moments per buffer
were significant. The time buffer lengths were �tm1 ∼ 5 h
and �tm2 ∼ 1 h. Further, we discarded all decimated data

buffers that did not satisfy the steady state condition of the
maximum normalized total time derivative of the temperatures
at the rod ends, which we set to 10−7 s−1: this procedure was
detailed in Ref. [14] and corresponds roughly to impose an
upper limit of 20 μK/s on the instantaneous time derivative of
the temperature.

IV. RESULTS ON FLUCTUATION STATISTICS

Figure 4 shows the histograms of the normalized variance,
skewness, and excess kurtosis for the equilibrium states of
the r2

mj signals, for the m1 and m2 oscillators: in agreement
with the expectations for an exponential distribution, on
average the variance normalized to the square of the mean
value, the skewness, and the excess kurtosis are compatible
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FIG. 4. Histograms of the measurements of the distribution’s variance normalized to the (square of the) mean value (top row), skewness
(middle row), and excess kurtosis (bottom row) in different thermodynamic states. Left column shows the results for r2

m1: right column
shows the results for r2

m2. The solid line, white histograms, show the equilibrium measurements with �T = 0 K (respectively, 232 and 1138
measurements for r2

m1 and r2
m2); the dashed line, filled histograms, show the nonequilibrium measurements with �T = 9.4 K (respectively, 110

and 522 measurements for r2
m1 and r2

m2); the cross-filled histograms show the nonequilibrium measurements with �T = 13.2 K (respectively,
17 and 87 measurements for r2

m1 and r2
m2). Data taken at different values of thermal difference �T are not shown as they amount to fewer

samples.
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FIG. 5. (Color online) Plot of the normalized variance (top row), average skewness (middle row), and excess kurtosis (bottom row) as a
function of the steady-state thermal difference �T . Left column shows the result for r2

m1; right column shows the results for r2
m2. The (black)

crosses show the mean value of the measurements with their error bars; the (red) circles show the median of the measurements.

with the values 1, 2, and 6, respectively. The distribution of
the kurtosis is slightly asymmetric, with a tail at high kurtosis
values.

The good quality of these equilibrium states encouraged
us to try to detect subtle changes in the PDF, which may
arise when nonequilibrium sets in. We computed the nor-
malized variance, skewness, and excess kurtosis for the data
acquired in the nonequilibrium steady states: the histograms
are shown in Fig. 4 for the m1 and m2 modes. The centers
of the histograms seem not to have changed with respect
to the equilibrium case. This is summarized in Fig. 5
where the average values of the normalized moments are
plotted against the temperature difference between the two
ends of the rod, a quantity proportional to the heat flux, i.e., to
the nonequilibrium driving, in our near equilibrium conditions.
To account for the asymmetry of the excess kurtosis histograms
shown in Fig. 4, along with the mean value we also plot the
median, which is less dependent on outliers: we note that the
median is computed using all the data, i.e., without applying
the above mentioned cutoff on the skewness.

Overall, apart from the reported significant dependence of
the variance on the temperature difference [11], even at our
maximum driving we see no other changes in the statistical
distribution of the oscillators fluctuations, with respect to the
equilibrium case.

The histograms of Fig. 4 do not show 3 and 33 momentum
measurements for the r2

m1 and r2
m2, respectively (corresponding

to about 1%–2% of the measurements), which exceed the plot
range (excess kurtosis >20) but which were collected in time
periods passing the above mentioned steady-state criterion. In
some cases these measurements occurred when also the front-
end amplifier was disturbed, often by human intervention.
However, not all occurrences can be related to some external
recorded disturbances in the experimental apparatus: thus they
cannot be vetoed with a criterion independent of the same
signals r2

mj . On the other hand, in this work we do not focus
on the extreme value distribution but rather on the mean
distribution of the position fluctuations of the oscillators. Thus
when computing the mean momentum shown in Fig. 5 we
decided to discard such time periods, vetoing those buffers in
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FIG. 6. (Color online) Top: Histogram of the decimated r2
m2 mea-

surements collected during a buffer lasting �tm2 at �T = 13.2 K. The
line is the exponential fit of the histogram. Bottom: QQ plot of the r2

m2

measurements shown on the left against the exponential distribution
expected from their exponential fit. The last point corresponds to 99%
probability. The line shows the linear fit of the QQ plot: the intercept
is (−4.0 ± 3.5) × 10−14, and the angular coefficient is 1.042 ± 0.001.

which excess kurtosis was larger than 30. We also note that
the same criterion was applied to both oscillators, and to both
equilibrium and nonequilibrium data: however, there seems
to be no correlation between the thermodynamic state and
the occurrence of these extreme outliers. Finally, the cutoff
is so loose that any continuous modification of the moments
with increasing nonequilibrium driving would be observed
in any case. To also account for the small asymmetry of
the distribution of the excess kurtosis shown in Fig. 4, we
computed also the median of all the histogram data, removing
the cutoff on the excess kurtosis. The median is less sensitive to
extreme outliers than the mean. The result, however, is similar:
no change is observed in the statistical distribution when the
state departs from equilibrium, except for the variance of the
oscillator fluctuations.

As a further test for measuring changes in the statistical
distributions, we constructed quantile-quantile (QQ) plots: for
each buffer of the decimated data we compared the quantiles
of the experimental data with those expected for an equal
number of samples following exactly the exponential law with
the parameters coming from the exponential fit of the data. In
all QQ plots we arranged the data in 1% probability bins. As
an example, we show in the top part of Fig. 6 the histogram of

QQ plot slope
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FIG. 7. Histograms of the angular coefficients of the lines fitting
the QQ plots of the r2

mj measurements against the exponential
distribution: the exponents of the latter come from the fits of the
experimental distributions. The legend for the histograms is the
same as in Fig. 4, to distinguish measurements taken in different
thermodynamic states. Top and bottom plots refer, respectively, to
oscillator m1 and m2.

the decimated r2
m2 measurements corresponding to a buffer of

length �tm2 taken with �T = 13.2 K; the histogram is fitted by
an exponential law, and the fit parameters are used to construct
the horizontal axis in the corresponding QQ plot, shown in the
bottom part of Fig. 6. All QQ plots are fitted with a line, and the
resulting angular coefficients are collected in the histograms of
Fig. 7 for the equilibrium and the nonequilibrium states. The
mean angular coefficient is about 5% higher than expected,
likely due to the limited statistics in the histograms. However,
we observed no changes in the mean angular coefficient with
the thermodynamic state, confirming the above conclusions.

As a control we also studied the statistical properties of the
phases φmj with respect to the reference signal (j = 1,2): in
equilibrium the oscillators are expected to have a random phase
with respect to such reference. Thus in equilibrium the phase
measurements are expected to follow a uniform distribution
from −π to π , with variance equal to 3.29 rad2, null skewness,
and excess kurtosis equal to −1.2. The mean value, variance,
skewness, and excess kurtosis of the decimated φmj , j = 1,2,
are shown in Fig. 8 for both equilibrium and nonequilibrium
steady states. For clarity, in the figure no distinction is made
for the different nonequilibrium levels �T . The expectations
are well satisfied, in both the equilibrium and nonequilibrium
states.
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FIG. 8. (Color online) Plot of the variance vs mean value (top row) and of the skewness vs excess kurtosis (bottom row) for the phases φm1

(left column) and φm2 (right column). In the plots the (black) dots show the measurements in equilibrium, and the (red) open circles show the
measurements in all the nonequilibrium steady states.

In the realm of nonequilibrium physics, one popular way to
quantify variations of the PDF with respect to the equilibrium
case is based on the value of the parameter q that defines
the q analog of the equilibrium distributions, known as the q

distributions (also known as Tsallis distributions [16]). In this
context a q value of 1 implies no changes with respect to the
equilibrium PDF. If one wants to test the q exponential, the
computation of excess kurtosis and skewness may not suffice
since they become undefined for q � 1.2. Thus we used the q

exponential to fit the histograms of the r2. We observed a strong
dependence of the q exponential fit results on the amount of
data in the histogram and in its binning [17]. For a solid result,
we increased the decimated time buffer, respectively, by a
factor 8 and 20 for the m1 and m2 oscillators (corresponding
to a total time per histogram of 40 and 20 h respectively) before
fitting the histograms, which we did for different bin widths.
By comparing the results of the fits for the equilibrium data and
for the maximum nonequilibrium, we found no change in the
statistical distribution (apart for the slope of the exponential
trend): the best values of q given by the fits change within the
error. This reinforces the conclusions drawn above.

V. CONCLUSIONS

Given the observables we considered, looking only at the
acquired signal and not knowing that a heat flux is circulating,
the only way to distinguish that the oscillator is away from
equilibrium is to compare the effective temperature resulting

from the variance of the oscillator position with the average
thermodynamic temperature: as discussed in Ref. [14], in
both equilibrium and nonequilibrium steady states this is well
mapped by the oscillator resonant frequency. Thus, provided
one has calibrated the oscillator resonant frequency with a ther-
mometer, one can solely use the oscillator position fluctuations
to establish whether it is in equilibrium or not. Analogously
to Ref. [18], the discrepancy between the thermodynamic
temperature and the variance of the position (hence the effec-
tive temperature) allows one to ascertain the nonequilibrium
nature of the state. There the nonequilibrium was caused
by an electronic feedback that cooled the electromechanical
oscillators of the gravitational wave detector AURIGA below
the thermodynamic temperature. This is in agreement with
the fact that nonequilibrium states do not necessarily imply
non-Gaussian distributions for given observables.

The above results suggest a method to investigate nonequi-
librium effects in gravitational wave interferometric detectors,
which were our main motivation for starting this research
[19]. To achieve the impressive sensitivity expected to allow a
reasonable detection rate to the upcoming second generation
[20], they consist of giant Michelson interferometers with
optical resonant cavity arms, a few km in length, and suspended
mirrors, about 40 kg in mass; circulating laser powers up to
760 kW are employed. Thermal noise of the mirrors and their
suspensions is a major noise source. In spite of the high optical
quality of the materials (mirror coatings and substrates), a
fraction of the power is absorbed generating nonuniform
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temperature fields in the optics: they cause mismatching of the
interferometer resonant cavities and force the use of complex
thermal compensation systems [21] to recover the ideal radius
of curvature. As a result, the mirrors work in nonequilibrium
states with thermal differences of the order of 20 K [22], around
or just above room temperature: for the continuous operation
of the detectors we can consider the states as being stationary.
Hence from the thermodynamic viewpoint, the experimental
situation does not differ substantially from ours: macroscopic
elastic bodies with first resonances occurring in the same
frequency range as ours, and subject to steady-state heat fluxes
which cause temperature differences around room temperature
similar to those of our experiment. Major differences come
from the use of different materials (fused silica instead of
the aluminium alloy of our experiment) and the fact that the
out-of-resonance thermal noise is also of concern. Indeed,
for what concerns the noise level near the mode resonances,
our analysis of Sec. II indicates that the use of different
materials (fused silica instead of the aluminium alloy of our
experiment) does not lead to qualitatively different results:
Fig. 2 shows that the specific interparticle potentials, which
characterize the different materials, play no major role. Our
results may thus apply to interferometers, and they suggest

that the shape of the nonequilibrium distributions for the
thermal noise of the mirrors must not sensibly depart
from the equilibrium shape, and that the noise variance remains
the only accessible quantity which can be used for a correct
calibration of detectors, taking into account the dissipative
phenomena. On the other hand, the effects of dissipation are
crucial, differently from what previously believed, because
they strongly alter the temperatures at which instruments
are supposed to operate; hence they have a major impact on
the quantitative analysis. In particular, they lead to noise levels
corresponding to temperatures higher than those present in
the instruments, an effect that could be interpreted otherwise
as an error in the calibration. Our results indicate that a
correct assessment of the nonequilibrium effects requires
the measurement of the quantity a present in Eq. (6). For
what concerns the out-of-resonance noise level, little can be
anticipated and a dedicated study is mandatory.
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